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In the consumer credit industry, assessment of default risk is critically important for the financial health
of both the lender and the borrower. Methods for predicting risk for an applicant using credit bureau
and application data, typically based on logistic regression or survival analysis, are universally employed
by credit card companies. Because of the manner in which the predictive models are fit using large
historical sets of existing customer data that extend over many years, default trends, anomalies, and
other temporal phenomena that result from dynamic economic conditions are not brought to light. We
introduce a modification of the proportional hazards survival model that includes a time-dependency
mechanism for capturing temporal phenomena, and we develop a maximum likelihood algorithm for
fitting the model. Using a very large, real data set, we demonstrate that incorporating the time depen-
dency can provide more accurate risk scoring, as well as important insight into dynamic market effects
that can inform and enhance related decision making.
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1. Introduction

In the credit industry, profits realized on loan products or

credit cards depend heavily on whether customers pay

interest regularly, miss payments, default on their loans,

etc. Because of this, the industry has invested substantial

research into identifying high-risk credit applicants. For

this purpose, companies calculate numerical scores of

applicants’ creditworthiness based on the applicants’ credit

bureau data, such as past credit activity, and their appli-

cation data. This process is generally referred to as con-

sumer credit risk assessment, in contrast to corporate and

portfolio credit risk assessment, which involves very

different considerations.

Regarding consumer credit risk, which is the subject of

this paper, Rosenberg and Gleit (1994), Hand and Henley

(1997), Thomas (2000), Thomas et al (2002), Baesens et al

(2003), Thomas et al (2004), Thomas et al (2005), and

Crook et al (2007) reviewed several different risk assess-

ment objectives and approaches. The risk assessment

schemes generally fall into three main areas: credit scoring,

behaviour scoring, and profit scoring. The objective of

credit scoring (also called application scoring) is to help

lenders discriminate between high-risk applicant and

low-risk applicant, in terms of likely default behaviour,

and make decisions whether to accept an applicant based

on the score. The objective of behaviour scoring is to help

lenders make better decisions in managing existing custo-

mers by assessing likely future performance, based on past

performance of the customer. The objective of profit

scoring is to assess the likely profitability of an applicant,

which is related to default likelihood, but involves a

number of other considerations as well. In this work, we

focus on the credit scoring objective of predicting default

behaviour of applicants.

The most common credit scoring approach uses logistic

regression (LR) (Stepanova and Thomas, 2002). One

specifies a period of time (eg, 24 months), and then fits an

LR model to historical customer data for predicting the

probability an applicant will default within the specified time

period, as a function of the applicant’s credit bureau and

application variables (henceforth referred to as predictor

variables or predictors). As a lower predicted probability

means better creditworthiness, one usually sets a cut-off

threshold and approves credit to those having predicted

probability less than the threshold. Numerous other

statistical methods that attempt to fit more complex models

with higher degrees of nonlinearity between the predictors

and the response, such as support vector machines, neural

networks, and Bayesian network classifiers, have also been
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investigated for credit scoring. Baesens et al (2003)

summarized and benchmarked many such methods but

concluded that the more complex models generally per-

form quite similarly to LR, in terms of predicting default

probability. Moreover, Hand (2006) argued that potential

performance improvements attainable using more complex

models are often offset by other sources of uncertainty that

are exacerbated by the added complexity.

Survival analysis is an alternative to LR that is still

reasonably simple, in that it does not involve an overly

parameterized model. In survival analysis for credit risk

scoring, the objective is to model the distribution of the time

T to default (or of some other event associated with

default), as opposed to the LR objective of predicting the

probability of default within a single, specified period of

time. The distribution is allowed to be a function of an

applicant’s predictor variables via a proportional hazards

(PH) survival model [see Leemis (1995) for comprehensive

treatments of PH and other survival models in the context

of reliability analysis]. Banasik et al (1999) and Stepanova

and Thomas (2002) have investigated PH survival models

for credit risk scoring. For the sole purpose of predicting

the probability of default within a single specified period,

traditional PH survival modelling has little advantage

over LR. Stepanova and Thomas (2002) have found their

performances nearly indistinguishable. However, survival

analysis, with the predicted distribution of T that it provi-

des, offers a number of other advantages: First, it provides

a consistent means of predicting probability of default

within many different periods of time (eg, 12 month default

rate, 24 month default rate, etc). Second, it possesses an

inherent mechanism for taking into consideration the most

recent data. In contrast, in LR, if one wishes to predict the

probability of default within 24 months, customers joining

within the past 24 months cannot be included when fitting

the model. Third, it provides more complete information

on the predicted behaviour of T via its predicted

distribution. Relevant information includes a point

estimate of T (eg, the mean of the predicted distribution)

for each applicant, as well as a quantitative understanding

of the uncertainty one may expect in T (eg, via the upper

and lower 0.05 quantiles of the predicted distribution).

Knowledge obtained from the predicted distribution of T

can be useful in the broader context of profit modelling.

An additional characteristic of survival modelling, which

we develop as the main contribution of this work, is that it

can be conveniently modified to incorporate dynamic

economic conditions into the model. Thomas (2000) has

pointed out the important impact that dynamic conditions

can have on credit risk. For example, the recent global

economic downturn substantially increases an applicant’s

default likelihood, relative to someone with the same

predictor variables applying in the past when the economy

was healthier. In light of this, we develop an extension of

the PH survival model that takes into account dynamic

economic conditions. We refer to this as a time-dependent

proportional hazards (TDPH) survival model. The TDPH

survival model represents the effects of dynamic economic

conditions in a direct manner, without the need to iden-

tify a set of underlying macroeconomic factors that best

characterizes the current state of the economy (in terms of

its impact on consumer credit risk) and include them as

additional predictor variables, as was done in Tang et al

(2007) and Bellotti and Crook (2009). In a sense that will

become clear later, the TDPH survival modelling auto-

matically identifies a single, scalar, time-varying factor that

represents the net collective effect of all dynamic economic

conditions on default likelihood. We demonstrate that in a

dynamic economic environment, this offers modest but

significant (statistically and practically) improvements in

credit scoring accuracy versus the industry standard LR.

Equally importantly, the approach provides a means of

identifying and understanding the net effect of dynamic

market conditions in a simple, quantitative manner that

can be easily incorporated into other predictive decision-

making strategies. We demonstrate these points using a

very large, real data set from a consumer credit company.

Besides the aforementioned works that include time-

varying macroeconomic factors in the PH model,

Stepanova and Thomas (2002) and Tang et al (2007)

incorporated a type of time dependency by including

interactions between the predictors and time as additional

terms in the model. This is equivalent to assuming that

the effects (ie, the coefficients in the PH model) of the

predictors change as linear functions of the time since a

customer joined. This was intended to represent changes in

the effects of certain predictor variables that become more

or less pronounced the longer one has been a customer.

It was not intended to capture the effects of dynamic

market conditions.

In terms of identifying an external time-dependent

factor, the TDPH model is similar to the dual-time dyna-

mics (DtD) model of Breeden (2007), Breeden et al (2008),

and Breeden and Thomas (2008). The DtD approach

represents the collective effect of external time-dependent

factors as an additional additive term in a generalized

additive model (GAM). The commonality of the DtD and

TDPH methods is that neither requires macroeconomic

variables to be identified in advance and included in the

model. Rather, they both represent the collective effect of

such time-dependent factors using a single, scalar function

of calendar time. The specifics of how this is accomplished

are quite different, however. The GAM model is better

suited for modelling continuous variables (eg, profit, loss,

or exposure), whereas the TDPH model is better suited

for modelling the hazard function of a time-related event

(eg, credit default).

The format of the remainder of the paper is as follows.

In Section 2 we provide background on the traditional

PH survival model. In Section 3 we introduce our TDPH
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extension of the model. In Section 4 we derive the

maximum likelihood estimates (MLEs) of the TDPH

survival model parameters. In Section 5 we demonstrate

its use in credit risk scoring with the real data set and dis-

cuss a number of implementation issues and performance

characteristics. As we will show, the TDPH survival model

appears to fit the data quite well, especially in terms of

capturing market dynamics. We argue that it is a reason-

able and useful approach for modelling the time-to-default.

2. Background on PH survival modelling for T

Let f (t) and F(t) denote the probability density function

(pdf ) and cumulative distribution function (cdf ) of the time

T to default (T¼ 0 corresponds to the time of approval).

The hazard function is defined as h(t)¼ (1�F(t))�1f(t) and is

interpreted as the instantaneous likelihood of defaulting at

time t, given that the customer has not defaulted prior to

time t. From the definition of the hazard function, it can be

shown that FðtÞ ¼ 1� exp �
R t
0 hðuÞdu

� �
. We refer inter-

ested readers to Leemis (1995) or Meeker and Escobar

(1998) for derivations of these and related results and, in

general, for more comprehensive treatments of survival

modelling.

Strictly speaking, time-to-default data are discrete,

because all records are generated based on monthly pay-

ment behaviour. However, for tractability purpose, we

represent the distribution of T as continuous and take the

probability that a customer defaults in month number t

(for t¼ 1, 2, . . . ) to be F(t)�F(t�1).
Let x1, x2, . . . , xM denote a set of M predictor variables

for an applicant, and define the predictor vector x¼ [x1,

x2, . . . ,xM]0. In survival analysis, perhaps the most

popular way to allow the distribution of T to depend on

a set of predictor variables is through a PH survival model,

defined as follows. Denoting the hazard function for a

customer with predictors x by h(t;x) to indicate its explicit

dependence on x, a PH survival model represents h(t;x)¼
h0(t)c(x), where h0(t) denotes the hazard function for some

baseline distribution f0(t), and c(x) is some appropriate

function of the predictors. Two common choices for

c(x) are the exponential function eb0þ b0x or the logistic

(s-shaped) function (1þ eb0þ b0x)�1eb0þ b0x, where the

M �1 vector b and the scalar b0 are parameters to be esti-

mated, along with the parameters of the baseline distribu-

tion f0(t) [equivalently, the parameters of h0(t)]. Notice that

for a specific applicant (ie, for a fixed value of x), the

hazard function h(t,x) is proportional to the baseline

hazard function; hence the terminology PH survival model.

The application of survival models to credit risk

assessment has been studied by a number of researchers.

Banasik et al (1999) and Stepanova and Thomas (2002)

applied a PH survival model to credit scoring, while

Stepanova and Thomas (2001) applied it to behavioural

scoring. Baesens et al (2005) discussed the use of neural

networks for survival analysis and Andreeva et al (2007)

used a PH survival model to model profitability. Bellotti

and Crook (2009) incorporated macroeconomic variables

using a PH survival model.

The objective in survival analysis is to estimate the

parameters of h0(t) and c(x) from a set of historical data,

after which the predicted distribution for a new appli-

cant can be calculated via the relationship Fðt; xÞ ¼ 1�
exp �

R t
0 hðu; xÞduÞ

� �
with h(t;x)¼c(x)h0(t). Notice that

we have added the argument x to the pdf and cdf to

indicate that they depend on the predictor variables for an

applicant. One quantity that can be extracted from the

predicted distribution is the probability that an applicant

will default within the specific time period, which is what

LR produces. For example, the predicted probability of

default within 24 months is simply F(24;x), the predicted

cdf evaluated at month t¼ 24. Conceptually, this is the

area under the predicted pdf f (t;x) between t¼ 0 and

t¼ 24, as depicted in Figure 1.

For predicting default rates within a specific period of

time, Stepanova and Thomas (2002) found that there was

no significant difference between the receiver operating

characteristic (ROC) curves of PH survival modelling

versus LR. This is not surprising considering that LR

directly models the probability of default within a specific

time period, whereas this is indirectly obtained in PH

survival modelling. In the remainder of the paper, we

demonstrate that if one modifies the PH survival model to

incorporate dynamic market conditions (as described in

Section 3), the conclusions are different. In particular, the

TDPH model significantly outperforms LR for scoring

applicants, at least for the data set that we consider.

3. The TDPH survival model

Over an extended time period, all markets are dynamic.

To illustrate, Figure 2 shows the percentage of customers
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Figure 1 Predicted pdf of T and probability of default within
24 months (shaded area).
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who defaulted within their first 9 months, for three diff-

erent vintages (ie, customers joining in the three different

quarters: Quarter 2 of 2004, Quarter 4 of 2005, and

Quarter 4 of 2007). The customers in all three vintages fell

into the same FICO scoring band (between 675 and 705).

Hence, if one ignored market trends and attempted to

predict default probability based only on the applicants’

predictor variables, one would naively conclude that

customers in the three vintages all have the same default

probability. In reality, Figure 2 shows that the default

probability is much higher for the Q4 2007 vintage, because

of the severe economic downturn in 2008. Owing to confi-

dentiality concerns, the numerical values for the default

rate are omitted in Figure 2.

To account for such temporal effects, one potential

approach is to incorporate macroeconomic variables into

the PH survival model. Tang et al (2007) and Bellotti and

Crook (2009) incorporated macroeconomic variables such

as interest rate and unemployment rate as additional predi-

ctors to improve the model fit and the prediction of default

probability. One drawback of this approach is that it may

be quite difficult to identify the right economic factors to

include. For example, there was a temporary spike in

defaults in December, 2005 (which we will discuss later) that

was triggered by changes in the bankruptcy laws. This

could not have been realistically modelled via a dependency

on common macroeconomic variables. The approach that

we develop avoids this difficulty by more directly modelling

the effects of dynamic market phenomena.

For a customer that joins during month t, denote his or
her hazard function by h(t;x, t) to explicitly indicate its

dependence not only on x, but also on the time at which

the customer joins. In our TDPH survival model, we

represent h(t;x, t)¼ h0(t)c(x)g(tþ t), where g(tþ t) is a

scalar function of time that can be viewed as a time-

dependency factor. One might regard g as a macroeco-

nomic factor, but more precisely, it represents the aggre-

gated effects of external time-dependent factors that were

not accounted for by the predictor variables in the PH

survival model. Notice that tþ t represents absolute time,

and t represents the time relative to when the customer

joined. Notice also that the first month in which a customer

can default is tþ 1, corresponding to t¼ 1. Throughout

this paper, we use a piecewise constant function for g that is
constant over each quarter. Figure 3 shows the estimated g
function (denoted ĝ) for our real data set. We discuss

the estimation algorithm and other model details more

fully in Sections 4 and 5. Here, we include it only to help

illustrate the model by providing a concrete example of

what the g function might look like. Such a nonparametric

g function avoids the overly-restrictive assumptions that

are implicit in a parametric choice for g, such as linear,

quadratic, or exponential. In general, nonparametric func-

tions often involve the risk of overfitting, but credit scoring

data sets are so large that this is hardly a problem for our

application (our data set consisted of roughly 200 000

customers and even this number represented o10% of the

total number of available customer records).

Regarding the effect of the g function and how one

should interpret it, consider two customers with the exact

same predictors x, but with Customer 1 booked in January,

2006 and Customer 2 in August, 2007. At month t¼ 12 for

each customer, the hazard function h(12;x, t) for Customer

2 is roughly double that of Customer 1, because g for

August, 2008 is roughly double g for January, 2007. This

means that if neither customer defaulted through their first

11 months, the likelihood that Customer 2 defaults in their

month 12 is roughly double the corresponding value for

Customer 1.

0
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Figure 2 Actual rates of 9-month default for three vintages of
customers, all with similar FICO scores.
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Figure 3 Estimated g for the real data set. The dashed vertical lines represent the changes in calendar year.
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4. Maximum likelihood estimation of the TDPH survival

model parameters

To estimate the parameters of the TDPH survival model,

we develop an MLE method that is a modification of the

standard MLE approach commonly used in PH survival

modelling (Leemis, 1995). Using the relationship between

F and h for survival models in general, the cdf of T for

a customer with predictors x joining in month t can

be expressed as F(t;x, t;c, h0, g)¼ 1� exp �
R t
0 h0ðuÞcðxÞ

�
gðtþ uÞduÞ for the TDPH survival model. For clarity, we

have added arguments to F to explicitly indicate its depen-

dence on the parameters. Because g is modelled as piecewise

constant with quarterly pieces, and c(x) does not depend

on the variable u in the integrand, it is convenient to break

the integral up into components that correspond to the

pieces over which g is constant. Doing this, we show in

Appendix B that the cdf is given by

Fðt; x; t; h0; c; gÞ

¼ 1� exp

 
�cðxÞ

Xwðt;tÞ
k¼1

g t=3d eþk�1:

� � log 1� F0ðst; kÞ
� ��

þ log 1� F0ðst;k�1Þ
� ��!

:

Precise definitions of the notation, as well as further details,

are given in Appendix B. Conceptually, w(t, t) denotes the
number of different intervals over which the piecewise

constant g is constant (ie, the number of pieces) between the

time of approval (t) and the time in question (tþ t); and gJt/
3nþ k�1 and st,k represent the value of g over the kth inter-

val, and the upper boundary of the interval, respectively.

Now consider the data {ti,xi, ti, di : i¼ 1, 2, . . . ,N } from

which the model parameters are to be estimated, where N

denotes the total number of customers in the (training) data

set. We have added a subscript i to t, x and t to denote the

customer index. The binary variable di indicates whether the
ith customer defaulted at any point in time (1 for default; 0

otherwise). If di¼ 1, then ti denotes the time at which the ith

customer defaulted. Otherwise, ti denotes the time at which

the ith customer was censored (eg, ti¼ 15 if the ith custo-

mer’s account was closed in good standing after 15 months

as an active customer; or ti¼ 18 if the ith customer joined

18 months prior to the last month of the data set and

remained a customer in good standing for the duration).

The log-likelihood function for the ith customer is

lðh0; c; gjti; xi; ti; diÞ
¼ di logðFðti; xi; ti; h0; c; gÞ
� Fðti � 1; xi; ti; h0; c; gÞÞ
þ ð1� diÞ logð1� Fðti; xi; ti; h0; c; gÞÞ:

Notice that if di¼ 1, the log-likelihood for the ith customer

reduces to log(F(ti;xi, ti; h0,c, g)�F(ti�1;xi, ti; h0,c, g)),

which is the log of the probability that the customer

defaulted in month ti. If di¼ 0, the log-likelihood reduces

to log(1�F(ti;xi, ti; h0,c, g)), the log of the probability

that the customer remains in good standing until their

censored time. Also notice that, given the time ti at which
the customer joined (and hence the knowledge of whether ti
represents a default or a censor), the binary random

variable di is completely determined by ti. Hence, when

deriving the likelihood, it is sufficient to consider only

the distribution of ti. In essence, di is used simply as a

convenient notation. Assuming the customers are indepen-

dent (conditioned on t), the log-likelihood function for the

entire data is

lðh0; c; gjt; X; s; dÞ

¼
XN
i¼1

di logðFðti; xi; ti; h0; c; gÞð

� Fðti � 1; xi; ti; h0; c; gÞÞ
þð1� diÞ logð1� Fðti; xi; ti; h0; c; gÞÞÞ;

where t, s, and d are N � 1 column vectors whose ith

elements are ti, ti, and di, respectively, and X is the N � M

matrix with ith row xi
0.

The log-likelihood l(h0,c, g |t,X, s, d) is maximized to

estimate the parameters of h0, c, and g. Notice that the

parameters of the piecewise constant g are simply the

values of the pieces, which we represent as a Q � 1 vector

of parameters c¼ [g1, g2, . . . , gQ]0, where Q denotes the

total number of quarters over which the data are available.

To implement the MLE, one can use a gradient-based

optimization algorithm. In Appendix C, we derive expres-

sions for the log-likelihood and its gradient for the special

case of a lognormal h0(t), an exponential function for c(x),
and a piecewise constant g. Matlab code for this special

case is available upon request from the authors.

Regarding confidence intervals on the parameters, for

the large sample sizes commonly found in consumer credit

risk modelling, asymptotic results for MLEs may provide

reasonable approximate confidence intervals. Alternatively,

bootstrap methods could be used. Although bootstrapped

confidence intervals would be conceptually straightfor-

ward, the computational expense may be prohibitive, con-

sidering that it takes a substantial amount of time to fit a

single TDPH model.

5. Results and discussion

We applied our approach using a set of credit card

customer performance data from a major US financial

institution. The data consist of (1) all customers who

were approved between January 2003 and July 2008 and

who defaulted at some point within this period, and (2) a

1% random sample of all customers who were approved

between January 2003 and July 2008 and who did not
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default. That is, our data set is obtained by random

under-sampling of the majority class (those who did not

default) and by using the entire minority class (those who

did default). Other sampling methods that may have

resulted in better performance are certainly possible. See

Batista et al (2004) and the recent discussion in Chawla

et al (2004) on balancing data sets to improve classification

performance. In practice, if one under-samples the majority

class when constructing the training set, it is advisable to

use the entire data as a test set. However, we do not do this

in this paper because of data accessibility issues.

In the combined set, there were a total of N¼ 212 742

customers. A 2/3 random sample was used for training and

the rest 1/3 for testing. Of the thousands of potential

predictor variables, 75 were selected by domain experts as

good candidates to consider for this study. Of these, for

illustrative purposes, we chose to include only 10 rather

significant ones (selected by simply using a forward

sequential feature selection method for predicting the 9

month default probability using LR with all 75 predictors).

For all analyses, the predictors were standardized before

fitting the model. Some comments on the data treatment

are provided in Appendix A.

5.1. The fitted TDPH model and comparison with
standard PH and LR models

Using the MLE algorithm described in Section 4, we

simultaneously estimated the values of the time-depen-

dency function g (which are plotted in Figure 3), as well as

the parameters of the exponential function c and the

lognormal base hazard function h0. We focus on the case of

an exponential c(x), because we believe it provides better

ability to discriminate between moderately high-risk

customer and very high-risk customer. The s-shape of the

logistic c(x) may better suit for discriminating between

moderately low risk and moderately high-risk customers.

Overall, based on the performance metrics that we discuss

later, the exponential c(x) resulted in the most effective

scoring. The estimated parameters of the base lognormal

distribution were m̂¼ 2.83 and ŝ¼ 0.557 (see Appendix C

for their definitions). The estimated TDPH b̂ for the 10

(standardized) predictors are plotted in Figure 4, along

with their counterparts obtained by fitting a PH model,

and LR models for predicting 9 month default and 24

month default, using the same 10 predictors. Although b̂
has slightly different meaning in these models, one would

expect to see the same general trends. Figure 4 indicates

that this is the case. The elements of b̂ are quite similar for

all four models.

From Figure 3, which plots the ĝ values, we see two

interesting phenomena. First, the pronounced upward

spike in Q4 2005 is clearly an anomaly. The reason for

this anomaly was changes in the bankruptcy laws that went

into effect in January, 2006, making it more difficult to

declare bankruptcy. As a result, there was a marked

increase in the number of defaults shortly before the law

went into effect, explaining the upward spike in ĝ in Q4

2005. For the same reason, there was drop in the number

of defaults after the law went into effect, which resulted in

a somewhat lower ĝ over the first half of 2006. The second
interesting phenomenon is the gradual increase in ĝ over

the last 2 years, which began to accelerate in 2008. This is

clearly due to the economic downturn and credit crisis of

2008. We also note the oddly low values of ĝ over the first
year of the data set. We believe this does not truly reflect

economic conditions at that time. Rather, it is probably

due to the base distribution providing a poor fit of the

actual default probabilities in the very early months (eg, the

first four months) of an account. We discuss this further in

Section 5.3.

To help gauge how well the TDPH model fits the data,

Figure 5 shows empirical distributions of T over a 50

month time period for customers in the data set that joined

in Q2 2004, for three different segments of customers,

segmented based on their predictor values. The figure also

shows the fitted pdfs of T, obtained by plugging each

segment’s median predictor values and t value into the

fitted TDPH model. The same fitted TDPH model was

used to obtain all three fitted pdfs in Figure 5. Notice that

1 2 3 4 5 6 7 8 9 10

-0.4

-0.2

0

0.2

0.4

0.6

j (predictor index)

TDPH
PH 
LR for 9 month default 
LR for 24 month default 

Figure 4 The components of b for TDPH, PH, and LR.
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the fitted pdfs are quite rough. This is entirely because of

the g(tþ t) term in the hazard function h(t,x, t)¼
c(x)h0(t)g(tþ t) for the TDPH model. If g(tþ t) were

constant for t¼ 1, 2, . . . , then the corresponding fitted pdf

would indeed appear much smoother (see Figure 6). The

Q2 2004 vintage was chosen for Figure 5 because this is

the earliest period that avoids the uncharacteristically

low ĝ values due to initial conditions discussed above. The

three segments of customers were defined based on c(x)
values for the customers: ‘good’ customers had c(x) values
between the 0.05 and 0.25 quantiles of all c(x) values,

‘average’ customers had c(x) values between the 0.40 and

0.60 quantiles, and ‘bad’ customers had c(x) values

between the 0.75 and 0.95 quantiles. For each empirical

distribution, we excluded all customers who were censored

before the end of the 50 month time period. All three

empirical distributions in Figure 5 exhibit a spike between

months 15 and 20, which corresponds to the Q4 2005 spike

due to the bankruptcy law changes. The spike is clearly

much more pronounced in the ‘bad’ customers, which is

intuitively reasonable (‘good’ customers had much less

inclination to rush to default before the new, stricter

bankruptcy laws went into effect). Based on Figure 5 and

similar figures shown later (as well as results for other

vintages and segments that are not shown here for brevity),

the fitted pdfs from the TDPH survival model appear

reasonably close to the empirical distributions, indicating

that the TDPH survival model provides a reasonably good

fit to the data.

For the purpose of assessing the potential improvement

in fit obtained by adding the g function in the TDPH

survival model, Figure 6 plots the same empirical distribu-

tion that is plotted in Figure 5(c) (for bad customers), and

compares it with the fitted pdf from the same TDPH

survival model but with g held at a fixed value over the 50

month period. The fixed value of g was taken to be the
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Figure 5 Comparison of empirical distributions of T versus pdfs from the fitted TDPH model for the Q2 2004 vintage and three
different segments based on c(x) values.
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average g over the same 50 month period. Without the

time-varying g term, the model clearly cannot capture

temporal phenomena. By comparing Figures 5(c) and 6, we

see that including the time-varying g substantially improves

the ability of the TDPH model to represent the data.

To further assess how well the TDPH model fits the

data, Figure 7 shows a different comparison of the empi-

rical distributions versus the fitted pdfs. Figure 7 is similar

to Figure 5, except that it shows three different vintages

of customers (customers approved in Q1 2004, Q1 2005,

and Q1 2006). All customers in all three plots in Figure 7

were ‘average’ customers, in the sense that they had similar

c(x) values within a narrow band around the 50th

percentile. In the t axis, the plots extend until the final

month of the data set (August, 2008). In Figures 7(a) and

(b), the bankruptcy spike can be seen around months

23 and 11, respectively. The worsening economic condi-

tions of 2008 can be noticed near the end of all three plots.

Although the fitted pdf in Figure 7(b) appears to over-

estimate the probability of default, the overall fit from

Figures 5 and 7 appears quite reasonable for this data set.

Notice that all fitted pdfs shown in Figures 5 and 7 were

obtained from the same TDPH survival model, a single

model fitted to the entire data set.

5.2. Comparison in terms of credit risk scoring

In this section, we compare the ROC curves and rela-

ted performance measures for four different methods of

scoring customers in the test set based on 9-month default

rates. As mentioned at the beginning of Section 5, this test

set is independent of the training set that was used to fit

the model. ROC curves are industry standard methods

for comparing two or more scoring algorithms (Thomas

et al, 2004). To assess the statistical significance of the

results, for each pair of methods, we calculate boot-

strapped 95% confidence intervals for the difference in

their areas under ROC curve (AUC) and the difference in

their Kolmogorov–Smirnov (KS) statistics. The AUC for

a particular method is simply the area under the ROC

curve for the method. In the context of credit scoring, the

KS statistic for a particular method is the KS distance

between two distributions, the first being the distribution of

scores for all good customers, and the second being the

distribution of scores for all bad customers (Thomas et al,

2002). In general, the larger the AUC and the KS statistic

for a scoring method, the better the method.

The four models are the TDPH survival model, the

standard PH survival model, a standard LR model, and an

LR model with the TDPH g. Regarding the latter, we fit

a standard LR model, but included as an additional

predictor variable (denoted by x11) the value of ĝ estimated

when fitting the TDPH model. More specifically, for a

customer joining in month t, the value assigned to x11 for

that customer is the average ĝ value for the 9 following

months from Figure 3. In practice, scoring a new customer

using the TDPH model or the LR model with the TDPH g
would involve the forecast of the near-future g values,

whereas here we use the actual estimated ĝ values. As will

be discussed in Section 5.4, because g changes relatively

smoothly for the most part (aside from unusual events like

the spike due to bankruptcy law changes), reasonably accu-

rate extrapolation into the near-future is not infeasible.

For each of the four methods, the score assigned to a

customer is the predicted probability of 9-month default

for each method. In the LR models, 9-month default

probability is modelled directly. In the TDPH and PH

methods, the default distribution is modelled, and the

9-month default probability for a customer is taken as the

integral of the fitted pdf through month t¼ 9. A higher

score translates to higher risk.

Figure 8 compares the ROC curves for the four different

scoring methods. Each curve is for all customers within

the entire window of data, excluding customers who were

censored before reaching 9 months. Each point on an

ROC curve is associated with a particular score: The hori-

zontal axis value is the fraction of good customers

(ie, those who did not default within 9 months) who

scored below that score, and the vertical axis is the fraction

of bad customers (ie, those who did default within 9
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Figure 6 Comparison of the empirical distribution of T versus the pdf from the fitted TDPH model, but with g held fixed. Compare
with Figure 5(c).
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months) who scored below that score. The ROC curve for

the randomized classification rule in Figure 8, which is a

straight line with ordinate values equal to abscissa values,

is included as a reference. Tables 1 and 2 show boot-

strapped 95% confidence intervals for the difference in

the AUC and the KS statistic for each pair of methods.

While all four methods have somewhat similar perfor-

mance in terms of their ROC curves, the TDPH model does

perform better than the LR model in terms of the KS

statistics. The similar performance of LR versus the standard

PH method is consistent with what Stepanova and Thomas

(2002) observed. While LR with TDPH g is significantly

better than all other methods in terms of AUC differences

(ie, their confidence intervals do not include 0), in terms of

their KS statistics, the only pair with a statistically

significant difference is TDPH versus LR.

It is interesting to note that the most effective method

in Figure 8 was LR with the TDPH g as an additional

predictor. Enhancing LR with the TDPH g clearly

improves upon the performance of LR. Considering that

LR and LR with TDPH g were designed specifically for

9-month default, which gives them an inherent advantage

over PH and TDPH under these performance measures,

it is quite significant that TDPH performs as good as

LR. Thus, inclusion of a time-dependency factor via

TDPH modelling appears to have potential benefit for

the objective of scoring. Moreover, there are other benefits

of TDPH modelling, relative to LR modelling, that relate

to the dynamic characteristic either inherent to PH

(Banasik et al, 1999) or captured by the additional TDPH

g term. This benefit is most significant when economic

conditions change dramatically, for example, during credit

crises. We can see this more clearly by repeating the

ROC, AUC, and KS statistic comparisons, but including

only two short vintage windows with very different g
levels when constructing the ROC curves (the models were
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Figure 7 Comparison of empirical distributions of T versus pdfs from the fitted TDPH model for three different vintages of
customers, all with similar (average) c(x) values.
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still fit using the entire set of customers, though). The

two vintages were customers who joined in Q4 2004 and

in Q3 2007. We chose these two quarters because their

respective g levels over the 9 months subsequent to their

joining are quite different (see Figure 3). Hence, there is

more potential for a time-dependency factor to improve the

relative scoring of customers. Figure 9 and Tables 3 and 4

compare ROC curves, AUC and KS statistics over the

two short vintage windows. In this case, both methods

that incorporate the time-dependency factor (TDPH and

LR with TDPH g) have significantly better performance

than their counterparts that do not take into account

time dependency. Although many of the KS differences in

Table 2 are not statistically significant (ie, their confidence

interval includes 0), many in Table 4 are. For example, LR

with TDPH g shows statistically significant improvements

over standard LR. The median KS improvement is

approximately 3.2%, which is considered in the industry

to be quite practically significant.

5.3. Some implementation issues

Of the many baseline distributions that one might consider,

we have investigated both a Weibull and a lognormal

distribution. We have focused on results for a lognormal

distribution, because it appears to fit our data better

(for reasons discussed later in this section). In addition

to how well the distributions fit the data, there are

other considerations in choosing a baseline distribution.

One advantage of the Weibull baseline distribution is

Table 1 95% confidence intervals for the AUC difference for each pair of methods (row method minus column method) over the
entire data window, corresponding to Figure 8

LR with TDPH g PH LR

TDPH [�0.0153,�0.0108,�0.0065] [0.0027, 0.0074, 0.0120] [�0.0069,�0.0010, 0.0046]
LR with TDPH g [0.0121, 0.0183, 0.0246] [0.0051, 0.0098, 0.0143]
PH [�0.0123,�0.0085,�0.0048]

The three quantities within the brackets are the confidence interval lower bound, the median bootstrapped AUC difference, and the confidence interval

upper bound.

Table 2 95% confidence intervals for the KS difference for each pair of methods (row method minus column method) over the
entire data window, corresponding to Figure 8

LR with TDPH g PH LR

TDPH [�0.0102, 0.0046, 0.0191] [�0.0040, 0.0091, 0.0224] [0.0011, 0.0173, 0.0336]
LR with TDPH g [�0.0131, 0.0047, 0.0220] [�0.0011, 0.0127, 0.0273]
PH [�0.0060, 0.0081, 0.0220]

The three quantities within the brackets are the confidence interval lower bound, the median bootstrapped KS difference, and the confidence interval

upper bound.
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Figure 8 ROC curves over a time window that includes all customers in the test data set.
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computational expense: We have found that the computa-

tional expense required to evaluate the gradient of the log-

likelihood (within the gradient-based MLE algorithm) is

much lower when we use a Weibull distribution instead of

a lognormal distribution.

Another advantage of the Weibull distribution is that the

likelihood function is less sensitive to certain changes in the

distribution parameters, making the optimization algo-

rithm more computationally stable. In contrast, for a

lognormal baseline distribution, the likelihood function is

quite sensitive to certain changes in the standard deviation

parameter s. Figure 10 illustrates why by showing two

different pdfs for T with a lognormal baseline distribution.
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Figure 9 ROC curves over two short vintage windows. Incorporating the time-dependency factor improves scoring performance.

Table 4 95% confidence intervals for the KS difference for each pair of methods (row method minus column method) over two
short vintage windows, corresponding to Figure 9

LR with TDPH g PH LR

TDPH [�0.0438,�0.0147, 0.0144] [0.0093, 0.0443, 0.0776] [�0.0170, 0.0185, 0.0578]
LR with TDPH g [0.0207, 0.0582, 0.0967] [0.0023, 0.0323, 0.0701]
PH [�0.0529,�0.0250, 0.0047]

The three quantities within the brackets are the confidence interval lower bound, the median bootstrapped KS difference, and the confidence interval

upper bound.
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Figure 10 Two pdfs of T for a lognormal baseline distribution
with all parameters common except for s.

Table 3 95% confidence intervals for the AUC difference for each pair of methods (row method minus column method) over two
short vintage windows, corresponding to Figure 9

LR with TDPH g PH LR

TDPH [�0.0205,�0.0118,�0.0025] [0.0079, 0.0185, 0.0289] [�0.0062, 0.0068, 0.0199]
LR with TDPH g [0.0149, 0.0304, 0.0442] [0.0065, 0.0185, 0.0302]
PH [�0.0211,�0.0118,�0.0021]

The three quantities within the brackets are the confidence interval lower bound, the median bootstrapped AUC difference, and the confidence interval

upper bound.
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Both pdfs have the same predictor (x) values and use

a constant g function. The only difference is that two

different values of s are considered (s¼ 0.557, which was

the fitted value using our entire data set, and s¼ 0.15).

For the s¼ 0.15 case, the probability of default within

the first 3 months is virtually zero. However, albeit quite

rare, there do exist a few customers with similar predictor

values who defaulted within the first three months. The

likelihood and its gradient become essentially zero for these

customers if a value such as s¼ 0.15 is tried during the

optimization search. Similarly, if working with the log-

likelihood, very large negative numbers that exceed the

internal limits of the software may occur. This can be avoi-

ded if one writes their own optimization code and includes

checks to avoid calculating the complete likelihood for

choice of parameters for which it is virtually zero. But if

one uses commercial optimization software, one may have

little control over the parameter values that are considered

within a gradient-based line search. Perhaps the simplest

way to avoid such problems is impose a lower bound on s
as a constraint. In our algorithms we have represented s
via s¼ exp(s)þ 0.2 and optimized over s, which results in a

lower bound of 0.2 for s.
In spite of involving numerical issues that require more

care, a lognormal baseline distribution appears to fit the

data much better than a Weibull distribution, in particular

over the early months. Figure 11 shows a typical fitted

pdf of T using a Weibull baseline distribution. Notice that

the shape of the Weibull distribution assigns much higher

probability to the early months (eg, to4) than would

a lognormal distribution with similar first two moments.

By inspection of the empirical distributions in Figures 5–7,

it is evident that in reality there are very few defaults in the

early months, which is much more consistent with the shape

of a lognormal distribution than with a Weibull distri-

bution. Hence, the lognormal provided a better fit to the

data. An additional consequence of the lack of fit in the

early months for a Weibull baseline distribution relates to

the underestimation of g over the first few months of the

data (see Figure 3). Figure 3 used a lognormal baseline dis-

tribution, but the underestimation of g in the early months

was even more extreme when a Weibull baseline distribu-

tion was used.

5.4. Scoring new customers

An additional benefit of having a time-dependency factor

in the model is that it provides an inherent mechanism

for adjusting the customer acceptance threshold in a

manner that attempts to control the collective default rate

for new customers under changing market conditions. For

example, suppose one uses a TDPH model to score

applicants and that an acceptance threshold was set in

Q1 2007 that gave a desired collective default rate at that

time. If we use the same acceptance threshold in Q4 2008

(refer to Figure 3), then we achieve the same collective

default rate in spite of the worsened economic conditions.

This is because the higher g value in Q4 2008 is already

incorporated into the applicants’ scoring. If one were using

standard LR, one would have to tighten the acceptance

criterion to keep the overall bad rate the same as it was in

2007, and it may not be at all clear how much to tighten it.

The TDPH model provides an inherent, consistent means

of accomplishing this.

The rationale for this strategy involves the assumption

that future g values after the customer joins remain close to

the g value when the customer applied or can be reasonably

extrapolated into the near future. There is no guarantee

that this will be the case, of course, especially in the present

context of dynamic market conditions. However, it is

reasonable to expect that future g values will be closer to

the most recent value than to some average value over the

past years. For example, consider a customer who applies

at the end of Q3 2008, at which time g¼ 0.18 roughly (refer

to Figure 3). At that point in time, it would have been

reasonable to expect that the g values for Q4 2008 and

beyond would be closer to 0.18 than to the historical

average of roughly 0.1.

One could also take this a step further and attempt to

extrapolate g into the near future. Again considering a

customer who applies at the end of Q3 2008, it appears

from Figure 3 that g is increasing at that time. Hence, one

might extrapolate values for g that continue to increase

over 2009, perhaps somewhere between 0.2 and 0.25.

Figure 12 illustrates possible extrapolations that could be

used for the purpose of scoring new applicants or predict-

ing future performance of existing customers.
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5.5. Other uses

One desirable consequence of fitting a TDPH model is that

it produces an estimate of the time-dependency function g,
which can be viewed as the net effects of overall market

conditions, as they impact default behaviour. This can be

useful for explanatory analyses, for helping to identify and

quantify unusual events and trends that affect default, such

as the bankruptcy law spike in Q4 2005 or the economic

meltdown of 2008.

The estimated ĝ function can also be incorporated as

a single additional predictor variable in many other

methods for modelling credit risk. For example, this was

done in the LR with TDPH g model considered in Section

5.2. In fact, in terms of ROC performance as a credit risk

scoring tool, the LR with TDPH g model performed the

best of all the models we considered. Another potential

way to utilize the ĝ function relates to the approaches of

Stepanova and Thomas (2002) and Tang et al (2007), who

included interactions between the predictors and time (of

the form txj) in the PH model. Their intent was to repre-

sent changes in the effects of certain predictor variables

that become more or less pronounced the longer one has

been a customer. Similarly, one might consider including

interaction terms of the form (tþ t)xj to represent changes

in the effects of predictors due to dynamic market

conditions, which would be equivalent to assuming the

coefficients b experience linear trends over time. Alterna-

tively, one might include interactions of the form g(tþ t)xj.
This would allow greater flexibility, in the sense of cap-

turing transient and cyclical phenomena that are not linear

trends, without increasing the number of parameters that

must be estimated.

6. Conclusions

We have developed a TDPH survival model for modelling

default behaviour of credit card customers in a manner

that explicitly accounts for trends and short-lived phenom-

ena in dynamic market conditions. We derived the MLEs

and a gradient-based algorithm for estimating all para-

meters of the model. Using a very large set of real data

from a major credit card company, we implemented the

TDPH modelling approach to assess its effectiveness in

representing the time-to-default distribution under dyna-

mic market conditions and in scoring customers for credit

risk. Our results indicate that the TDPHmodel fits the data

well. As a scoring method that takes into account dynamic

market conditions, the LR model using the TDPH g as an
additional predictor achieved roughly a 3.2% improvement

in KS statistic over regular LR when we considered two

different vintage windows of data under quite different

market conditions. This result is consistent with the results

of Tang et al (2007) and Bellotti and Crook (2009), who

found modest but statistically significant improvements in

predictive performance using macroeconomic variables

with substantial dynamic variability. Overall, incorporat-

ing the TDPH g into either the LR or the PH approaches

improves the performance of these methods.

Additional benefits of the TDPH approach relate to

the dynamic characteristics that the model captures: It pro-

vides an inherent mechanism for adjusting the customer

acceptance threshold to keep constant the collective default

rate of accepted customers in the face of dynamic market

conditions. Given an acceptance threshold that was used in

the past and the default rate that resulted, we can achieve

the same collective default rate on average regardless of the

changes in the economic conditions. Moreover, the TDPH

model produces an estimate (the g function) of the net

effect of dynamic market conditions on default behaviour.

The estimated g function can facilitate explanatory data

analyses or be incorporated into other modelling methods

as an additional predictor variable.
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Appendix A

Some data treatment issues

The data are described in Section 5. Ten predictor variables

were chosen to include in the model, but due to

confidentiality concerns, we do not describe them in this

paper. We recommend standardizing all variables before

implementing the MLE algorithm, for numerical reasons.

Scaling of the variables will affect the direction in which a

gradient-based algorithm searches for solutions to the

parameter estimates. Regarding missing data, which are

inevitable in large data sets, we used the following strategy.

Predictor variable values that were missing for a customer

were substituted with a linear regression prediction of the

missing value, based on a covariance matrix calculated

from all data that were not missing.

Appendix B

Derivation of the TDPH cdf

As mentioned in Section 4, the TDPH cdf of T can

be written as F(t;x, t; h0,c, g)¼ 1� exp �
R t
0 h0ðuÞcðxÞ

�
gðtþ uÞduÞ. We break the integral up into components

that correspond to the pieces over which g is constant. Let
w(t, t)¼J(tþ t)/3n�Jt/3nþ 1 denote the number of diff-

erent g pieces between the time of approval (t) and the time

in question (tþ t). The ‘3’ in the denominator arises from

the fact that t is in units of months, and the g function is

modelled as constant over each quarter. For a customer

joining in month t, the intervals (in terms of the relative

month t) over which g is constant can be written as

It; 1 ¼ ½st; 0; st; 1� ¼ 0; 3
t
3

l m
� t

h i
;

It; 2 ¼ ½st; 1; st; 2� ¼ 3
t
3

l m
� t; 3

t
3

l m
� tþ 3

h i
..
.

It;wðt; tÞ�1 ¼ st;wðt; tÞ�2; st;wðt; tÞ�1
� �

¼ 3
tþ t

3

l m
� t� 6; 3

tþ t

3

l m
� t� 3

h i
;

It;wðt; tÞ ¼ st;wðt; tÞ�1; st;wðt; tÞ
� �

¼ 3
tþ t

3

l m
� t� 3; t

h i
:

Here J .n denotes the ceiling function returning the

smallest integer not less than the argument. In the pre-

ceding expressions for the intervals, it is understood that

the lower boundary of each is truncated at 0 and the upper

boundary at t. The constant value of g( � ) over the interval
It, k is g Jt / 3nþ k�1. Note that st, 0¼ 0 and st, w(t, t)¼ t by

definition. The cdf F(t;x, t; h0,c, g) of T becomes

Fðt; x; t; h0; c; gÞ

¼ 1� exp �
Xwðt; tÞ
k¼1

Zst;k
st; k�1

h0ðuÞcðxÞg t=3d eþk�1du

0
B@

1
CA

¼ 1� exp �cðxÞ
Xwðt; tÞ
k¼1

Zst; k
st; k�1

h0ðuÞg t=3d eþk�1du

0
B@

1
CA

¼ 1� exp �cðxÞ
Xwðt; tÞ
k¼1

g t=3d eþk�1 H0ðst;kÞ �H0ðst; k�1Þ
� � !

¼ 1� exp �cðxÞ
Xwðt; tÞ
k¼1

g t=3d eþk�1 � log ð1� F0ðst; kÞÞ
� 

þ log ð1� F0ðst; k�1ÞÞÞ
!
;

where H0(t)¼
R t
0 h0ðuÞdu ¼ � logð1� F0ðtÞÞ is the cumu-

lative hazard function of the baseline distribution.

Appendix C

The log-likelihood and its gradient for lognormal h0(t)
and exponential c(x)

In this section, we derive the log-likelihood function and

its gradient (for use in a gradient-based algorithm for

maximizing the likelihood) for the special case of a

lognormal h0(t) and an exponential c(x). For other
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baseline distributions or c(x) functions, a similar approach

can be used. For our special case, the baseline cdf and pdf

are F0(t)¼F((log(t)�m)/s) and f0(t)¼f((log(t)�m)/s)/(ts)
with mean parameter m and standard deviation parameter

s, where F and f denote the standard normal cdf and pdf.

In order to avoid identifiability problems due to the con-

founding between eb0 and g, we define the exponential

function as c(x)¼ eb
0x, instead of eb0þ b0x. For notational

simplicity, we denote F(t;xi, ti;m,s, b, c) by Fi(t). From

Section 4, the log-likelihood function for the entire data

set is

lðm; s; b; cjt; X; s; dÞ

¼
XN
i¼1
ðdi log ðFiðtiÞ � Fiðti � 1ÞÞ

þ ð1� diÞ log ð1� FiðtiÞÞÞ; ðC:1Þ

where expressions for the Fi(t) are given in Appendix B.

To find the partial derivatives of l with respect to m, s, b,
and c, notice that l depends on m, s, and c via

the terms JiðtÞ ¼
Pwðti ; tÞ

k¼1 g ti=3d eþk�1ð � log ð1� F0ðsti ;kÞÞ
þ log ð1� F0ðsti ;k�1ÞÞÞ (i¼ 1, 2, . . . ,N), and l depends on

b via the terms c(xi) (i¼ 1, 2, . . . ,N). The relevant partial

derivatives of Ji(t) and c(xi) are obtained from

JiðtÞ ¼
Xwðti ; tÞ
k¼1

g ti=3d eþk�1ð � log ð1� F0ðsti ; kÞÞ

þ log ð1� F0ðsti ; k�1ÞÞÞ

¼
Xwðti ; tÞ
k¼1

g
ti=3d eþk�1

� log 1� F
log ðsti ; kÞ � m

s

� �� ��

þ log 1� F
log ðsti ; k�1Þ � m

s

� �� ��
;

qJiðtÞ
qm
¼
Xwðti ; tÞ
j¼1

g
ti=3d eþk�1

s
�

f log ðsti ; kÞ�m
s

� 	
1� F

log ðsti ; kÞ�m
s

� 	
0
@

þ
f log ðsti ; k�1Þ�m

s

� 	
1� F

log ðsti ; k�1Þ�m
s

� 	
1
A;

qJiðtÞ
qs
¼
Xwðti ; tÞ
j¼1

g
ti=3d eþk�1

s2

� �
ð log ðsti ; kÞ � mÞf log ðsti ; kÞ�m

s

� 	
1� F

log ðsti ; kÞ�m
s

� 	
0
@

þ
ð log ðsti ; k�1Þ � mÞf log ðsti ; k�1Þ�m

s

� 	
1� F

log ðsti ; k�1Þ�m
s

� 	
1
A;

qJiðtÞ
qg ti=3d eþk�1

¼

� log 1� F log ðsti ; kÞ�m
s

� 	� 	
þ log 1� F log ðsti ; k�1Þ�m

s

� 	� 	
:

k ¼ 1; 2; . . . ; wðti; tÞ;
0 elsewhere

8>>>>><
>>>>>:

,

cðxiÞ ¼ exp ðb0xiÞ; and

qcðxiÞ
qbj

¼ xi; j exp ðb0xiÞ

From the expressions in Appendix B, the partial

derivatives of Fi (t) are obtained from

FiðtÞ ¼ 1� exp �cðxiÞJiðtÞð Þ;

qFiðtÞ
qm

¼ exp �cðxiÞJiðtÞð ÞcðxiÞ
qJiðtÞ
qm

;

qFiðtÞ
qs

¼ exp �cðxiÞJiðtÞð ÞcðxiÞ
qJiðtÞ
qs

;

qFiðtÞ
qbj

¼ exp �cðxiÞJiðtÞð Þ qcðxiÞ
qbj

JiðtÞ : j ¼ 1; 2; . . . ; M; and

qFiðtÞ
qgq

¼ exp �cðxiÞJiðtÞð ÞcðxiÞ
qJiðtÞ
qgq

: q ¼ 1; 2; . . . ; Q:

From Equation (C.1), we also have

ql
qm
¼
XN
i¼1



diðFiðtiÞ � Fiðti � 1ÞÞ�1

� qFiðtiÞ
qm

� qFiðti � 1Þ
qm

� �

�ð1� diÞð1� FiðtiÞÞ�1
qFiðtiÞ
qm

�
;

ql
qs
¼
XN
i¼1



diðFiðtiÞ � Fiðti � 1ÞÞ�1

� qFiðtiÞ
qs

� qFiðti � 1Þ
qs

� �

�ð1� diÞð1� FiðtiÞÞ�1
qFiðtiÞ
qs

�
;

ql
qbj
¼
XN
i¼1



diðFiðtiÞ � Fiðti � 1ÞÞ�1

� qFiðtiÞ
qbj

� qFiðti � 1Þ
qbj

 !

�ð1� diÞð1� FiðtiÞÞ�1
qFiðtiÞ
qbj

�
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for j¼ 0, 1, 2, . . . ,M, and

ql
qgq
¼
XN
i¼1



diðFiðtiÞ � Fiðti � 1ÞÞ�1

� qFiðtiÞ
qgq

� qFiðti�1Þ
qgq

 !

�ð1� diÞð1� FiðtiÞÞ�1
qFiðtiÞ
qgq

�

for q¼ 1, 2, . . . ,Q.

Combining all of these gives the partial derivatives that

constitute the gradient of l with respect to the parameters.

The gradient can be used in an optimization algorithm for

calculating the MLEs of the parameters. Matlab code is

available upon request from the authors for the special case

considered in this appendix.

Received March 2010;
accepted February 2011 after one revision

J-K Im et al—A time-dependent proportional hazards survival model 321




