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Abstract: Residual-based control charts for autocorrelated processes are known to be sensitive 

to time series modeling errors, which can seriously inflate the false alarm rate. This article 

presents a design approach for a residual-based exponentially weighted moving average 

(EWMA) chart that mitigates this problem by modifying the control limits based on the level of 

model uncertainty. Using a Bayesian analysis, we derive the approximate expected variance of 

the EWMA statistic, where the expectation is with respect to the posterior distribution of the 

unknown model parameters. The result is a relatively clean expression for the expected variance 

as a function of the estimated parameters and their covariance matrix. We use control limits 

proportional to the square root of the expected variance. We compare our approach to two other 

approaches for designing robust residual-based EWMA charts and argue that our approach 

generally results in a more appropriate widening of the control limits. 

Key Words: Residual-based control charts; exponentially weighted moving average; time series; 

autoregressive moving average models; robust design; model uncertainty 
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1. INTRODUCTION 

 Exponentially weighted moving average (EWMA) control charts are widely used in 

statistical process control (SPC) to detect changes in a process mean. If {xt: t = 1, 2, . . .} denotes 

observations of the process, the EWMA statistic zt, introduced by Roberts1, is calculated 

recursively via zt = (1−λ)zt−1 + λxt, where 0 < λ ≤ 1 is the EWMA parameter. If the process 

observations xt are statistically independent, then the control limits for the EWMA chart are 

typically set as 

 CL = ± L zσ̂ ,                  (1) 

where zσ̂ = xσ̂ λ1/2(2−λ)−1/2 is an estimate (estimates are indicated by the "^" symbol) of the 

steady-state standard deviation of the EWMA statistic, and L is a constant that provides a specific 

desired in-control ARL. Tables in Lucas and Saccucci2 or Lu and Reynolds3, for example, can be 

used to select L. Here we assume the in-control process mean has been subtracted from the 

observations, so that the resulting xt has an in-control mean of zero. 

 When the process data are autocorrelated, however, applying the standard control chart with 

standard control limits results in far too frequent false alarms (see, e.g., Johnson and Bagshaw4; 

Harris and Ross5; Alwan6). Montgomery and Woodall7, Woodall and Montgomery8, and 

Stoumbos et al.9 contain excellent discussions on the increasing prevalence of autocorrelated 

data in SPC applications due, in part, to measurement automation that results in steady streams 

of data. To represent the autocorrelation, one typically uses an autoregressive moving average 

(ARMA) model of the form (Box et al.10) 

 xt = ( )
( ) ta
BΦ
BΘ ,                  (2) 

where t is a time index, B is a backward shift operator defined such that Bxt = xt-1, ( )BΦ = 1 − 

φ1B − φ2B2 … − φpBp is the AR polynomial of order p, ( )BΘ = 1 − θ1B − θ2B2 …− θqBq is the 

 2



MA polynomial of order q, and at is assumed to be an identically independently distributed 

(i.i.d.) random process with mean zero and variance .  2
aσ

 Control charting approaches for autocorrelated data typically involve calculating the 

residuals et = xt, of the estimated ARMA model fitted via time series modeling of a 

prior sample of size N observations of xt. With no modeling errors, the residuals are uncorrelated, 

and traditional control charts can be applied with well understood in-control run length 

properties. Berthouex et al.11, Alwan and Roberts12, Montgomery and Mastrangelo13, Superville 

and Adams14, Wardell et al.15, Runger et al.16, Lin and Adams17, Vander Weil18, Apley and Shi19, 

Lu and Reynolds3, English et al.20, and many others have investigated residual-based control 

charts. Perhaps the most common chart is a residual-based EWMA (e.g., Lu and Reynolds3) of 

the form zt = (1−λ)zt-1 + λet. One typically neglects ARMA modeling errors and uses the control 

limits (1) with 

( ) ( )BΦ̂BΘ̂ 1−

zσ̂ = aσ̂ λ1/2(2−λ)−1/2.  

 In this paper we focus on the effects of ARMA modeling errors. Many authors (e.g., Kramer 

and Schmid21; Adams and Tseng22; Apley and Shi19; Lu and Reynolds3; Kramer and Schmid23; 

Apley and Lee24) have investigated the adverse effects of ARMA modeling errors on residual 

based charts, using either simulation or analytical methods. One serious adverse effect is a 

substantial increase in the false alarm rate if the modeling errors are such that the autocorrelation 

is underestimated, similar to the increased false alarm rate that results from ignoring 

autocorrelation altogether. Jensen et al.25 provides a comprehensive discussion on the effects of 

parameter estimation errors on control chart performance, in general. Their focus is on 

independent data and errors in estimating the mean and variance, but they include a brief 

discussion of control charts for autocorrelated data. 

 Apley26, Apley and Lee27, and Testik28 proposed methods for widening the control limits of a 

residual-based EWMA in order to avoid the excessive false alarms caused by ARMA parameter 

estimation errors. Let γ = [φ1 φ2 … φp θ1 θ2 … θq]T and  denote 

the vectors of ARMA parameters and their estimates, respectively. Apley26 used the control limits  

T
q21p       ]ˆˆˆˆˆˆ[ˆ 21 θθθφφφ LL=γ
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 CL = ± L ]|[ 2 γzÊ σ ,                (3) 

where L is chosen as if there were no modeling errors, and ]|[ 2 γzÊ σ  denotes an estimate of the 

expected EWMA variance, where the expectation is with respect to the random parameter 

estimates γ̂ , conditioned on the unknown true parameters γ. They approximate ]|[ 2 γzÊ σ  using 

a first-order Taylor approximation of certain underlying quantities. Noting that the approach of 

Apley26 may not widen the control limits enough, Apley and Lee27 used the control limits  

 CL = ± L ,                 (4) ασ z,

where σz,α denotes the upper boundary of an approximate upper one-sided 1−α confidence 

interval on the EWMA standard deviation σz for some appropriate choice of α. They referred to 

these as "worst-case" control limits, because they provide protection against excessive false 

alarms for the worst (largest) value of σz within the confidence interval. Testik28 used a similar 

approach for the control limits for an AR(1) process but with a different "worst-case" value for σz 

based on assuming a truncated normal distribution for 1φ̂ .  

 As we will illustrate in later examples, the motivation for this work is that the approach of 

Apley26 generally does not widen the control limits enough, and the worst-case approach of 

Apley and Lee27 generally widens the control limits by more than is needed. To avoid being 

overly conservative in this regard, Apley and Lee27 recommended the relatively large value of α 

= 0.2. We demonstrate later that this large choice for α tends to widen the control limits too 

much for large N and perhaps not enough for small N.  Our approach is to use the control limits 

 CL = ± L ]|[ 2 γ̂E zσ ,                (5) 

which is akin to Apley26 but with two differences:  1) We use a better Taylor approximation of 
2
zσ , and 2) we use a Bayesian analysis in which the expectation in (5) is with respect to the 

posterior distribution of the unknown true parameters γ, conditioned on the estimate γ̂ . 
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 In Section 2 we derive the expected EWMA variance ]|[ 2 γ̂E zσ  for use in (5), which turns 

out to be quite tractable and only requires an estimate of γ and its error covariance matrix, both 

of which are typically produced by commercial ARMA modeling software. In Section 3 we 

provide further simplified expressions for ]|[ 2 γ̂E zσ  for the special cases of first-order ARMA 

processes. We provide design guidelines in Section 4. In Section 5 we present comparisons with 

the approaches of Apley26 and Apley and Lee27 and argue that the proposed approach usually 

results in more appropriate widening of the control limits. We also discuss sample size 

recommendations and other discussion points. Section 6 concludes the paper. 

2. EXPECTED EWMA VARIANCE 

 For notational convenience, denote ν = 1−λ. Combining Eq. (2), the equation et 

= xt for generating the residuals, and the EWMA equation zt = (1−λ)zt-1 + λet = νzt-1 

+ (1−ν)et gives the following model (see Apley and Lee27 for further details) 

( ) ( )BΦ̂BΘ̂ 1−

 zt = ,         (6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑==−−
∞

=
−

−−−

0

111 11 
j

jtjtt agaBGaBΘBΦBΦ̂BΘ̂ννB

where , and gj (j = 0, 1, 2, . . .) 

denote the impulse response coefficients of ARMA(p+q+1,p+q) transfer function G(B). Hence, 

using the impulse response method (see Box et al.10), the EWMA variance is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑=−−= ∞
=

−−−
0j

j
j BgBΘBΦBΦ̂BΘ̂ννBBG 111 11

 .                 (7) ∑=
∞

=0

222
j

jaz gσσ

 We approximate the EWMA variance using a second-order Taylor approximation 

 ( ) ( ) ( γγ
γ

γγγγ
γ γγγγγγ ˆˆˆ ˆ
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ˆzz −
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⎥
⎦
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∂
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−+−

⎥
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⎤

⎢
⎢
⎣

⎡

∂
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2
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about γ = γ̂ . Taking the expected value of this with respect to the posterior distribution of γ, given 

the data from which γ̂  is calculated, gives the approximate expected EWMA variance 
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where 2ˆ zσ  = (1−ν)(1+ν)−1 is the EWMA variance if there were no modeling errors (i.e., if γ 

=

2ˆaσ

γ̂ , and ), tr denotes the matrix trace operator, and Σγ denotes the posterior covariance 

matrix of γ.  

aa σ̂=σ

 In deriving (8), we assume a suitable approximate maximum likelihood estimator γ̂  and a 

noninformative prior for γ. In this case, invoking the standard large sample results for maximum 

likelihood estimation (see Carlin and Louis29) implies that the posterior distribution of γ | γ̂  is 

approximately multivariate normal with mean γ̂  and covariance matrix Σγ = γ̂Σ̂ , where γ̂Σ̂  

denotes the standard (non-Bayesian) large sample estimate of the covariance matrix of γ̂ . Most 

commercial time series modeling software will produce the estimates γ̂  and γ̂Σ̂  based on 

approximate likelihood methods. See Box et al.10 for further details on calculating the estimates 

γ̂  and γ̂Σ̂   and Appendix B of Apley and Lee27 for a straightforward numerical procedure for 

calculating γ̂Σ̂  that can be implemented in spreadsheet software.  

 In the remainder of this section, we show that Eq. (8) reduces to a relatively simple function 

of γ̂  and Σγ. Towards this end, differentiate Eq. (7) twice with respect to γ to give 

 ∑
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Combining this with Eq. (8) gives 
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where we denote γγγD ˆjj gˆ
=∂∂= 22  , and γγγd ˆjj gˆ

=∂∂=  .  

 We show in the Appendix that, after much tedious algebra, Eq. (9) simplifies to  
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where , , Vp=[ν  ν2 … νp]T, 

Vq=[ν  ν2 … νq]T, and we have partitioned the (p+q)×(p+q) parameter covariance matrix (which 

is inversely proportional to sample size N) as   

( ) p
p        Φ νφνφνφν ˆˆˆ  1ˆ 2

21 −−−−= K ( ) qq        Θ νθνθνθν ˆˆˆ  1ˆ 2
21 −−−−= K
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ΣΣ
ΣΣ

ΣΣ
ΣΣ
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⎢
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= . 

 Given the estimates γ̂ , , and Σγ from time series modeling software, the size N of the 

sample of observations from which the estimates were obtained, and the EWMA parameter λ (= 

1−ν), one calculates the expected EWMA variance using Eq. (10) and then substitutes this into 

the control limits (5). In Section 5 we provide examples illustrating the extent to which this 

widens the control limits, thereby protecting against excessive false alarms that can result from 

ARMA modeling errors.  

aσ̂

 Remark 1:  The covariance matrix ΣN Θ  of the MA parameters does not appear directly in 

Eq. (10). This is not because the expected EWMA variance does not depend on ΣΘ . Indeed it 

does; but in the derivations in the Appendix, we have already substituted a standard expression 

for ΣΘ . 

 Remark 2:  Apley26 used a related approach to calculate ]|[ 2 γzÊ σ  in a non-Bayesian 

scenario. They used a first order Taylor approximation of zt (with respect to γ̂ , about γ̂  = γ) by 

differentiating Eq. (6) and then substituted the impulse response coefficients of the Taylor 

approximation into Eq. (7). In spite of these differences, their approach is equivalent to using Eq. 

(9) but excluding the terms involving the second derivative matrices jD̂ . We demonstrate in 

later examples that including the second derivative terms results in more reasonable widening of 

the control limits, especially for small sample sizes.  
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3. RESULTS FOR LOW-ORDER ARMA PROCESSES 

 For certain low-order ARMA processes, for which we have simple closed-form expressions 

for Σγ as a fu (10) further 

simplifies. We refer readers to Box et al.  for details and derivations of the expressions for Σ  

that we use in this section. For ARMA(1,1) processes, the parameter covariance is  

nction of the estimated ARMA parameters, the posterior variance of Eq. 
10

γ
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Substituting this into Eq. (10) gives 
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as the expected EWMA variance for ARMA(1,1) processes.  The last equality follows after a 
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as the expected EWMA variance for AR(2) processes.  
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 For an AR(1) process, we have only a single parameter, and its variance is 

( )2
1

11 1 φ̂NN −= −− Σγ . Substituting this into Eq. (10) gives 
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 Similarly, using expressions for the parameter covariance matrices given in Box, et al. (1994), 

one can show that the expected EWMA variances for MA (2) and MA (1) processes are  
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respectively. 

 The preceding result for MA(1) processes is exactly the same as the result for ]|[ 2 γzÊ σ  

from Apley26. The reason is that gj is a linear function of θ1, and so the first-order Taylor 
26 is the same as the second-order Taylor approximation that we use. 

26

x1, x2, . . ., xN}. If the model is one of 

th

approximation used by Apley

The preceding results for other low-order ARMA processes are quite different than those of 

Apley . We further discuss the differences in Section 5.2. 

4.  EWMA DESIGN PROCEDURE USING THE EXPECTED VARIANCE 

 As for any residual-based chart, the first step is to use appropriate time series modeling 

software to fit an ARMA model to a set of observations {

e five special cases covered in Section 3, only the estimates γ̂  and aσ̂  are needed. One can 

then substitute these directly into one of the expressions for ]|[ γ̂E 2
zσ  in Section 3. This, in turn, 

is substituted into Eq. (5) to give the EWMA control limits rotect against 

excessive false alarms due to ARMA modeling errors. If the model is not one of the special cases 

, suitably widened to p

discussed in Section 3, the procedure is the same Σγ (in addition to , except that one also needs γ̂  
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and aσ̂ ), which is typically produced by most commercial e packages for time series 

modeling. These are then substituted into Eq. (10) and the result of this, into Eq. (5).  If the time 

series modeling software does not produce an estimate of Σγ, one can implement the numerical 

procedure in Appendix B of Apley and Lee27 using spreadsheet software to calculate Σγ. All that 

are required for this are the parameter estimates γ̂  and the sample size N.  

 One must also select L and λ, prior to calculating the control limits. For this, we recommend 

the same approach that Apley and Lee27 recommended (see Apley and Lee27 for justification): 

Choose L and λ exactly as one would if parameter uncertainty were neglected. That is, one can 

choose λ to be sensitive to a certain size mean ift and then choose the 

 softwar

value of L that would sh

result in a desired in-control ARL if there were no modeling errors and the control limits ±L zσ̂  

were used. Lu and Reynolds3 provide guidelines for this. For a specified λ, the tables of Lucas 

and Saccucci2 can be used to choose L to give a desired in-control ARL.  

 To illustrate the design procedure, we use the Series A data from Box et al.10, which are 197 

concentration readings from a chemical production process. An ARMA(1,1) model was fitted  

the data with estimated parameters φ̂  = 0.87, θ

 to

ˆ  = 0.48, and σ̂ a
2  = 0.098. If we select λ = 0.1 and 

a desired in-control ARL of 500, then we would choose L = 2.814 from the table of Lucas and 

Saccucci2. If there were no parameter uncertainty, the EWMA variance would be 

zσ̂ = aσ̂ λ1/2(2−λ)−1/2 = 0.0718. Hence, the standard EWMA control limits are ± zˆLσ  = ±0.202. 

Considering model uncertainty, the EWMA variance for this ARMA(1,1) model is 

calculated by substituting the estimated parameters, N = 197, and ν = 0.9 into Eq. (11). This 

gives ]|[ 2 γ̂E

 expected 

zσ  = 0.00568, and ]|[ 2 γ̂E zσ  = 0.0754, which is 4.9% larger than zσ̂ . 

ing this into Eq. (5) gives control limits of ±0.212, based on the expected variance, 

which are 4.9% wider than the standard limits. In comparison, one can show that the control 

limits of Apley26 and Apley and Lee27 are ±0.208 [from Eq. (3)] and ±0.227 [from Eq. (4) with α 

= 0.2], respectively. These methods widen the control limits by 3.0% and 12.3%, respectiv . 

The proposed approach, which widens the control limits by 4.9%, falls somewhere between the 

other two approaches in terms of how conservatively it widens the control limits.  

Substitut

ely
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 Figure 1 shows an EWMA control chart applied to 1000 simulated observations from the 

ARMA(1,1) model of the chemical process when the true parameters coincide with their 

estimates. All four sets of control limits [standard; Apley26; the proposed; and Apley and Lee27] 

are displayed in the figure. Figure 2 is analogous to Figure 1, except that when simulating the 

process, we introduced an error in the parameters:  We let θ1 and aσ  coincide with their 

estimates, but used φ1 = 0.9.  Figure 2 is intended to illustrate the increased false alarms caused 

by parameter estimation errors and the mitigating effects of widening the control limits (later in 

the paper, we use Monte Carlo simulation to investigate the effects of widening the control limits 

on the in-control and out-of-control ARLs). Since there was no mean shift, all of the out-of-

control signals in Figures 1 and 2 are false alarms. Over the 1,000 observations in Figure 1, there 

are three false alarms using the standard control limits, two using the control limits of Apley26, 

one using the proposed control limits, and none using the control limits of Apley and Lee27. In 

Figure 2, the numbers of false alarms for the four sets of control limits increase to five, four, two, 

and one, respectively.  

 In this section we discuss several points of interest regarding the proposed method: We 

compare our approach to two oth

5. DISCUSSION 

er approaches, in terms of the extent to which the different 

methods widen the control limits to account for parameter uncertainty. We contrast the Bayesian 

paradigm we have adopted with a yesian paradigm. We also discuss 

5.1  Comparison with Other Methods for Widening the Control Limits 

eter uncertainty: 

The methods of Apley26 (hereafter A) and Apley and Lee27 (hereafter A&L). The methods of A 

corresponding non-Ba

guidelines for choosing the sample size large enough so that the effects of parameter uncertainty 

are not detrimental to the performance of the chart in detecting shifts.  

 We compare our method with the two other design procedures discussed in the introduction 

for widening the control limits of a residual-based EWMA to account for param
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and A&L use the control limits (3) and (4), respectively, and our method uses the control limits 

alues of λ, L was taken from the tables of Lucas and Saccucci2 to give a desired in-

(5). To have a common basis for comparison, we use the same values of L and λ for all three 

methods.  

 Tables 1—3 compare the control limits for the three methods for various sample sizes (N = 

50, 100, 200, and 500) and for various fitted ARMA(1,1) models. Table 1 is for EWMA 

parameter λ = 0.05, and Tables 2 and 3 are for λ = 0.10 and λ = 0.20, respectively. For each of 

the three v

control ARL of 500 for the situation in which there are no modeling errors. The "RI" columns 

show the relative increase in control limit width, i.e., the percentage increase relative to the 

standard control limits ±Lσ̂ a (1–ν)1/2(1+ν)−1/2 that would be used if one neglected modeling 

errors. For simplicity, we have neglected errors in σa by assuming 01.ˆ aa == σσ . The A&L 

method involves selection of an additional parameter α, the confidence level for the worst-case 

control limits. In Tables 1—3, we have used the midrange value α = 0.2 recommended by A&L. 

Table 5, discussed below, shows analogous results for larger and smaller choices of α.  

 We can draw some general conclusions from Tables 1—3: For the sidered, the 

proposed method always widened the control limits by a greater amount than method A. For 

small λ (λ = 0.05, Table 1) the RI was roughly three times larger for the proposed method than 

for method A, whereas for large λ (λ = 0.20, Table 3), the RI for the two methods w

examples con

ere much 

o

method. We believe this is a desirable characteristic of the proposed method and that the A&L 

method can be overly conservative for large N. Consider the situation in Table 1 for = 0.9 and 

m re comparable. We believe this is desirable. Modeling errors cause autocorrelation in the 

residuals, and the effect of residual autocorrelation is much greater when one uses a small value 

of λ (see Apley and Lee27, for a discussion of the reasons). Hence, a much larger widening of the 

control limits is in order. Method A, based on a cruder first-order Taylor approximation, does not 

sufficiently widen the control limits in this situation.  

 Another conclusion from the tables is that the RIs for the proposed method and for the A&L 

method are often comparable for small N, but for large N the RI is much larger for the A&L 

1̂φ  
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1̂θ  = 0.6. For the small sample size of N = 50, the proposed method and the A&L method both 

widen the control limits by roughly 30% (RI = 31.8% and 30.2%). This seems reasonable, 

ox et al.10 ARMA(1,1) chemical data example 

because with such a small sample size the modeling errors may be quite large. In contrast, for the 

large sample size of N = 500, the proposed method only widens the control limits by 3.6%, 

whereas the A&L method still widens the control limits by 10.4%. For such a large sample size, a 

10.4% RI seems unnecessarily conservative, the drawback being larger out-of-control ARLs, 

ich we discuss shortly.  

 Other conclusions are more obvious:  As N increases, the RI for all methods decreases, 

because the ARMA parameters are estimated with greater precision. Moreover, as λ increases, 

the RI decreases for all methods. The reason, as discussed earlier, is that autocorrelation in the 

residuals has a stronger effect on the false alarm rate when λ is small.  

 To give an idea of the effect of widening the control limits on the ARLs, Table 4 shows the 

ARLs for various size mean shifts for the B

wh

considered earlier. Recall that the sample size was N = 197, φ̂  = 0.87, θ̂  = 0.48, and σ̂ a
2  = 0.098. 

We will consider λ = 0.1 (for which L = 2.814 for an in-control ARL of 500). This is the same 

example considered in Apley and Lee27, for which they chose α = 0.1. Hence, we will use α = 

0.1 also. We used Monte Carlo simulation to calculate all ARL values, all of which are for the 

case that the parameters coincide with their estimates. From Table 4, the performance in 

detecting shifts is clearly adversely affected by widening the control limits. For the A method, the 

proposed method, and the A&L method, the control limits are widened by 3.0% (= .208/.202−1), 

5.0% (= .212/.202−1), and 17.3% (= .237/.202−1), respectively. Consequently, as evident from 

Table 4, the worst-case A&L control limits result in substantially worse detection performance 

than the other EWMA charts, which are widened by much lesser amounts. For the smaller size 

shifts in Table 4, the worst-case limits of A&L result in almost double the ARL of the other 

charts. This illustrates the consequences of using overly-conservative (i.e., overly-widened) 

control limits.   
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 The A&L method involves choosing an additional design parameter α, and this has a large 

effect on the extent to which the A&L method widens the control limits. Table 5 compares the RI 

values for the A&L method with α = 0.1, α = 0.2, and α = 0.3 for the case λ = 0.05. A&L 

recommended these relatively large (relative to what one typically chooses for confidence 

intervals in other contexts) α values to avoid overly overly-widened control limits and the 

5.2   Bayesian Versus Non-Bayesian Approaches 

resulting decrease in detection performance seen in Table 4. In the setting of Table 4, if we had 

used α = 0.2 in the A&L method, the control limits would have been ±0.226 or 11.6% wider than 

the standard control limits (compared to the ±0.237 control limits that were 17.3% wider for α = 

0.1). Using these narrower control limits would have resulted in out-of-control performance 

somewhere between the proposed method and the A&L method with α = 0.1.  Choosing an 

appropriate α to balance between widening the control limits to mitigate excessive false alarms 

versus keeping the control limits narrow enough to retain reasonable out-of-control detection 

power is somewhat subjective. We believe the approach of this paper constitutes a more 

reasonable and less subjective way of accomplishing this.  

 In the approach of this paper, we used the Taylor expansion  

 ( ) ( ) ( )γγ
γ

γγγγ
γ

ˆˆˆ zT
T

z −⎥
⎤
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⎣
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===  

cted value of this with respect to the 

γ | to give an approximate expression for 

about γ = γ and, in a Bayesian paradigm, took the expeˆ  

posterior distribution of γ̂  ]|[ 2 γ̂E zσ . An alternative 

approach would be to use the Taylor expansion  

 ( ) ( ) ( )γγ
γ

γγγγ
γ γγγγγγ −

⎥
⎥
⎦

⎤

⎢
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⎣

⎡
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about γ̂  = γ and, in a non-Bayesian paradigm, take the expected value of this with respect to the 

distribution of γ̂ . The result would be a function of the unknown true p  γ, but we could 

substitute γ̂  to give an estimate ]|[ 2 γ

arameters

zÊ σ .  

γ̂Σ̂ Even though we are assuming a noninformative prior for γ, in which case Σγ = , these two 

pproach would not yield ]|[ 2 γ̂E zσ  = ]|[ 2 γzÊ σ

( )BΘ1  w

ters are zero.

a . This is because of the asymmetry of 

ith respect to  and γ. In the non-Bayesian 

pulse response coef g : j = 1, 2, . . .} with 

 In contrast

 parameters are zero. It is straightforward to show that 

( ) ( ) ( ) ( ) ( )BΘ̂ννBBG 1 11 −− −−=

approach, the second derivative of the im

respect to the estim

second derivative with respect the tr

the non-Bayesian ]|[ γ

( ) BΦBΦ̂1−

ated AR parame

ue MA

γ̂

ficients {

, in th

j

e Bayesian approach, the 

2
zE σˆ 2 is of exactly the same form as the Bayesian ]γ̂|[E zσ , except that 

the roles of the MA and AR parameters are reversed. We believe the Bayesian expression is more 

intuitively appealing, because it places more emphasis on the AR parameters than does the non-

Bayesian expression.   

as sampl proaches

ing the control limits, one may prefer to collect a sufficiently large data 

odel. We recommend the same strategy recommended 

by Apley and Lee :  Choose a small value δ that represents the maximum acceptable percentage 

by which the control limits may be widened. The sample size N is then chosen to ensure that  

 

5.3 Sample Size Requirements 

 From Eq. (10), e size N → ∞, the expected EWMA variance ap  the standard 

EWMA variance when there are no modeling errors, in which case the control limits are not 

widened at all. Consequently, in order to mitigate the drawbacks (namely, decreased detection 

performance) of widen

sample when estimating the time series m
27

δ
σ

σ
+≤ 1

]|[ 2

z

z

ˆ

ˆE γ
.  
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Given preliminary guesses for the parameters (perhaps from a small pilot sample), one could 

substitute ]|[ 2 γ̂E zσ  from Eq. (10) into the preceding equation and solve for the required N. One 

ould then collect a larger sample of size N and refit the model.  

 Using Eq. (11), for ARMA(1,1) processes the required sample size is 

 N ≥

w

 
( )( )( ) ( )( )( )

( )( )( ) ( )νθνφθφδδ 1111 ˆ1ˆ1ˆˆ2 −−−+

For example, for the ARMA(1,1) chemical process data example with preliminary estimates 1̂φ = 

0.87 and 1̂θ = 0.48, we would need N ≥ 310 to ensure that the con

νθφνφθφθνφθφν
22

2
111111

2
111

2 ˆˆ1ˆ1ˆˆ2ˆˆ1ˆˆ12 −−−+−−− . 

trol limits are no more than 5% 

01 with the same λ, the 

required sample size increases to N ≥ 1600. 

, for AR (1) processes, the required sample size is 

wider (δ = 0.05) than the standard control limits when λ = 0.05. For δ = 0.

 Similarly

 N ≥ ( )( )21

222
1

ˆ12

2ˆ31

νφδ

ννφ

−+

+− . 

6. CONCLUSIONS 

 We have presented an approach for widening 

2δ

the control limits of a residual-based EWMA to 

. Like the approach of Apley26, 

e e control limits proportional to the square root of the expected EWMA variance. 

However, we use a more accurate second-order Taylor approximation to the EWMA variance 

and a Bayesian analysis. For a numb e extent to which the control 

its are widened using our appr 26

take into account uncertainty in the estimated ARMA parameters

w set th

er of scenarios, we compared th

lim oach, the approach of Apley , and the worst-case approach of 

Apley and Lee27. We argued that our approach generally results in a more reasonable and 

intuitively appealing widening of the control limits than do the other approaches. It usually 

widens the control limits more than the approach of Apley26 but less than the overly-conservative 

worst-case approach of Apley and Lee27. The exception is when sample size is very small, in 

which case our approach widens the control limits by roughly the same amount as does Apley 
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and Lee27 with midrange choice of α, which we believe is desirable.  Another advantage of our 

approach is that it is less subjective than Apley and Lee27, which requires choosing the additional 

design parameter α.  

 We have only considered parametric model uncertainty and have ignored any uncertainty in 

the assumed model structure. For example, in practice the model order (p,q) must also be 

estimated and is therefore subject to uncertainty. Treatment of model structure uncertainty would 

be substantially more complicated. Because considering model structure uncertainty would 

generally increase the overall level of uncertainty and further widen the control limits, the 
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EXPECTED EWMA
EQ. (10) 

 To show that Eq. (9) simplifies to Eq. (10), we need simplified expressions for 

γγγ ˆjg =∂∂= 22   and D jˆ γγγd ˆjj gˆ
=∂∂=  . Define 22 γD ∂∂= jj g , and γd ∂∂= jj g  . 

30Apley and Lee  derived expressions for dj, and we extend their approach to find expressions for 

D  

right-most summation in Eq. (9) simplifies .  

j as well. We also show that when these are combined with the standard expression for Σγ, the

 considerably

 Denote the elements of Dj by li ,
jD φφ , li ,

jD θφ , and li ,
jD θθ  (1 ≤ i ≤ p, 1 ≤ l ≤ p) and the 

 and d  l ≤ p). Fo

 

elements of dj by  (1 ple, i
jd φ l

j
θ

≤ i ≤ p, 1 ≤ r exam

li

j, g
D li

φφ
θφ

∂∂

∂
=

2
 and j

i

jg
d i

φ
φ

∂

∂
= . 

As in Apley and Lee , we write Eq. (6) as zt =
∞

j

30  H(B)xt = G(B)at, where H(B) = 

 = with impulse response coefficients denoted by {hj: j = ( ) ( ) ( ) (BΦ̂BΘ̂ννB 11 11 −− −− ) ∑
=0j

j
j Bh  
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0, 1, 2, . . . }, and G(B) = Φ−1(B)Θ B). From the latter e have gj − φ1gj-1 − φ2gj-2 − … − 

φpgj-p = hj − θ1hj − θ2hj  − … − θqhj-q, from which, upon diff

(B)H( , w

-1 -2 erentiating both sides with 

spect to φi and θi, we get  

, and                  (A1) 

 .  

=

in the index 

 

or, equivalently, as 

                                                             (A3) 

where δ  denotes the Kronecker delta function (i.e., the impulse function defined as δk = 1 for k = 
. In other e response of the filter Φ−1(B)G(B), 

elayed by i timesteps. Proceeding similarly from (A2) gives 

 .  

            (

From (A3) and (A4), we have  

re

 0=−−−− gddd φφφ φφ L11 −−− ijpjpjj iii

=                   (A2) 

Here it is understood that gj  hj = d ij
φ  = d ij

θ  = 0 for j < 0. Viewing d iφ  and d i  as sequences 

j (so that ddB ii φφ ≡ ), we can write (A1) as  

( )2

hddd ijpjpjj iii −−−− −−−
θθθ φφ L11

j j
θ

jj 1−

gdBBB ij
p

p j
i

−=−−−− φφφ
φ

L211   

δφ
ijijj BGBΦgBΦd i −

−
−

− == )()()( 11 , 

k

0, and δk = 0 for k ≠ 0) words, d ij
φ  is the impuls

d

δθ ijijijijj BGBΘgBΘgBΦBΘBΦhBΦd i −
−

−
−

−
−−

−
− −=−=−=−= )()()()()()()( 11111

 A4) 

 ( ) ( ) ( )
( ) ( ) ( )δδφ

ijijj BΦ̂BΘ̂νB
BΘ̂BΦ̂ν

  

BΦ̂BĜBΦ̂d̂ i −
−

−
−

−
−

==
1
1)()()( 11  

( ) ( ) δ ijνBBΦ̂ν −
−− −−= 1)(1 11 ,  and       (A5)  

 ( ) ( ) ( )
( ) ( ) ( )δ

BΘBΦνBΘδBGBΘdθ ijiji −
−

−
− −

−=−=
ˆˆ1)(ˆ)(ˆ)(ˆˆ 11  

BΦBΘνBj − ˆˆ1

   .       (A6) ( ) ( ) δνBBΘν ij −
−− −−−= 1)(ˆ1 11
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 The eleme  as follows. Differentiating both sides of (A1) with nts of Dj are derived similarly,

respect to φl gives 

 

rite as  

011 =−−−−− −−−− ddDDD illilili ljij
,
pjp

,
j

,
j

φφφφφφφφ φφ L , 

which we w

 ( ) δφφφφ lijljij
,

j BGBΦddBΦD illi −−
−

−−
− =+= )()(2)( 21 ,    (A7) 

where in the right-most equality we have used Eq. (A3) for . Likewise, differentiating both 

des of (A1) with respect to θl gives 

r 

d l ij
φ

−

si

 1− −DD ili ,
j

,
j

φθφ φ 01 =−−− −− dD llil ij
,
pjp

θθφθ φL , 

o

 δθθφ
lijij

,
j BGBΘBΦdBΦD lli −−

−−
−

− −== )()()()( 111 ,     (A8) 

where in the right-most equality we have used Eq. (A4) for . Furthermore, it is 

raightforward to show that for all 1 ≤ i,l ≤ q,  

.          (A9) 

onsequently, from (A7)—(A9), we have 

d l ij
θ

−

st

0=D li ,j
θθ 

C

 ( ) ( ) ( ) δδφφ
lijlij

, νBBΦ̂νBĜBΦ̂D̂ li −−
−−

−−
− −−== 1)(12)(2 122 ,                (A10) j  

 ( ) ( ) ( ) δδθφ
lijlij

,
j νBBΘ̂BΦ̂νBĜBΘ̂BΦ̂D̂ li −−

−−−
−−

−− −−−=−= 1)()(1)()( 11111 , and     (A11) 

.            (A12) 

Eqs. (A5), (A6), (A10), (A11), and (A12) show that all of the elements of 

2, . . .) are the impulse response coefficients of various AR transfer func ple, from 

q. (A11),  is the (j−i−l)th impulse response coefficient of the (

 0=D̂ li ,θθ
j

  and j j = 1, jD̂

tions. For exam

p+q+1

d̂  (

E )th-order AR D̂ li ,
j

θφ

transfer function ( ) ( )νBBΘ̂BΦ̂ν −−− −−− 1)()(1 111 . Hence, one could simulate the response of 

these transf e 0 to calculate the elem

and then sub

er functions

stitu

 to a single impulse at tim

te these into Eq. (9) to calculate E

ents of j  and D̂ jd̂ , 

]|[ 2 γ̂zσ . However, this is unnecessary. In the 
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re ainder of this Appendix, we show that the special structures of jD̂  an jd̂  le  to the 

closed-form expression in Eq. (10).  

 To evaluate the term ∑∞
=0j jj

m d ad 

ˆĝ D in Eq. (9), notice that the impulse response coefficients of 

( ) ( )( νBνBĜ −−= 11 troduce the notation {η}j to denote the jth 

impulse response coefficient of any ARMA transfer function η(B) = { }∑

)−1  are jĝ = (1−ν)ν j, and in

∞
=0j

j
j Bη . Thus, fro  

Eq. (A10) we have 
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( )( )νννν +− 11 222 Φ̂Φ̂

ows by noting that for any ARMA transfer function η(B) = 

ννννν −
=

−− ++ 1211 lili
. 

The third equality foll

νννν =− −+ 212 2 ĜΦ̂li

{ }∑∞
=0j

j
j Bη , 

we define η(ν) = { }∑∞
=0j

j
jνη .  

 Similarly, from Eq. (A11) we have 
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Inserting these into tr{ ∑∞
=0

ˆˆj jjg γΣD } in Eq. (9) gives  
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⎪
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T
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T
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T
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0

VV

VVVV

νν

ννν
ν

⎧

⎪
⎨

⎢− Φ̂tr  1 2ν

                                     = ( )
( ) ( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−
ν
ν

Φ̂
qΦΘ

T
ppΦ

T
p VVVV ΣΣ

  1
  12      (A13) 

where 0 denotes a q×q matrix of zeros.  

 that remains in deriving Eq. (10) is to simplify the expression }. For 

this, we use the following asymptotic expression for Σγ (recall that Σγ = 

−
ννν Θ̂Φ̂

  2

∞
=0j

T
jj ˆˆ γΣdd All {tr ∑

γ̂Σ̂ ) from Box et al.10:   
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 Σγ =  
N
a 1−

wΣ            (A14) 
2σ

where Σw is the steady-state covariance matrix of the random vector wt, defined as wt = [ut  ut−1  

 the random processes ut and vt are defined as ut = … ut−p+1  vt  vt−1 … vt−q+1]T, where

( ) taBΦ 1ˆ  and vt = ( ) taBΘ 1ˆ −− . 

 Define yt = (1−ν)(1−νB)−1wt = (1−ν) kt

−

k
k

−
∞∑ wν , and note that the elements of y  are=0

( )1− 1

are the delayed im

t  

(A5) and (A6) im

 Σy = , or = 

time-delayed versions of taBΦB and − taBΘB . Because Eqs. ( )( ) 1 ˆ11 −−− νν

ply that i
jd̂φ and l

jd̂θ

( )( ) ( )11 ˆ1 −−−− νν

pulse responses of the filters 

( )( ) ( )BΦB 11 ˆ11 −−−− νν  and − ( )( ) ( )BΘB 11 ˆ11 −−−− νν , it follows that 

∑
∞

=0j
ja ˆ ∞

j
2 T

jˆ ddσ ∑
=0j

T
jˆˆ dd 2

1

aσ
Σy.          (A15) 

tBut from y  = (1−ν) ktk
k∞

=∑ w0 , we al o

 Σy = E[yt
T
ty ] = (1−ν)2

=0 0j
t−j

s  have 

[w

−ν

∑ ∑
∞ ∞

=k

kjνν E Tw kt − ]. 

Combining this with (A14) and (A15) gives 

{ tr{ ∑∞  = tr=0j
T
jj ˆˆ γdd Σ } 2

1

aσ
Σy N

aσ 1 }  
2

                                      = 

−
wΣ

( )
N

21 ν− tr E[wt−{ ∑ ∑
=j

νν
∞ ∞ kj

j
T

kt −w ] 1−
wΣ } 

=0 0k

                                      =  ( )
N

21 ν− tr{ ∑ ∑
∞

=

∞

=0 0j k

kjνν E[wt
T

jkt −−
w ] 1−

wΣ }                            (A16) 

wt as  

wt = Awt−1 +bat,  

 To evaluate this, we write 
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, and b = 

Then for any j and k, we have wt = A⎪k−j⎪wt−⎪k−j⎪ plus a function of {at, at−1, …, at−⎪k−j⎪+1} 

that is independent of wt−⎪k−j⎪. Consequently, 

T
jkt −−

w ] = E[A⎪k−j⎪wt−⎪k−j⎪ E[wt
T

jkt −−
w ] = A⎪k−j⎪Σw.                                              (A17) 

Combining (A16) and (A17) gives  

( )
N

21 ν− tr{ A⎪k−j⎪}  tr{ } = ∑∞
=0j

T
jj ˆˆ γdd Σ ∑ ∑

∞
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=0 0j k
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                                 = ( )
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∞

=0j jk
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∞
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2

j

jν I

                                 = ( )
N

21 ν− [2tr{ } − (p∑
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2

j

jν
l

( )∑
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=0

lAν +q ] 

                                 = 
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∞

=0

2

j

jν

( )
( )Nν

ν
+
−

1
1 [2tr{[I−νA]−1} − (p+q)]                                                 (A18) 

where I denotes the (p+q)×(p+q) identity matrix. 

 

(A18), which we derive as follows. Partition  

 Because of the trace operation, we only need the diagonal elements of the matrix [I−νA]−1 in

 A = ⎥
⎤

⎢
⎡

Θ

Φ
A

A
0

0
,   

⎦⎣
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and defin νAe M = [I− Φ]−1, which is the upper-left block of [I−νA]−1. Let ei = [ 0 0 …0 1 0 

…0]T denote a column vector of zeros with a one as its ith element. From the structure of AΦ, 

       

and  

here I denotes the p×p

 Denote by Mii the ith diagonal element of M. Using (A19)−(A21) and repeatedly substituting 

we have 

 ∑=
p Tˆ                                                                                                            (A19) 
=j

jjΦ
T e

1
1   e φA ,

    for  2 ≤  i ≤ p,                                                                                   (A20) T
iΦ

T
i e  e 1−=A ,

 
= ji  

                                                                                                          (A21) 
⎩
⎨
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≠
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jij
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 :1
 ee  I

w  identity matrix. 

M = I + νAΦM gives  
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i ΦΦ e   e1e e1e   ee e 11 MAIMMAIM νννν ++=+=+ −−=  

   = T2 eeˆ i
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s for 1 ≤ i ≤ p. In a similar manner, repeated

< i, 

which hold ly substituting M = I + νAΦM gives, for j 
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and for j ≥ i  
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ubstituting these into (A22) gives  
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             = ji
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1
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Thus, the i νAth diagonal element of [I− Φ]−1 is 
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where it is understood that the summation in the numerator is zero for i = 1. 

 Notice that the submatrix AΘ is of identical structure to AΦ, except that the AR coefficients 

g 

 

are replaced by the MA coefficients. In light of this, a straightforward repetition of the precedin

derivation gives 
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g this into Eq. (A18) gives
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Finally, substituting this and Eq. (A13) into Eq. (9) gives Eq. (10).  

 

N Proposed A A&L, 

TABLES 
 

α=0.2 
1̂φ  1̂θ  CL RI  RI CL RI  CL

0.9 0.6 

50 0.5517 31.8% 0.4827 15.3% 0.5252 30.2% 
100 0.4898 17.0% 0.4519 7.9% 0.5114 22.1% 
200 0.45 % 0.4356 4.0% 0.4 % 56 8.8 861 16.1
500 0.4339 3.6% 0.4256 1.6% 0.4625 10.4% 

 
0.9 

 
0.4 

50 0.5413 29.3% 0.4775 14.0% 0.5443 30.0% 
100 0.4839 15.6% 0.4491 7.2% 0.5107 22.0% 
200 0.4525 8.1% 0.4342 3.7% 0.4856 16.0% 
500 0.4326 3.3% 0.4250 1.5% 0.4621 10.4% 

 
0.8 

 
0.6 

50 0.5455 30.3% 0.4624 10.4% 0.5335 27.4% 
100 0.4863 16.1% 0.4411 5.3% 0.5026 20.0% 
200 0.4538 8.4% 0.4301 2.7% 0.4796 14.5% 
500 0.4331 3.4% 0.4233 1.1% 0.4582 9.4% 

0.8 0.4 

50 0.5182 23.8% 0.4570 9.1% 0.5301 26.6% 
100 0.4711 12.5% 0.4383 4.7% 0.5001 19.4% 
200 0.4457 6.4% 0.4286 2.4% 0.4777 14.1% 
500 0.4297 2.6% 0.4227 1.0% 0.4569 9.1% 

Table 1  Comparison of the extent to which the t thods widen the control limits  
0 L = 5) eno erce crea  con its, r  the d 

limits 

hree me  for λ =
.05 (  2.61 . RI d tes the p ntage in se in the trol lim elative to  standar

±Lσ̂ a
1/2(  = ±  that param ncert negl(1–ν) 1+ν)−1/2 0.4187 result if eter u ainty is ected. 
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N Proposed A A&L, α = 0.2 
1̂φ  1̂θ  CL RI CL RI CL RI 

0.9 0.6 

50 0.7715 19.5% 0.7239 12.1% 0.7378 14.3% 
100 0.7113 10.2% 0.6859 6.2% 0.7121 10.3% 
200 0.67 % 0.6660 3.2% 0.6  92 5.2 932 7.4%
500 0.6592 2.1% 0.6538 1.3% 0.6761 4.7% 

 
0.9 

 
0.4 

50 0.7648 18.5% 0.7169 11.0% 0.7378 14.3% 
100 0.7077 9.6% 0.6821 5.7% 0.7121 10.3% 
200 0.6774 4.9% 0.6641 2.9% 0.6932 7.4% 
500 0.6585 2.0% 0.6531 1.2% 0.6761 4.7% 

 
0.8 

 
0.6 

50 0.7753 20.1% 0.7042 9.1% 0.7355 13.9% 
100 0.7134 10.5% 0.6755 4.6% 0.7103 10.0% 
200 0.6803 5.4% 0.6607 2.3% 0.6920 7.2% 
500 0.6597 2.2% 0.6517 0.9% 0.6753 4.6% 

0.8 0.4 

50 0.7537 16.7% 0.6969 8.0% 0.7344 13.8% 
100 0.7017 8.7% 0.6717 4.0% 0.7095 9.9% 
200 0.6742 4.4% 0.6588 2.0% 0.6914 7.1% 
500 0.6572 1.8% 0.6509 0.8% 0.6749 4.5% 

Table 2  Comparison of the extent to which the t thods widen the control limits  
0 L = 4) eno erce ncrea  con its, r  the rd 

limits 

hree me  for λ =
.10 (  2.81 . RI d tes the p ntage i se in the trol lim elative to  standa

±Lσ̂ a
1/2(  = ±  that param ncert negle(1–ν) 1+ν)−1/2 0.6456 result if eter u ainty is cted. 

 

1̂φ  1̂θ  N Proposed A A&L, α = 0.2 
CL RI CL RI CL RI 

50 1.0889 10.3% 1.0724 8.6% 1.0797 9.4% 

0.9 0.6 100 1.0394 5.3% 1.0308 4.4% 1.0535 6.7% 
200 1.0137 2.7% 1.0093 2..2% 1.0346 4.8% 
500 0.9980 1.1% 0.9962 0.9% 1.0175 3.1% 

 
0.9 

 
0.4 

50 1.0853 9.9% 1.0642 7.8% 1.0786 9.2% 
100 1.0375 5.1% 1.0265 4.0% 1.0527 6.6% 
200 1.0127 2.6% 1.0071 2.0% 1.0340 4.7% 
500 0.9976 1.0% 0.9953 0.8% 1.0171 3.0% 

 
0.8 

 
0.6 

50 1.0902 10.4% 1.0579 7.1% 1.0806 9.4% 
100 1.0400 5.3% 1.0232 3.6% 1.0541 6.8% 
200 1.0140 2.7% 1.0054 1.8% 1.0350 4.8% 
500 0.9981 1.1% 0.9946 0.7% 1.0177 3.1% 

0.8 0.4 

50 1.0820 9.6% 1.0495 6.3% 1.0806 9.4% 
100 1.0358 4.9% 1.0189 3.2% 1.0541 6.8% 
200 1.0118 2.5% 1.0032 1.6% 1.0350 4.8% 
500 0.9972 1.0% 0.9937 0.6% 1.0177 3.1% 

Table 3  Comparison of the extent to which the thods widen the control limit  = 
0.  = 2). eno erce ncrea  con its, r o the standard 
limits ±L

three me s for λ
20 (L  2.96  RI d tes the p ntage i se in the trol lim elative t

(1– +ν 0.98  resu mete taint ected
 

ν)1/2(1 )−1/2 = ± 73 that lt if para r uncer y is negl . σ̂ a
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  mean shift magnitude (in units of σa) 
chart control limits 0 1 2 3 4 5 

EWMA (λ = 0.1) 0.202 (Standard) 500 101 23.8 8.11 3.54 2.22 
EWMA (λ = 0.1) 0.212 (Proposed) 729 129 27.7 9.24 4.00 2.39 
EWMA (λ = 0.1) 0.208 (A ethod) 6   m 12 115 25.5 8.58 3.79 2.30
EWMA (λ = 0.1) 0.23 d) 2020 247 43.3 13.3 5.29 2.89 7 (A&L metho

Shewhart 0.967 (Standard) 500 366 168 49.1 7.83 1.38 
Tab r va ifts for the A A x  w h A 

e w ei a
 
 

N A&L, 

le 4  ARL values fo rious size mean sh RM (1,1) e ample hen t e ARM
parameters coincid ith th r estim tes. 

 
 
 

1̂φ  1̂θ  α=0.1 A&L, α=0.2 A&L, α=0.3 
CL RI CL RI CL RI 

0.9 0.6 

50 0.6008 43.5% 0.5252 30.2% 0.5013 19.7% 
100 0.5537 32.2% 0.5114 22.1% 0.4786 14.3% 
200 0.5 % 0.4 % 0.4 % 178 23.7 861 16.1 619 10.3
500 0.4838 15.5% 0.4625 10.4% 0.4465 6.6% 

  
0.9 0.4 

50 0.5995 43.2% 0.5443 30.0% 0.5007 19.6% 
100 0.5527 32.0% 0.5107 22.0% 0.4781 14.2% 
200 0.5171 23.5% 0.4856 16.0% 0.4615 10.2% 
500 0.4833 15.4% 0.4621 10.4% 0.4463 6.6% 

 
0.8 

 
0.6 

50 0.5846 39.6% 0.5335 27.4% 0.4934 17.8% 
100 0.5413 29.3% 0.5026 20.0% 0.4728 12.9% 
200 0.5085 21.4% 0.4796 14.5% 0.4576 9.3% 
500 0.4775 14.0% 0.4582 9.4% 0.4437 6.0% 

0.8 0.4 

50 0.5799 38.5% 0.5301 26.6% 0.4911 17.3% 
100 0.5377 28.4% 0.5001 19.4% 0.4711 12.5% 
200 0.5058 20.8% 0.4777 14.1% 0.4564 9.0% 
500 0.4756 13.6% 0.4569 9.1% 0.4429 5.8% 

Table 5.  The ct o  of con s of  me λ =
 

 

 effe f choice α on the trol limit the A&L thod for  0.05.  
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Figure 1.  Simulated ARMA(1,1) chemical process example demonstrating false alarm 

occurrences when there are no parameter errors for an EWMA chart with four different sets of 
control limits: ±0.202 (standard), ±0.208 (Apley26),  ±0.212 (proposed), and ±0.227 (Apley and 

Lee27, with α=0.2). 
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Figure 2.  Simulated ARMA(1,1) chemical process example demonstrating false alarm 

occurrences when there are parameter errors for an EWMA chart with four different sets of 
control limits: ±0.202 (standard), ±0.208 (Apley26),  ±0.212 (proposed), and ±0.227 (Apley and 

Lee27, with α=0.2). 
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