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Abstract: Residual-based control charts for autocorrelated processes are known to be sensitive
to time series modeling errors, which can seriously inflate the false alarm rate. This article
presents a design approach for a residual-based exponentially weighted moving average
(EWMA) chart that mitigates this problem by modifying the control limits based on the level of
model uncertainty. Using a Bayesian analysis, we derive the approximate expected variance of
the EWMA statistic, where the expectation is with respect to the posterior distribution of the
unknown model parameters. The result is a relatively clean expression for the expected variance
as a function of the estimated parameters and their covariance matrix. We use control limits
proportional to the square root of the expected variance. We compare our approach to two other
approaches for designing robust residual-based EWMA charts and argue that our approach
generally results in a more appropriate widening of the control limits.
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1. INTRODUCTION

Exponentially weighted moving average (EWMA) control charts are widely used in
statistical process control (SPC) to detect changes in a process mean. If {x: t=1, 2, ...} denotes
observations of the process, the EWMA statistic z, introduced by Roberts’, is calculated
recursively via z, = (1-4)z,4 + Ax;, where 0 < 4 = 1 is the EWMA parameter. If the process
observations x, are statistically independent, then the control limits for the EWMA chart are

typically set as
CL=+Lc,, (1)

where 6, =6, AY2(2-2)71/2 is an estimate (estimates are indicated by the "A" symbol) of the
steady-state standard deviation of the EWMA statistic, and L is a constant that provides a specific
desired in-control ARL. Tables in Lucas and Saccucci’® or Lu and Reynolds®, for example, can be
used to select L. Here we assume the in-control process mean has been subtracted from the
observations, so that the resulting x; has an in-control mean of zero.

When the process data are autocorrelated, however, applying the standard control chart with
standard control limits results in far too frequent false alarms (see, e.g., Johnson and Bagshaw";
Harris and Ross”; Alwan®). Montgomery and Woodall’, Woodall and Montgomery®, and
Stoumbos et al.” contain excellent discussions on the increasing prevalence of autocorrelated
data in SPC applications due, in part, to measurement automation that results in steady streams
of data. To represent the autocorrelation, one typically uses an autoregressive moving average

(ARMA) model of the form (Box et al.'®)
O\B
Xt = %at , (2)

where ¢ is a time index, B is a backward shift operator defined such that Bx, = x, 1, ®(B)=1 —

$1B — ¢,B% -+ — $,B” is the AR polynomial of order p, O(B)=1 — 6,B — 6,82 --— §,B is the



MA polynomial of order ¢, and a; is assumed to be an identically independently distributed
2

(i.i.d.) random process with mean zero and variance o, .

Control charting approaches for autocorrelated data typically involve calculating the
residuals e, = ©~1(B)®(B)x,, of the estimated ARMA model fitted via time series modeling of a
prior sample of size N observations of x,. With no modeling errors, the residuals are uncorrelated,
and traditional control charts can be applied with well understood in-control run length

l.ll

properties. Berthouex er al.™!, Alwan and Roberts'?, Montgomery and Mastrangelo™, Superville

and Adams™, Wardell ez al.™®, Runger ez al.*®, Lin and Adams'’, Vander Weil*®, Apley and Shi*’,

Lu and Reynolds®, English et al.?’

, and many others have investigated residual-based control
charts. Perhaps the most common chart is a residual-based EWMA (e.g., Lu and Reynolds®) of
the form z; = (1-1)z,.1 + Ae.. One typically neglects ARMA modeling errors and uses the control
limits (1) with 6, =6, A412(2-2)71/2,

In this paper we focus on the effects of ARMA modeling errors. Many authors (e.g., Kramer
and Schmid®; Adams and Tseng®*; Apley and Shi'’; Lu and Reynolds®; Kramer and Schmid?*;
Apley and Lee®) have investigated the adverse effects of ARMA modeling errors on residual
based charts, using either simulation or analytical methods. One serious adverse effect is a
substantial increase in the false alarm rate if the modeling errors are such that the autocorrelation
IS underestimated, similar to the increased false alarm rate that results from ignoring
autocorrelation altogether. Jensen ez al.* provides a comprehensive discussion on the effects of
parameter estimation errors on control chart performance, in general. Their focus is on
independent data and errors in estimating the mean and variance, but they include a brief
discussion of control charts for autocorrelated data.

Apley®®, Apley and Lee”’, and Testik®® proposed methods for widening the control limits of a
residual-based EWMA in order to avoid the excessive false alarms caused by ARMA parameter
estimation errors. Lety = [¢y ¢ - ¢4, 6 6 - eq]T and ?=[¢31 ;/32 ~-~¢3p éj 92~-~é’q]T denote

the vectors of ARMA parameters and their estimates, respectively. Apley®® used the control limits



CL==*L\E[c?|7], (3)

where L is chosen as if there were no modeling errors, and E[az2 | Y] denotes an estimate of the
expected EWMA variance, where the expectation is with respect to the random parameter
estimates y, conditioned on the unknown true parameters y. They approximate E[az2 | v] using
a first-order Taylor approximation of certain underlying quantities. Noting that the approach of

Apley”® may not widen the control limits enough, Apley and Lee”’ used the control limits

CL=*Lo,,, (4)

where o, denotes the upper boundary of an approximate upper one-sided 1-« confidence
interval on the EWMA standard deviation o, for some appropriate choice of a. They referred to
these as "worst-case” control limits, because they provide protection against excessive false
alarms for the worst (largest) value of o within the confidence interval. Testik?® used a similar
approach for the control limits for an AR(1) process but with a different "worst-case™ value for o
based on assuming a truncated normal distribution for gy .

As we will illustrate in later examples, the motivation for this work is that the approach of
Apley”® generally does not widen the control limits enough, and the worst-case approach of
Apley and Lee”’ generally widens the control limits by more than is needed. To avoid being
overly conservative in this regard, Apley and Lee?’ recommended the relatively large value of «
= 0.2. We demonstrate later that this large choice for « tends to widen the control limits too

much for large N and perhaps not enough for small N. Our approach is to use the control limits

CL=+L+\E[c?|7], (5)

which is akin to Apley® but with two differences: 1) We use a better Taylor approximation of
022, and 2) we use a Bayesian analysis in which the expectation in (5) is with respect to the

posterior distribution of the unknown true parameters y, conditioned on the estimate 7y .



In Section 2 we derive the expected EWMA variance E[aZ2 | ¥] for use in (5), which turns
out to be quite tractable and only requires an estimate of y and its error covariance matrix, both
of which are typically produced by commercial ARMA modeling software. In Section 3 we
provide further simplified expressions for E[aZ2 | ¥] for the special cases of first-order ARMA
processes. We provide design guidelines in Section 4. In Section 5 we present comparisons with
the approaches of Apley”® and Apley and Lee”’ and argue that the proposed approach usually
results in more appropriate widening of the control limits. We also discuss sample size

recommendations and other discussion points. Section 6 concludes the paper.

2. EXPECTED EWMA VARIANCE

For notational convenience, denote v = 1-A4. Combining Eq. (2), the equation e,
=6-1(B)d(B)x, for generating the residuals, and the EWMA equation z, = (1-A)z.1 + Ae, = vz,1
+ (1-V)e, gives the following model (see Apley and Lee?’ for further details)

z,= (1-vB)Y(1-1)0(B) 1d(B)d(B) rO(B)a; = G(B)a; = _zog Jar 6)

]:
-1 A pV-14 -1 o j ;o

where G(B)=(1-vB)"(L-v)0(B) "2(B)0(B)"0(B)=X7_)g,;B’ ,and g; (=0, 1,2, . . )
denote the impulse response coefficients of ARMA(p+q+1,p+q) transfer function G(B). Hence,

using the impulse response method (see Box et al.'®), the EWMA variance is
ci=05 X g5 ()

We approximate the EWMA variance using a second-order Taylor approximation

! 1 r| 8252
p| r=1)+50-7) { 5
oY

yzf(:l("{ _’9)

about y =y . Taking the expected value of this with respect to the posterior distribution of y, given

the data from which v is calculated, gives the approximate expected EWMA variance
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T=Y Zv} (8)

where &ZZ :&3 (1-v)(1+v)1 is the EWMA variance if there were no modeling errors (i.e., if y

=y, and o, =0,), tr denotes the matrix trace operator, and Z, denotes the posterior covariance
matrix of y.

In deriving (8), we assume a suitable approximate maximum likelihood estimator y and a
noninformative prior for y. In this case, invoking the standard large sample results for maximum
likelihood estimation (see Carlin and Louis™) implies that the posterior distribution of y | 7 is
approximately multivariate normal with mean y and covariance matrix %, = i?, where 2?
denotes the standard (non-Bayesian) large sample estimate of the covariance matrix of y. Most
commercial time series modeling software will produce the estimates y and ﬁ? based on
approximate likelihood methods. See Box et al.* for further details on calculating the estimates
y and i? and Appendix B of Apley and Lee”’ for a straightforward numerical procedure for
calculating ﬁ;{ that can be implemented in spreadsheet software.

In the remainder of this section, we show that Eq. (8) reduces to a relatively simple function
of y and %,. Towards this end, differentiate Eq. (7) twice with respect to y to give

T
0%c? | 5= ,52gj g | %,
> =20, 2. | &, 5 T :
oy j=0 oy or || oy

Combining this with Eq. (8) gives

212 ~2 1-v 2 ®© . © . oar
Elo? |y];0a(m]+aatr{ .Zongij + .Zodjdey}, 9)
J: J:

where we denote D ; =62gj/672‘7:? ,and d :agj/ay\y:,} .

We show in the Appendix that, after much tedious algebra, Eq. (9) simplifies to
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b(v) 6(v) |
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Vv 2 ... M7, and we have partitioned the (p+¢)x(p+¢) parameter covariance matrix (which

is inversely proportional to sample size N) as
Zv:{ Equ Zqﬁ@}:i{_fﬁs f_qﬁ@}:ii _
Yoo Zo| N|Zpe Zo| N7

Given the estimates y, 6,, and X, from time series modeling software, the size N of the
sample of observations from which the estimates were obtained, and the EWMA parameter A (=
1-v), one calculates the expected EWMA variance using Eq. (10) and then substitutes this into
the control limits (5). In Section 5 we provide examples illustrating the extent to which this
widens the control limits, thereby protecting against excessive false alarms that can result from
ARMA modeling errors.

Remark 1: The covariance matrix NX g of the MA parameters does not appear directly in
Eqg. (10). This is not because the expected EWMA variance does not depend on X g. Indeed it
does; but in the derivations in the Appendix, we have already substituted a standard expression
for g.

Remark 2: Apley” used a related approach to calculate E[az2 |v] in a non-Bayesian
scenario. They used a first order Taylor approximation of z, (with respect to y, about y = y) by
differentiating Eg. (6) and then substituted the impulse response coefficients of the Taylor
approximation into Eq. (7). In spite of these differences, their approach is equivalent to using Eq.
(9) but excluding the terms involving the second derivative matrices D j- We demonstrate in

later examples that including the second derivative terms results in more reasonable widening of

the control limits, especially for small sample sizes.



3. RESULTS FOR LOW-ORDER ARMA PROCESSES
For certain low-order ARMA processes, for which we have simple closed-form expressions
for Z, as a function of the estimated ARMA parameters, the posterior variance of Eq. (10) further
simplifies. We refer readers to Box et al.* for details and derivations of the expressions for z
that we use in this section. For ARMA(1,1) processes, the parameter covariance is

1 ;ﬁl—ﬁ)[(léf)&lél;) (( -3 h- 01)}

Ly PR Py
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Substituting this into Eq. (10) gives
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as the expected EWMA variance for ARMA(1,1) processes. The last equality follows after a
great deal of algebra.
For AR(2) processes, the parameter covariance matrix is

1o _ 1{ 1-¢5 —¢1(1+¢2)}

NN —¢31(1+¢32) 1-¢5

When substituted into Eq. (10), this gives

plo? 19126210 1ot 22— 29 B — B+ Bt v
Y 1+v N (1_¢;_|_V—¢22V2)2

as the expected EWMA variance for AR(2) processes.



For an AR(1) process, we have only a single parameter, and its variance is

N"lfy=N 1( ¢1) Substituting this into Eq. (10) gives

1- vj L L1302 v 22
l+v N (1—¢A_I_V)2

as the expected EWMA variance for AR(1) processes.

Elc?|7]=¢6 [

Similarly, using expressions for the parameter covariance matrices given in Box, et al. (1994),

one can show that the expected EWMA variances for MA (2) and MA (1) processes are

i A 1,2
E[o? 7] = ”2(—1 ‘”] 14 1| _2retrt H and
+v N

v N|{1-6y-6yv°
i o
E[o? 7] = 0'[1 VJui tovi|
1+V N_l—elv

respectively.

The preceding result for MA(1) processes is exactly the same as the result for E[az2 | v]
from Apley®. The reason is that g; is a linear function of &, and so the first-order Taylor
approximation used by Apley” is the same as the second-order Taylor approximation that we use.
The preceding results for other low-order ARMA processes are quite different than those of

Apley”®. We further discuss the differences in Section 5.2.

4. EWMA DESIGN PROCEDURE USING THE EXPECTED VARIANCE

As for any residual-based chart, the first step is to use appropriate time series modeling
software to fit an ARMA model to a set of observations {xi, xp, . . ., xy}. If the model is one of
the five special cases covered in Section 3, only the estimates y and &, are needed. One can
then substitute these directly into one of the expressions for E[az2 | v] in Section 3. This, in turn,
is substituted into Eq. (5) to give the EWMA control limits, suitably widened to protect against
excessive false alarms due to ARMA modeling errors. If the model is not one of the special cases

discussed in Section 3, the procedure is the same, except that one also needs Z, (in addition to y



and &,), which is typically produced by most commercial software packages for time series
modeling. These are then substituted into Eq. (10) and the result of this, into Eq. (5). If the time
series modeling software does not produce an estimate of %,, one can implement the numerical
procedure in Appendix B of Apley and Lee?’ using spreadsheet software to calculate Z,. All that
are required for this are the parameter estimates y and the sample size N.

One must also select L and A, prior to calculating the control limits. For this, we recommend
the same approach that Apley and Lee?’ recommended (see Apley and Lee?’ for justification):
Choose L and A exactly as one would if parameter uncertainty were neglected. That is, one can
choose A to be sensitive to a certain size mean shift and then choose the value of L that would
result in a desired in-control ARL if there were no modeling errors and the control limits +L &,
were used. Lu and Reynolds® provide guidelines for this. For a specified A, the tables of Lucas
and Saccucci’ can be used to choose L to give a desired in-control ARL.

To illustrate the design procedure, we use the Series A data from Box ez al.'®, which are 197
concentration readings from a chemical production process. An ARMA(1,1) model was fitted to
the data with estimated parameters ¢ = 0.87, = 0.48, and 62 =0.098. If we select 1= 0.1 and
a desired in-control ARL of 500, then we would choose L = 2.814 from the table of Lucas and
Saccucci’. If there were no parameter uncertainty, the EWMA variance would be
6,=6,12(2-2)712 = 0.0718. Hence, the standard EWMA control limits are + L&, = +0.202.
Considering model uncertainty, the expected EWMA variance for this ARMA(1,1) model is
calculated by substituting the estimated parameters, N = 197, and v = 0.9 into Eq. (11). This
gives E[az2 |v] = 0.00568, and \/E[az2 |y] = 0.0754, which is 4.9% larger than &, .
Substituting this into Eq. (5) gives control limits of £0.212, based on the expected variance,
which are 4.9% wider than the standard limits. In comparison, one can show that the control
limits of Apley®® and Apley and Lee”’ are +0.208 [from Eq. (3)] and +0.227 [from Eq. (4) with &
= 0.2], respectively. These methods widen the control limits by 3.0% and 12.3%, respectively.
The proposed approach, which widens the control limits by 4.9%, falls somewhere between the

other two approaches in terms of how conservatively it widens the control limits.
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Figure 1 shows an EWMA control chart applied to 1000 simulated observations from the
ARMA(1,1) model of the chemical process when the true parameters coincide with their
estimates. All four sets of control limits [standard; Apley?’; the proposed; and Apley and Lee®’]
are displayed in the figure. Figure 2 is analogous to Figure 1, except that when simulating the
process, we introduced an error in the parameters: We let ¢, and o, coincide with their
estimates, but used ¢; = 0.9. Figure 2 is intended to illustrate the increased false alarms caused
by parameter estimation errors and the mitigating effects of widening the control limits (later in
the paper, we use Monte Carlo simulation to investigate the effects of widening the control limits
on the in-control and out-of-control ARLS). Since there was no mean shift, all of the out-of-
control signals in Figures 1 and 2 are false alarms. Over the 1,000 observations in Figure 1, there
are three false alarms using the standard control limits, two using the control limits of Apley?’,
one using the proposed control limits, and none using the control limits of Apley and Lee?’. In

Figure 2, the numbers of false alarms for the four sets of control limits increase to five, four, two,

and one, respectively.

5. DISCUSSION

In this section we discuss several points of interest regarding the proposed method: We
compare our approach to two other approaches, in terms of the extent to which the different
methods widen the control limits to account for parameter uncertainty. We contrast the Bayesian
paradigm we have adopted with a corresponding non-Bayesian paradigm. We also discuss
guidelines for choosing the sample size large enough so that the effects of parameter uncertainty

are not detrimental to the performance of the chart in detecting shifts.

5.1 Comparison with Other Methods for Widening the Control Limits

We compare our method with the two other design procedures discussed in the introduction
for widening the control limits of a residual-based EWMA to account for parameter uncertainty:

The methods of Apley®® (hereafter A) and Apley and Lee®’ (hereafter A&L). The methods of A

11



and A&L use the control limits (3) and (4), respectively, and our method uses the control limits
(5). To have a common basis for comparison, we use the same values of L and A for all three
methods.

Tables 1—3 compare the control limits for the three methods for various sample sizes (N =
50, 100, 200, and 500) and for various fitted ARMA(1,1) models. Table 1 is for EWMA
parameter A = 0.05, and Tables 2 and 3 are for 4 = 0.10 and 4 = 0.20, respectively. For each of
the three values of A, L was taken from the tables of Lucas and Saccucci® to give a desired in-
control ARL of 500 for the situation in which there are no modeling errors. The "RI" columns
show the relative increase in control limit width, i.e., the percentage increase relative to the
standard control limits +L &, (1-V)Y2(1+1)~Y/2 that would be used if one neglected modeling
errors. For simplicity, we have neglected errors in o, by assuming o, =0,=10. The A&L
method involves selection of an additional parameter «, the confidence level for the worst-case
control limits. In Tables 1—3, we have used the midrange value « = 0.2 recommended by A&L.
Table 5, discussed below, shows analogous results for larger and smaller choices of a.

We can draw some general conclusions from Tables 1—3: For the examples considered, the
proposed method always widened the control limits by a greater amount than method A. For
small 2 (1 = 0.05, Table 1) the RI was roughly three times larger for the proposed method than
for method A, whereas for large 4 (1 = 0.20, Table 3), the RI for the two methods were much
more comparable. We believe this is desirable. Modeling errors cause autocorrelation in the
residuals, and the effect of residual autocorrelation is much greater when one uses a small value
of 4 (see Apley and Lee?’, for a discussion of the reasons). Hence, a much larger widening of the
control limits is in order. Method A, based on a cruder first-order Taylor approximation, does not
sufficiently widen the control limits in this situation.

Another conclusion from the tables is that the RIs for the proposed method and for the A&L
method are often comparable for small &, but for large N the RI is much larger for the A&L
method. We believe this is a desirable characteristic of the proposed method and that the A&L

method can be overly conservative for large N. Consider the situation in Table 1 for ;/31 = 0.9 and

12



él = 0.6. For the small sample size of N = 50, the proposed method and the A&L method both
widen the control limits by roughly 30% (Rl = 31.8% and 30.2%). This seems reasonable,
because with such a small sample size the modeling errors may be quite large. In contrast, for the
large sample size of N = 500, the proposed method only widens the control limits by 3.6%,
whereas the A&L method still widens the control limits by 10.4%. For such a large sample size, a
10.4% RI seems unnecessarily conservative, the drawback being larger out-of-control ARLSs,
which we discuss shortly.

Other conclusions are more obvious: As N increases, the RI for all methods decreases,
because the ARMA parameters are estimated with greater precision. Moreover, as A increases,
the RI decreases for all methods. The reason, as discussed earlier, is that autocorrelation in the
residuals has a stronger effect on the false alarm rate when A is small.

To give an idea of the effect of widening the control limits on the ARLsS, Table 4 shows the
ARLs for various size mean shifts for the Box er al.™® ARMA(L,1) chemical data example
considered earlier. Recall that the sample size was N = 197, ¢ = 0.87, 6 = 0.48, and 6% =0.098.
We will consider 4 = 0.1 (for which L = 2.814 for an in-control ARL of 500). This is the same
example considered in Apley and Lee?’, for which they chose « = 0.1. Hence, we will use o =
0.1 also. We used Monte Carlo simulation to calculate all ARL values, all of which are for the
case that the parameters coincide with their estimates. From Table 4, the performance in
detecting shifts is clearly adversely affected by widening the control limits. For the A method, the
proposed method, and the A&L method, the control limits are widened by 3.0% (= .208/.202-1),
5.0% (= .212/.202-1), and 17.3% (= .237/.202-1), respectively. Consequently, as evident from
Table 4, the worst-case A&L control limits result in substantially worse detection performance
than the other EWMA charts, which are widened by much lesser amounts. For the smaller size
shifts in Table 4, the worst-case limits of A&L result in almost double the ARL of the other
charts. This illustrates the consequences of using overly-conservative (i.e., overly-widened)

control limits.
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The A&L method involves choosing an additional design parameter «, and this has a large
effect on the extent to which the A&L method widens the control limits. Table 5 compares the RI
values for the A&L method with « = 0.1, ¢ = 0.2, and « = 0.3 for the case 4 = 0.05. A&L
recommended these relatively large (relative to what one typically chooses for confidence
intervals in other contexts) « values to avoid overly overly-widened control limits and the
resulting decrease in detection performance seen in Table 4. In the setting of Table 4, if we had
used o = 0.2 in the A&L method, the control limits would have been +0.226 or 11.6% wider than
the standard control limits (compared to the +£0.237 control limits that were 17.3% wider for o =
0.1). Using these narrower control limits would have resulted in out-of-control performance
somewhere between the proposed method and the A&L method with « = 0.1. Choosing an
appropriate « to balance between widening the control limits to mitigate excessive false alarms
versus keeping the control limits narrow enough to retain reasonable out-of-control detection
power is somewhat subjective. We believe the approach of this paper constitutes a more

reasonable and less subjective way of accomplishing this.

5.2 Bayesian Versus Non-Bayesian Approaches

In the approach of this paper, we used the Taylor expansion

2 2 80‘22 ! 1 T 52022
i+ =i | -1+ -1)

o, =0,

=1+ 5 > o7 y:«}}(v—?)
about y = ¥ and, in a Bayesian paradigm, took the expected value of this with respect to the
posterior distribution of y | ¥ to give an approximate expression for E[az2 |v]. An alternative

approach would be to use the Taylor expansion

8022
=1

o2 =02

! 1 T 9252
?:y} (7-7)+51-v) {6?22
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about y =y and, in a non-Bayesian paradigm, take the expected value of this with respect to the
distribution of . The result would be a function of the unknown true parameters y, but we could
substitute y to give an estimate E[az2 | v].

Even though we are assuming a noninformative prior for y, in which case Z, = 2?, these two
approach would not yield E[az2 [v] = I:A"[az2 |v] . This is because of the asymmetry of
G(B)=(1-vB) 1 (1-v)O(B) & (B)d(B) L O(B) with respect to § and . In the non-Bayesian
approach, the second derivative of the impulse response coefficients {g;: j = 1, 2, . . .} with
respect to the estimated AR parameters are zero. In contrast, in the Bayesian approach, the
second derivative with respect the true MA parameters are zero. It is straightforward to show that
the non-Bayesian E[az2 | v] is of exactly the same form as the Bayesian E[az2 | 7], except that
the roles of the MA and AR parameters are reversed. We believe the Bayesian expression is more
intuitively appealing, because it places more emphasis on the AR parameters than does the non-

Bayesian expression.

5.3 Sample Size Requirements

From Eq. (10), as sample size N — oo, the expected EWMA variance approaches the standard
EWMA variance when there are no modeling errors, in which case the control limits are not
widened at all. Consequently, in order to mitigate the drawbacks (namely, decreased detection
performance) of widening the control limits, one may prefer to collect a sufficiently large data
sample when estimating the time series model. We recommend the same strategy recommended
by Apley and Lee®”: Choose a small value &that represents the maximum acceptable percentage

by which the control limits may be widened. The sample size N is then chosen to ensure that

VEOZ I s

A

O,
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Given preliminary guesses for the parameters (perhaps from a small pilot sample), one could
substitute E[az2 | ¥] from Eq. (10) into the preceding equation and solve for the required N. One
would then collect a larger sample of size N and refit the model.

Using Eq. (11), for ARMA(1,1) processes the required sample size is

o 22040 J- 2 v -6) v 2 -6 Jo- g k- b ?)
(52 +26) -6, - Pl v)
For example, for the ARMA(1,1) chemical process data example with preliminary estimates ¢31:
0.87 and élz 0.48, we would need N = 310 to ensure that the control limits are no more than 5%
wider (o= 0.05) than the standard control limits when A4 = 0.05. For 6= 0.01 with the same 4, the
required sample size increases to N = 1600.

Similarly, for AR (1) processes, the required sample size is
1-342v2 + 212

" (52 +20fi-gw P

6. CONCLUSIONS

We have presented an approach for widening the control limits of a residual-based EWMA to
take into account uncertainty in the estimated ARMA parameters. Like the approach of Apley?,
we set the control limits proportional to the square root of the expected EWMA variance.
However, we use a more accurate second-order Taylor approximation to the EWMA variance
and a Bayesian analysis. For a number of scenarios, we compared the extent to which the control
limits are widened using our approach, the approach of Apley®®, and the worst-case approach of
Apley and Lee?’. We argued that our approach generally results in a more reasonable and
intuitively appealing widening of the control limits than do the other approaches. It usually
widens the control limits more than the approach of Apley”® but less than the overly-conservative
worst-case approach of Apley and Lee”’. The exception is when sample size is very small, in

which case our approach widens the control limits by roughly the same amount as does Apley
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and Lee?” with midrange choice of &, which we believe is desirable. Another advantage of our
approach is that it is less subjective than Apley and Lee®’, which requires choosing the additional
design parameter a.

We have only considered parametric model uncertainty and have ignored any uncertainty in
the assumed model structure. For example, in practice the model order (p,g) must also be
estimated and is therefore subject to uncertainty. Treatment of model structure uncertainty would
be substantially more complicated. Because considering model structure uncertainty would
generally increase the overall level of uncertainty and further widen the control limits, the
approach of this paper results in what should be viewed as the minimum amount by which the

control limits should be widened to prevent excessive false alarms.
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APPENDIX: DERIVATION OF THE EXPECTED EWMA VARIANCE OF
EQ. (10)

To show that Eg. (9) simplifies to Eq. (10), we need simplified expressions for
D, =0%; /oy |,y and d;=dg, [ov|,_; . Define D; =%, /oy® , and d;=dg, /oy .
Apley and Lee* derived expressions for d;, and we extend their approach to find expressions for
D; as well. We also show that when these are combined with the standard expression for Z, the
right-most summation in Eq. (9) simplifies considerably.

Denote the elements of D; by D?"’@, D?"’gl, and Dfi’el 1<i<p 1=<1<p)andthe
elements of d; by djq.ji and dfl (1=i=p,1=1[=<p). Forexample,

2
4.0, _ 98 oy 08
/ .

/ 0909 0¢;
As in Apley and Lee®, we write Eq. (6) as z, = H(B)x, = G(B)a, where H(B) =
(1-vB) 1 1-v)O(B) 1d(B) = 5 h;B/ with impulse response coefficients denoted by {A;: j =
j=0
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0,1,2, ...} and G(B) = & 1(B)®&B)H(B). From the latter, we have g — ¢1gj_1 - ¢2gj_2 — =
$ogjp = hj — Orhiy — &hip — -+ — Gh;,, from which, upon differentiating both sides with

respect to ¢; and &, we get

d?i_¢1d?i_1_"'_¢pd?i_p_gj—i:O'and (A1)
d?i—¢1d§11—'-~ ¢pdj p=hj-i- (A2)

Here it is understood that g; = /; = d?i = d?i =0 for j < 0. Viewing di’-i and d?i as sequences
in the index j (so that Bd?i = d?i_l), we can write (Al) as
9
(1—¢1B _¢232_..._¢pBP)dj =
or, equivalently, as
d%=o"1B)g,; = HB)G(B)s (A3)

where ¢, denotes the Kronecker delta function (i.e., the impulse function defined as &, = 1 for £k =
0, and ¢ = 0 for k£ = Q). In other words, d?i is the impulse response of the filter & 1(B)G(B),

delayed by i timesteps. Proceeding similarly from (A2) gives

d?" = —@_l(B)hj—i = —@‘1(3)@_1(3)¢(3)gj_,- = —@_1(B)gj_l~ =-6"1(B)G(B) 0j—i-

(A4)
From (A3) and (A4), we have
i ) s a-lgy LmVIR(B)O(B)
d] @ (B)G(B)é‘]_l ( )(1 vB)@(B)@(B)é‘J_l
=(1-v)¢ 1(B)a-vB)ts5,_;, and (A5)
oo g, - v>¢< )@(B) |
=—1-v)6 " B)1-vB) s, (A6)
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The elements of D; are derived similarly, as follows. Differentiating both sides of (Al) with

respect to ¢ gives

DYl1—g DY == ¢, DY — a9~ d % =0,
which we write as

Dt = Y(B)at; + d?r‘_,)= 2¢72(B)G(B) & j—ii, (A7)
where in the right-most equality we have used Eg. (A3) for d?”—i- Likewise, differentiating both
sides of (A1) with respect to ¢, gives

DY 01— D1 =+~ ¢, D%~ a% =0,
or

D% =@ (B)d9 ;= -0 (B) 6 (B)G(B)S i, (A8)
where in the right-most equality we have used Eq. (A4) for d?l_l. . Furthermore, it is
straightforward to show that forall 1 < i,/ < g,

D?i’gl =0. (A9)
Consequently, from (A7)—(A9), we have

Dy?1=2¢"2(B)G(B)S j—i—1=20-v) > (B)(1-vB) 5 ;i (A10)

DI =-¢71(B) 6 (B)G(B)5 ;-1 =—1-v)d H(B) o (BYA-vB) 5y, and  (AlLL)

p4ror=0. (A12)

Egs. (A5), (A6), (A10), (A11), and (A12) show that all of the elements of D ; and d; (j = 1,
2, . ..) are the impulse response coefficients of various AR transfer functions. For example, from
Eq. (All), [)?i"gl is the (j——/)th impulse response coefficient of the (p+g-+1)th-order AR
transfer function —(1—v)$ *(B) & 1(B)(1-vB) ™. Hence, one could simulate the response of

these transfer functions to a single impulse at time O to calculate the elements of ﬁj and Elj,

and then substitute these into Eq. (9) to calculate E[az2 | ¥]. However, this is unnecessary. In the
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remainder of this Appendix, we show that the special structures of D; and d; lead to the

closed-form expression in Eq. (10).

A

To evaluate the term Z?:OgAij in Eg. (9), notice that the impulse response coefficients of
G(B)=(1-v)1-vB)* are ¢ ;= (1-v)v’, and introduce the notation {7}; to denote the ,th
impulse response coefficient of any ARMA transfer function 7(B) = fzo{n}j B/ . Thus, from
Eq. (A10) we have

£708 0] =20-vIEfov! (5726, =2 s 6726

= 2(1_")"”[45_2(\/)@(1/): 2(1—1/)1/”1(1—\/) 2(1—v)vi+l

qu(v)(l—vz) (132(1/)(1+V)l

The third equality follows by noting that for any ARMA transfer function 7(B) = 239:0{77}]. B/,

we define 7(1) = 23.0:0{;7}]. s
Similarly, from Eqg. (A11) we have

A,\i,e i (a4 a4 it] k(a4 2 1A
5208 D0 = -v)srov] oG] = -vW sk (il G)

T T Wl LA ek B

cﬁ(v)@(v)(l— VZ) - cﬁ(v)@(v)(l+ v) '

Inserting these into r{ X%_g g,;D %, }inEq. (9) gives

] . .
2p¥p |~ VoYa
w ane 1ov |l @2(0) 1o(v)eW) || Zo i Zoe
M08 Dy RAENE she | Zo
—— 0
$()6(v) |

(A13)

_20-v) VIZeV, ) ViZeoV,
1+v | &2(y) o(v)O(v)

where 0 denotes a gxg matrix of zeros.
All that remains in deriving Eq. (10) is to simplify the expression tr{Zj’:o& 4z, 3. For

this, we use the following asymptotic expression for Z, (recall that =, = 2?) from Box ez al.™’;
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2
_ 04 1
Y~ Z:w
N

(Al14)

where X, is the steady-state covariance matrix of the random vector w,, defined as w, = [u, u,_q

CUpprl Vi Vel e vt_q+1]T , Where the random processes u, and v, are defined as u, =

é_l(B)at and v, = —é_l(B)at

Define y, = (1—v)(1—vB)_1Wt = (1- V)Zfzovkw,_k, and note that the elements of y, are

time-delayed versions of (1—v)1—1vB) 1d1(B)a,and —(1-v)1-vB) 10 1(B)a, . Because Egs.

(A5) and (A6) imply that a??f and a?fl are the delayed impulse responses of the filters

(1-v)Y1-vB)1d7Y(B) and — (1—v \1—vB) 2@ 7L(B), it follows that

o 2%y sar_ 1
Zy— o, djdj d d = —Zzy.
0 J a

I ™M8

o0
rx
J =0

But fromy, = (1-v) X7°_ kaw, & » We also have

3= Elyy 1= -2 3 Svivk Biw_w! 1
j= Ok 0

Combining this with (A14) and (A15) gives

2
A 1 O -1
X7 0d,4j Ty } = {5570 2

a

2
1-v X 2 -
= i-v) vy Svivk E[w,_jth_k]Zwl}
N j=0k=0

_ (@-vy -1
= E 2w
N f’”{]ZOkZ(;/ vk [WzW k- ‘] }

To evaluate this, we write w; as
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h p 10 0 0
1 0 i 0 0
0 1 0 R 0
A

where A = _O___-;-___O___;___O__i_9___;-_-___0___--_-___9_ ,andb = 2
0 0 - -+ 016 6y - - ; -1
0 0 10 0 0

0 i 1 0

: R . .0 :
0 - 0 - 0 i 0 - 0 1 0] | 0

Then for any j and &, we have w, = A|k—j|wt_|k_j| plus a function of {a;, a; 4, ..., a,_|k|+1}

that is independent of w,_| ;_;|. Consequently,

Eww 1= BT g w 1= Alls, (AL7)

T
t—|k— t—|k—

Combining (A16) and (A17) gives

_ 2 © oo | .
(1 V) tr{ 3 zvjvk A|k—j|}
N j=0k=0

{27 d a7, }=

)2

-

{2 Y Sv/vF Al yye )
j=0k=j j=0

=

[

2 o0 . o0 0 .
) g S >(A)Y }-(p+g) v ]
N j=0 =0 j=0

_ ([@-v) ATl
Y Rt {[1-vA] "} - (p+9)] (A18)

~—

where I denotes the (p+¢)x(p+q) identity matrix.
Because of the trace operation, we only need the diagonal elements of the matrix [I-vA] 1 in

(A18), which we derive as follows. Partition

|
A= iA_qE_I__Q_ 1
0 1Ap
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and define M = [I—VAQ;]‘l, which is the upper-left block of [I-vA] L. Let e;=[00...010

...0]7 denote a column vector of zeros with a one as its ith element. From the structure of A g,

we have
rP .
ﬁA¢=Zﬂﬁf, (AL9)
J:
el Ap=el 4, for 2< i<p, (A20)
and
e;le; = (A21)
SR (B A

where I denotes the pxp identity matrix.
Denote by M;; the ith diagonal element of M. Using (A19)—-(A21) and repeatedly substituting
M =1+ vAzM gives
_ a7 T _ T _ T
Mii - ei M el' = el' [I + VA¢M]el =1+ Vei_lM el' =1+ Vei_l[l + VA@M]el
_q. 2T il T
=1+v7e; oMe; =---=1+v!| 3 g;e; Me;, (A22)
j=1
which holds for 1 <i < p. In a similar manner, repeatedly substituting M =1 + vA ;M gives, for j
<1,

elMe; —el[lrvagMe; =1l Me; =16l j[T1AGM]e;

{ p . ..
— V2e§_2M e, = :Vf(kzlme,f}Me,- = v/~ (M- 1),

and forj = i,
efMe; —el[lragMe; =1l Me; =16l j[T1AZM]e;
Substituting these into (A22) gives

=1, . P ..
M;;=1+v! Zl¢j‘/] (Mi=1)+v' X gpv/ ™ My
Jj= j=i

. P .. -1 . ..
= 1+Vl z ¢jVj_l Mil'—Vl z ¢jVj_l
j=1 ji
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14
=1+ 3

S i-1 . .
¢iv! Mii— X ¢/
Jj=1 J=

1

Thus, the ith diagonal element of [I-vA ;] 1 is

i-1. . i-1. .
1-Y ¢v/ 1- 3 gv/
M;; = /= -2
2N .
1- % v/ )
j=1

where it is understood that the summation in the numerator is zero for i = 1.

Notice that the submatrix A g is of identical structure to A 4, except that the AR coefficients
are replaced by the MA coefficients. In light of this, a straightforward repetition of the preceding
derivation gives

i-1 . .

1- 3 ﬁjvf

j=1

A

o(v)
as the ith diagonal element of [I-vA g] 1, i =1, 2, . . ., ¢. Using these diagonal values gives
2ir{[1I-vA] 1} - (p*q)

_ 2%l+ <l—¢31v)+ (1—¢3lv —¢32v2)+---+ (1—&11/ —¢?2v2 —---—&p_lvp_l)}
) a(v)

-p

. 2{l+(1—élv)+ (1—élv—égv2)+~'-+(1—él‘/—éz‘/2 T Aq—l‘/q_l)} s
o)

=ptyq

L An 23 rd, | 240,200,300,

o(v) o(v)

Substituting this into Eq. (A18) gives

w0 [ Aathsi i, a2 i
@(V) @(V)
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Finally, substituting this and Eqg. (A13) into Eq. (9) gives Eqg. (10).

TABLES

A . Proposed A A&L, a=0.2

9 o N CL RI CL RI CL RI

50 0.5517 31.8% 0.4827 15.3% 0.5252 30.2%

100 0.4898 17.0% 0.4519 7.9% 0.5114 22.1%

09 1 06 ™00 | 04556 | 88% | 04356 | 4.0% | 04861 | 16.1%

500 0.4339 3.6% 0.4256 1.6% 0.4625 10.4%

50 0.5413 29.3% 0.4775 14.0% 0.5443 30.0%

100 0.4839 15.6% 0.4491 7.2% 0.5107 22.0%

0.9 0.4 | 200 0.4525 8.1% 0.4342 3.7% 0.4856 16.0%

500 0.4326 3.3% 0.4250 1.5% 0.4621 10.4%

50 0.5455 30.3% 0.4624 10.4% 0.5335 27.4%

100 0.4863 16.1% 0.4411 5.3% 0.5026 20.0%

0.8 0.6 | 200 0.4538 8.4% 0.4301 2.7% 0.4796 14.5%

500 0.4331 3.4% 0.4233 1.1% 0.4582 9.4%

50 0.5182 23.8% 0.4570 9.1% 0.5301 26.6%

100 04711 12.5% 0.4383 4.7% 0.5001 19.4%

08 | 04 500 | 04457 | 64% | 04286 | 2.4% | 04777 | 14.1%

500 0.4297 2.6% 0.4227 1.0% 0.4569 9.1%

Table 1 Comparison of the extent to which the three methods widen the control limits for A =
0.05 (L = 2.615). RI denotes the percentage increase in the control limits, relative to the standard

limits +L 6, (1-v)Y2(1+1)~1/2 = +0.4187 that result if parameter uncertainty is neglected.
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- A Proposed A A&L, a=0.2
h ! N CL RI CL RI CL RI
50 0.7715 19.5% 0.7239 12.1% 0.7378 14.3%
0.9 0.6 100 0.7113 10.2% 0.6859 6.2% 0.7121 10.3%
' ' 200 0.6792 5.2% 0.6660 3.2% 0.6932 7.4%
500 0.6592 2.1% 0.6538 1.3% 0.6761 4.7%
50 0.7648 18.5% 0.7169 11.0% 0.7378 14.3%
100 0.7077 9.6% 0.6821 5.7% 0.7121 10.3%
0.9 0.4 | 200 0.6774 4.9% 0.6641 2.9% 0.6932 7.4%
500 0.6585 2.0% 0.6531 1.2% 0.6761 4.7%
50 0.7753 20.1% 0.7042 9.1% 0.7355 13.9%
100 0.7134 10.5% 0.6755 4.6% 0.7103 10.0%
0.8 0.6 | 200 0.6803 5.4% 0.6607 2.3% 0.6920 7.2%
500 0.6597 2.2% 0.6517 0.9% 0.6753 4.6%
50 0.7537 16.7% 0.6969 8.0% 0.7344 13.8%
0.8 04 100 0.7017 8.7% 0.6717 4.0% 0.7095 9.9%
' ' 200 0.6742 4.4% 0.6588 2.0% 0.6914 7.1%
500 0.6572 1.8% 0.6509 0.8% 0.6749 4.5%

Table 2 Comparison of the extent to which the three methods widen the control limits for 4 =
0.10 (L = 2.814). RI denotes the percentage increase in the control limits, relative to the standard

limits +L 6, (1-v)12(1+1)~1/2 = +0.6456 that result if parameter uncertainty is neglected.

- A Proposed A A&L, a=0.2
9 o N CL RI CL RI CL RI
50 1.0889 10.3% 1.0724 8.6% 1.0797 9.4%
09 | 06 100 1.0394 5.3% 1.0308 4.4% 1.0535 6.7%
' ' 200 1.0137 2.7% 1.0093 2..2% 1.0346 4.8%
500 0.9980 1.1% 0.9962 0.9% 1.0175 3.1%
50 1.0853 9.9% 1.0642 7.8% 1.0786 9.2%
100 1.0375 5.1% 1.0265 4.0% 1.0527 6.6%
09 | 04 | 200 1.0127 2.6% 1.0071 2.0% 1.0340 4.7%
500 0.9976 1.0% 0.9953 0.8% 1.0171 3.0%
50 1.0902 10.4% 1.0579 7.1% 1.0806 9.4%
100 1.0400 5.3% 1.0232 3.6% 1.0541 6.8%
08 | 0.6 | 200 1.0140 2.7% 1.0054 1.8% 1.0350 4.8%
500 0.9981 1.1% 0.9946 0.7% 1.0177 3.1%
50 1.0820 9.6% 1.0495 6.3% 1.0806 9.4%
08 | 04 100 1.0358 4.9% 1.0189 3.2% 1.0541 6.8%
' ' 200 1.0118 2.5% 1.0032 1.6% 1.0350 4.8%
500 0.9972 1.0% 0.9937 0.6% 1.0177 3.1%

Table 3 Comparison of the extent to which the three methods widen the control limits for 4 =
0.20 (L = 2.962). RI denotes the percentage increase in the control limits, relative to the standard

limits +L 6, (1-v)12(1+1)~1/2 = +0.9873 that result if parameter uncertainty is neglected.
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mean shift magnitude (in units of o)

chart control limits 0 1 2 3 4 5
EWMA (1=0.1) 0.202 (Standard) 500 | 101 | 23.8 | 8.11 | 3.54 | 2.22
EWMA (1=0.1) 0.212 (Proposed) 729 | 129 | 27.7 | 9.24 | 4.00 | 2.39
EWMA (1=0.1) 0.208 (A method) 612 | 115 | 25,5 | 858 | 3.79 | 2.30
EWMA (1=0.1) | 0.237 (A&L method) | 2020 | 247 | 43.3 | 13.3 | 5.29 | 2.89
Shewhart 0.967 (Standard) 500 | 366 | 168 | 49.1 | 7.83 | 1.38

Table 4 ARL values for various size mean shifts for the ARMA(1,1) example when the ARMA
parameters coincide with their estimates.

” - A&L, o=0.1 A&L, 0=0.2 A&L, o=0.3

h i N CL RI CL RI CL RI

50 0.6008 43.5% 0.5252 30.2% 0.5013 19.7%

100 0.5537 32.2% 0.5114 22.1% 0.4786 14.3%

09 1 08 ™00 | 05178 | 23.7% | 0.4861 | 161% | 0.4619 | 10.3%

500 0.4838 15.5% 0.4625 10.4% 0.4465 6.6%

50 0.5995 43.2% 0.5443 30.0% 0.5007 19.6%

100 0.5527 32.0% 0.5107 22.0% 0.4781 14.2%

0.9 04 | 200 0.5171 23.5% 0.4856 16.0% 0.4615 10.2%

500 0.4833 15.4% 0.4621 10.4% 0.4463 6.6%

50 0.5846 39.6% 0.5335 27.4% 0.4934 17.8%

100 0.5413 29.3% 0.5026 20.0% 0.4728 12.9%

0.8 0.6 | 200 0.5085 21.4% 0.4796 14.5% 0.4576 9.3%

500 0.4775 14.0% 0.4582 9.4% 0.4437 6.0%

50 0.5799 38.5% 0.5301 26.6% 0.4911 17.3%

100 0.5377 28.4% 0.5001 19.4% 0.4711 12.5%

08 | 04 17300 | 05058 | 20.8% | 0.4777 | 141% | 04564 | 9.0%

500 0.4756 13.6% 0.4569 9.1% 0.4429 5.8%

Table 5. The effect of choice of « on the control limits of the A&L method for A = 0.05.
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Figure 1. Simulated ARMA(1,1) chemical process example demonstrating false alarm
occurrences when there are no parameter errors for an EWMA chart with four different sets of
control limits: £0.202 (standard), £0.208 (Apley*®), +0.212 (proposed), and +0.227 (Apley and
Lee®’, with @=0.2).
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Figure 2. Simulated ARMA(1,1) chemical process example demonstrating false alarm
occurrences when there are parameter errors for an EWMA chart with four different sets of
control limits: +0.202 (standard), £0.208 (Apley”®), +0.212 (proposed), and +0.227 (Apley and
Lee”’, with ¢=0.2).
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