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a b s t r a c t

Our objective in this work is to provide a better understanding of the various model updating strategies
that utilize mathematical means to update a computer model based on both physical and computer
observations. We examine different model updating formulations, e.g. calibration and bias-correction,
as well as different solution methods. Traditional approaches to calibration treat certain computer model
parameters as fixed over the physical experiment, but unknown, and the objective is to infer values for
the so-called calibration parameters that provide a better match between the physical and computer
data. In many practical applications, however, certain computer model parameters vary from trial to trial
over the physical experiment, in which case there is no single calibrated value for a parameter. We pay
particular attention to this situation and develop a maximum likelihood estimation (MLE) approach for
estimating the distributional properties of the randomly varying parameters which, in a sense, calibrates
them to provide the best agreement between physical and computer observations. Furthermore, we
employ the newly developed u-pooling method (by Ferson et al.) as a validation metric to assess the accu-
racy of an updated model over a region of interest. Using the benchmark thermal challenge problem as an
example, we study several possible model updating formulations using the proposed methodology. The
effectiveness of the various formulations is examined. The benefits and limitations of using the MLE
method versus a Bayesian approach are presented. Our study also provides insights into the potential
benefits and limitations of using model updating for improving the predictive capability of a model.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Computer models have been widely used in engineering design
and analysis to simulate complex physical phenomena. The accu-
racy or adequacy of a computer model can be assessed by means
of model validation, which refers to the process of determining
the degree to which a computational simulation is an accurate rep-
resentation of the real world from the perspective of the intended
uses of the model [1]. While there exists no unified approach to
model validation, it is increasingly recognized that model valida-
tion is not merely a process of assessing the accuracy of a computer
model, but should also help improve the model based on the vali-
dation results.

Strategies for model improvement roughly fall into two catego-
ries: model refinement and model updating. Model refinement in-
volves changing the physical principles in modeling or using
other means to build a more sophisticated model that better repre-
sents the physics of the problem by, for example, using a non-lin-

ear finite element method to replace a linear method, correcting
and refining boundary conditions, or introducing microscale mod-
eling in addition to macroscale modeling, etc. Model updating, on
the other hand, utilizes mathematical means (e.g. calibrating mod-
el parameters and bias-correction) to match model predictions
with the physical observations. While model refinement is desir-
able for fundamentally improving the predictive capability, the
practical feasibility of refinement is often restricted by available
knowledge and computing resources. In contrast, model updating
is a cheaper means that can be practical and useful if done cor-
rectly. Here, predictive capability refers to the capability of making
accurate predictions in domains (or locations) where no physical
data are available.

While various model updating strategies (formulations and
solution methods) exist, there is a lack of understanding of the
effectiveness and efficiency of these methods. It is our interest in
this work to examine various model updating strategies to achieve
a better understanding of their merits. We are particularly
interested in the role that model updating plays versus model
validation and prediction. A detailed review is provided in Section
3. In summary, conventional calibration approaches [2] assume
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calibration parameters are fixed and estimated, typically using
least squares to match the model with the physical observations.
This type of approach for model updating is inconsistent with
the primary concerns of model validation and prediction in which
various uncertainties should be accounted for either explicitly or
implicitly. Examples of such uncertainties include experimental er-
ror, lack of data, uncertain model parameters, and model uncer-
tainty (systematic model inadequacy). The more recent Bayesian
style calibration, also named calibration under uncertainty (CUU)
or stochastic calibration, treats calibration parameters as unknown
entities that are fixed over the course of the physical experiment.
Initial lack of knowledge of the parameters is represented by
assigning prior distributions to them, and, given the experimental
data, this lack of knowledge is revised by updating their distribu-
tions (from priors to posteriors) based on the observed data
through Bayesian analysis [3,4]. However, as we discuss in a more
thorough examination in Section 3.2, several limitations of apply-
ing the Bayesian calibration approaches are identified in this work.

One limitation of the aforementioned calibration approaches is
that the calibration parameters are assumed to remain fixed over
the entire course of the physical experiment and beyond. In con-
trast, it is frequently the case that some parameters vary randomly
over the physical experiment, perhaps due to manufacturing vari-
ation, variation in raw materials, variation in environmental or
usage conditions, etc. This violates the assumptions under which
the Bayesian or regression-based calibration analyses are derived.
In this situation, rather than assuming fixed parameters and updat-
ing their posterior distributions to represent our lack of knowledge
of them, it is more reasonable to treat them a randomly varying
and estimate their distributional properties by integrating the
physical data with the model. In essence, the distributional proper-
ties (e.g. the mean and variance of the randomly varying parame-
ters) become the calibration parameters for the model, and the
objective is to identify values for them that provide the best agree-
ment with the observed distributional properties (e.g. the disper-
sion [5]) of the physical experimental data. In this paper, we
present a maximum likelihood estimation (MLE) [6] approach for
accomplishing this. The MLE method is used to estimate a set of
unknown parameters (heretofore called model updating parame-
ters) associated with several modeling updating formulations,
which include the distributional properties of parameters that vary
randomly over the experiment, as well as well as more traditional
fixed calibration parameters and quantities associated with bias-
correction and random experimental error.

The remainder of the paper is organized as follows. In Section 2,
we discuss the role that model updating plays versus model valida-
tion and prediction. In Section 3, we examine the existing model
updating formulations under two categories, namely, model bias-
correction and calibration. The popular Bayesian approach is
described and its limitations are highlighted. In Section 4, we de-
scribe our proposed MLE based model updating approach, together
with the introduction of the u-pooling validation metric. In Section
5, a benchmark thermal challenge problem adopted by the Sandia
Validation workshop [7,8] is used as an example to illustrate the
proposed approach, draw important conclusions, and portray these

conclusions in relation to conclusions from prior studies. Section 6
is the closure with a summary of the features of the proposed
method, the relative merits of different approaches, the insights
gained, and future research directions.

2. Role of model updating vs. model validation

In this work, model updating is viewed as a process that contin-
uously improves a computer model through mathematical means
based on the results from newly added physical experiments, until
the updated model satisfies the validation requirement or the re-
source is exhausted. Therefore, even though model updating is
interrelated with model validation, it is viewed as a separate activ-
ity that occurs before ‘‘validation”. As shown in Fig. 1, the model
updating procedure integrates the computer simulation model ym

with the physical experiment data ye to yield an updated model
ym0 ð�Þ. This updated model is then subject to a validation procedure
that utilizes additional physical experiments ye in the intended re-
gion of interest for validation. As noted from this diagram, unlike
many contemporary model validation works, model validation in
this work is used to evaluate an evolved, updated model ym0 ð�Þ,
rather than the original computer model ym(�). Besides, the up-
dated model ym0 ð�Þ is the one used for making future prediction
ypred(�) with the consideration of various sources of uncertainties.
For implementing model updating and validation in a computa-
tionally efficient manner, it is indicated in Fig. 1 that a metamodel
(surrounded by a dashed box) may be used to substitute the origi-
nal computer model if it is expensive to compute.

As more details are provided in the remaining sections,model
updating utilizes mathematical means (e.g. calibrating model
parameters, bias-correction) to match model predictions with the
physical observations. Model updating provides not only the for-
mulation of an updated model, but also the characterization of
model updating parameters H, together with the associated
assumptions. As noted, the model updating procedure, during
which ym(�) is treated as a black-box, is largely driven by the ob-

Nomenclature

x = {x1,x2, . . . ,xn} n controllable input variables
h = {h1,h2, . . . ,hm} m uncontrollable input variables
ye(x) physical experiments
ym(x) or ym(x,h) computer model
d(x) bias function
e experimental error

ym0 ðx;HÞ updated model
ypred(x) predictive model
H model updating parameters
L(H) likelihood function
Fxe

i
ðye

i Þ cumulative distribution function (CDF) at ye
i
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Fig. 1. Relationship of model updating, model refinement, and model validation.
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served experimental data. It is our interest in this work to examine
whether such a data-driven approach can improve the predictive
capability of a computer model. As argued by Ferson et al. [9],
the extrapolation capability in using a model to make prediction
should be carefully validated.

3. Examination of existing model updating methods

The existing model updating strategies differ in their formula-
tions, the solution method used, and the physical interpretations.
In the following overview, we first review two categories of formu-
lations, namely, bias-correction and calibration. We then discuss
the limitations of using the Bayesian approach as the solution
method. The physical interpretations are provided throughout
the review and will be further expanded in Section 4.

3.1. Model bias-correction approaches

Bias-correction is useful when accuracy improvement cannot be
accomplished by calibrating model parameters [10,11]. One widely
accepted interpretation of the bias-correction approach [3] is that
it captures the potential model error due to the use of incorrect
modeling method (e.g. modeling a non-linear behavior with a lin-
ear model), which often cannot be compensated by other means.
There are various formulations of bias-correction in the literature.
In the Bayesian bias-correction model proposed by Chen et al. [12]
and Wang et al. [13], a plain additive bias-correction model is for-
mulated as

yeðxÞ ¼ ymðxÞ þ dðxÞ þ e; ð1Þ

where the bias function d(x) is a direct measure of the difference be-
tween the computer model ym(x) and the physical process ye(x). The
bias function d(x) is assumed to be a Gaussian Process model, the
uncertainty of which reflects the uncertainty involved in a model
updating process such as the experimental error, lack of data, etc.
One advantage of using the above formulation is that the closed
form Bayesian posterior of the Gaussian process model d(x) can
be derived. In addition, the bias function d(x) provides a direct mea-
sure of the assessed accuracy (or validity) of a computer model
within a particular design region or at an application site [13].

In addition to using the additive bias shown in Eq. (1), a bias-
correction approach may employ a combination of multiplicative
bias and additive bias, as shown in the following formulation [14],

yeðxÞ ¼ qðxÞymðxÞ þ dðxÞ þ e; ð2Þ

where q(x) is modeled as a simple linear regression model w.r.t. x, e
is assumed to be a zero-mean Gaussian random variable. The scal-
ing function q(x) in Eq. (2) brings more flexibility to the constant
adjustment parameter q used in Kennedy and O’Hagan [3]. The
Maximum Likelihood Estimation (MLE) method is utilized in their
work [14] to estimate the regression coefficients of q(x), while
the closed forms Bayesian posteriors of the hyperparameters in
the Gaussian Process d(x) are derived for given prior distributions.

One inherent limitation of the bias-correction method is that it
assumes all inputs (x) of both the computer model (ym(x)) and the
physical process (ye(x)) are observable and controllable. In practice,
it often occurs that some of the model input parameters cannot be
directly observed and measured in the physical experiments. This
limitation can be addressed using the model calibration approach
introduced next.

3.2. Model calibration approaches

With a typical model calibration approach, the inputs of a com-
puter model are divided into controllable inputs (x) and uncontrol-

lable parameters (h) that are assumed to be fixed over the
experiment. Note that it is h that are to be calibrated. A computer
model for the given input vector (x,h) is denoted as ym(x,h), while
the physical process is denoted to be ye(x) as a function of control-
lable inputs x only.

3.2.1. Deterministic calibration approach
A conventional way to carry out a deterministic parameter cal-

ibration is to formulate the problem in a fashion similar to that of
the non-linear regression analysis [5,15,16] through the following
equation

yeðxÞ ¼ ymðx; hÞ þ e; ð3Þ

where e is the residual between the prediction from the calibrated
computer model ym(x,h) and the experimental observation ye(x).
The optimal values of the calibration parameters h are found by
minimizing the (weighted) sum of the squared error (SSE) between
the model predictions and the physical experiments [17], i.e.,

Find h Minimizing SSE ¼
XN

i¼1

wie2
i ¼

XN

i¼1

wi½ymðxi; hÞ � yeðxiÞ�2;

ð4Þ
where xi = [xi1,xi2, . . . ,xik]T (i = 1,2, . . . ,N) are sample points, wi

(i = 1,2, . . . ,N) are the weights for different experimental observa-
tions reflecting the quality of experimental data, h = [h1,h2, . . . ,hm]T

are unknown physical constants, and k is the number of input vari-
ables. Although deterministic calibration approaches are generally
plausible and easy to apply, the limitation is that they cannot ac-
count for uncertainties in both computer simulation and physical
experimentation.

3.2.2. Non-deterministic Bayesian calibration approach
Non-deterministic parameter calibration is also called calibra-

tion under uncertainty (CUU) [16]. Kennedy and O’Hagan [3] first
developed a Bayesian approach to simultaneously calibrate a com-
puter model and characterize the potential bias (discrepancy) be-
tween the model output and the physical experiments. Their
method is based on the following relation,

yeðxÞ ¼ q � ymðx; hÞ þ dðxÞ þ e; ð5Þ

where q is an unknown regression parameter (an adjustment
parameter), d(x) is a bias (discrepancy) function assumed to be
the realization of a Gaussian Process, e is the experimental error as-
sumed to be a zero-mean Gaussian random variable. In essence, the
formulation shown in Eq. (5) is a combination of both parameter
calibration and bias-correction. In Kennedy and O’Hagan’s work,
the Bayesian analysis is performed to update the prior distributions
of the calibration parameters hand the hyperparameters underlying
two separate Gaussian Process models: one for the bias function
d(x), and the other for replacing the original expensive computer
model ym(x,h). To manage the computational complexity, priors
are often only specified for a very few calibration parameters h

and a small set of Gaussian Process model parameters, while the
rest are assumed unknown but fixed.

Several variants and applications of Kennedy and O’Hagan’s ap-
proach [3] exist in the literature. In the Simulator Assessment and
Validation Engine (SAVE) framework developed by Bayarri et al.
[18], followed by Higdon et al. [19], and Liu et al. [20], a formula-
tion that is similar to the one used by Kennedy and O’Hagan is
shown as follows with the regression parameter q omitted.

yeðxÞ ¼ ymðx; hÞ þ dðxÞ þ e: ð6Þ

McFarland et al. [21] developed a simplified Bayesian calibration
approach in the form of

yeðx�Þ ¼ ymðx�; hÞ þ e: ð7Þ
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Their method does not consider the bias-correction, and poses the
prior belief of the calibration parameters h as uniformly distributed.
Unlike others, their calibration is only performed at one particular
site x*, based on the assumption that the results of calibration are
identical at different input sites. Such an assumption is question-
able if the computer model is so wrong that the calibration at one
single site could be heavily biased and is hard to be extrapolated
to other sites.

3.3. Limitations of Bayesian approaches

While the Bayesian approach is useful when limited data are
available, there are several common issues. First, as indicated in
Trucano et al. [16], the prior distributions of calibration parameters
are often difficult to specify due to the lack of prior knowledge.
Subjectively assigned prior distributions may yield unstable pos-
terior distributions [22], which undermines the advantage of
Bayesian updating. Second, the Markov Chain Monte Carlo (MCMC)
method used in most Bayesian calibration practices for obtaining
the posterior distributions requires a significant amount of itera-
tions, while the criterion for ceasing the Markov Chain growth is
not established [16].

Loeppky et al. [23] examined a non-Bayesian version of the
approach from Kennedy and O’Hagan [3], but using the MLE to
estimate the calibration parameters which are assumed determin-
istic. The issue of identifiability of model bias was addressed by
examining the likelihood ratio of two model versions: one with
the bias term, the other without. It was demonstrated that the
MLE estimates of calibration parameters will asymptotically attain
an unbiased computer model if such a model exists. However, their
method provides deterministic MLE estimates without acknowl-
edging the uncertainty of model input.

4. A Maximum Likelihood Estimation (MLE) based model
updating methodology

We present an alternative model updating approach that differs
from the existing Bayesian approach in both uncertainty treatment
and the computation of model updating parameters. The basic
principle of this approach is to determine the model updating
parameters with the MLE, so that the best agreement between
the distribution of model outputs and the dispersion of the ob-
served physical observations ye can be achieved, while the experi-
ment-to-experiment variation of calibration parameters is
captured by parameter distributions.

4.1. Model updating formulations and parameters

As reviewed in Section 3, various formulations are available for
constructing an updated model based on the original computer
model ym(x,h). In our view, the choice of the updated formulation
(denoted as ym0 ðx;HÞ) and the model updating parameters H are
problem dependent and will require insight into the error sources.
In Section 5, we will investigate three possible model updating for-
mulations for the specific thermal challenge problem. One typical
formulation that combines both bias-correction and parameter cal-
ibration is illustrated here in Eq (8):

ym0 ðx;HÞ ¼ ymðx; hÞ þ dðxÞ þ e: ð8Þ

In Eq. (8), x = {x1,x2, . . . ,xn} are n controllable input variables, which
are always deterministic. h = {h1,h2, . . . ,hm} are m uncontrollable in-
put variables, assumed random to capture the uncertainty associ-
ated with model input. The uncertainties of h are parameterized
by distribution parameters {lh1,rh1, . . . ,lhm,rhm}, independent from
model input x. e is an unobservable output variable, also assumed

random, to capture the experimental uncertainty associated with
a model output. Similar to h, the distribution of e is parameterized
by {le,re}. The bias function d(x) is used to capture the model sys-
tematic bias, but not intended to account for the experimental
uncertainty. d(x)could be parameterized in various ways, for exam-
ple, with a regression model d(x) = bd0 + bd1 x1 + � � � + bdnxn parame-
terized by {bd0,bd1, . . . ,bdn}. Here the bias function d(x) is treated to
be a deterministic function that does not contribute to the model
output uncertainty. Other possible choices could be using a con-
stantd, which is less flexible, or a Gaussian Process (GP) model,
which is more complex. Collectively, the model updating parame-
ters for the above formulation are denoted as H = {lh1,rh1, . . . ,lhm,
rhm;bd0,bd1, . . . ,bdn; le,re}. Notice that in contrast to traditional cal-
ibration approaches, our model updating parameters H do not di-
rectly include the parameters h, because they are not assumed to
be fixed. Rather, H includes the means and variances of the param-
eters h. Fig. 2 shows the collection of model updating parameters in
a formulation with two calibration parameters and two model in-
puts, i.e., x = {x1,x2} and h = {h1,h2}. Note that in the right hand side
of Eq. (8), only h and e are random quantities, as illustrated by the
shaded vertical PDF profiles in Fig. 2. Also note that we assume h

and e follow normal distributions, thus only two parameters are
needed to determine the distribution of each calibration parameter.
With the statistical moments defined for the calibration parame-
ters, the various sources of uncertainties in a model updating pro-
cess can be propagated to form the uncertainty of the updated
model ym0 ðx;HÞ, as illustrated by the shaded horizontal PDF profile
in Fig. 2.

4.2. Determining model updating parameters via MLE

To determine the values of all model updating parameters H,
the MLE method is adopted towards matching the output distribu-
tion of the updated model ym0 ðx;HÞwith the dispersion observed in
physical experiments ye(x).

To construct a likelihood function, the following equation relat-
ing data ye(x) with the probabilistic output from ym0 ðx;HÞ is
established,

yeðxÞ ¼ ym0 ðx;HÞ; ð9Þ

based on the assumption that the experimental data ye(x) can be
hypothetically regenerated through the updated model ym0 ðx;HÞ.
Therefore, the likelihood L(Hjye) as a function of H conditioned
on all observations ye is equal to the joint PDF of a Ne dimensional
multivariate distribution of ym0 ðx;HÞ evaluated at ye. In this work,
we assume the Ne observations are independent, then the likelihood
function is the multiplication of Ne separate PDFs, i.e.,

LðHÞ ¼ LðHjyeÞ ¼ pðyejHÞ ¼
YNe

i¼1

pðye
i jHÞ; ð10Þ

where H are all model updating parameters to be estimated,
pðye

i jHÞ is the value of PDF yielded from ym0 ðx;HÞ at ðxe
i ; y

e
i Þ. Fig. 3

depicts the plots of output distributions (the PDFs of which are rep-
resented by shaded PDF profiles) of two ym0 ðx;HÞ models. With the

Fig. 2. Model updating parameters H in formulation ym0 ðx;HÞ.
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same experimental data (empty circles), the model of the left side
figure, which corresponds to a larger likelihood function value,
shows a better match between the two distributions.

To alleviate the computational burden, we approximate the
output distribution of ym0 ðx;HÞ with a Gaussian distribution. As
the result, the PDF pðye

i jHÞ in Eq. (10) for experiment ye
i can be ex-

pressed through the Gaussian distribution,

ye
i jH � NðEHfym0 ðxi;HÞg;VarHfym0 ðxi;HÞgÞ: ð11Þ

To efficiently compute the mean EHfym0 ðxi;HÞg and the variance
VarHfym0 ðxi;HÞ in the above equation, the numerical integration ap-
proach based on the tensor-product quadrature rule [24,25] is
adopted in this work.

4.3. Comparison of the MLE based model updating with traditional
Bayesian approach

With a traditional Bayesian calibration approach [18], for the
model updating formulation shown in Eq. (6), the likelihood func-
tion L(rm,rm,lm;rd,rd;re;hjyem) can be obtained from the PDF of a
multivariate Gaussian distribution as follows [23]

yemjrm; rm;lm; rd; rd;re; h � Nðyem � lm1;RemÞ; ð12Þ

with covariance matrix Rem expressed by

Rem ¼ r2
mRm þ

0 0
0 r2

d Rd þ r2
e I

� �
; ð13Þ

where yem denotes the joint data (ye,ym) of computer and physical
experiments, rm,rm,lm are the parameters of the GP model that re-
places the expensive computer model ym(x,h) with Rm being the
correlation matrix; rd,rd are the parameters of the GP model for
d(x) with Rd being the correlation matrix; re is the standard devia-
tion of the experimental error e; and I is the identity matrix of the
same size of Rd. It is noted from Eqs. (12) and (13) that the observed
experimental uncertainty of ye(x) using the Bayesian approach is
essentially attributed to three sources, namely, random variable e,
GP model of d(x), and GP model of ym(x,h).

Based on the above introduction of Bayesian approach, we gen-
eralize several major differences between the Bayesian approach
and the MLE based model updating approach. First, different types
of experimental uncertainty are accounted for in different ap-
proaches. With the MLE based model updating approach, the
experimental uncertainty is explicitly accounted for by both the
random parameters h (for experiment-to-experiment variation)
and the error term e. In Bayesian approach, h is assumed fixed
but unknown due to the lack of knowledge, while only one random
parameter e accounts for the experimental uncertainty, which is
caused by random measurement error.

The second difference is associated with the handling of expen-
sive original computer models. In the traditional Bayesian calibra-
tion approaches, if an original computer model is expensive, a

Gaussian Process model is used to replace it and the GP parameters
are estimated using the Bayesian analysis together with other un-
known model updating parameters. This adds much computational
complexity to the Bayesian approach. With the MLE based model
updating approach, a metamodel is first constructed to replace
the expensive computer model even before the model updating
procedure is initiated. It is then the metamodel, but not the origi-
nal computer model, that is updated and used for prediction.

4.4. Prediction using the updated model

Once an updated model ym0 ðx;HÞ is determined, it is used to
form a predictive model ypred(x) for prediction, i.e.,

ypredðxÞ ¼ ym0 ðx;HÞ: ð14Þ

The prediction uncertainty of ypred(x) is evaluated by propagating
the uncertainties defined by the model updating parameters H
through the updated model ym0 ðx;HÞ, which by itself is determinis-
tic. With our approach, since the original expensive computer mod-
el ym(x,h) is replaced by a metamodel, uncertainty propagation can
be done in a rather efficient manner using a combination of Monte
Carlo simulations and numerical methods, given the mean and
standard deviation of h estimated from MLE. As a result, the predic-
tion incorporates the uncertainties involved in a model updating
and validation process.

5. Comparative studies using the thermal challenge problem

5.1. Problem description

The thermal challenge problem was developed by the Sandia
National Laboratory (http://www.esc.sandia.gov/VCWwebsite/
vcwhome.html) as a testbed for demonstrating various methods
of prediction and validation [7,8]. The same problem is adopted
in this work to demonstrate the features of our model updating ap-
proach. A schematic figure of the thermal challenge problem is
provided in Fig. 4, in which the device is a material layer that is ex-
posed to a constant heat flux. To predict the temperature Tm of a
spot in the device at a specific location and time, an analytical com-
puter model ym(x,h) given in Eq. (15) was used as the original
model.

ymðx; hÞ ¼ Tmðq; L; xl; t;j;qÞ

¼ T0 þ
qL
j
ðj=qÞt

L2 þ 1
3
� xl

L
þ 1

2
xl

L

� �2
�

� 2
p2

X6

n¼1

1
n2 e�n2p2 ðj=qÞt

L2 cos np xl

L

� �#
; ð15Þ

where x = (q,L,xl, t) are controllable input variables, and h = (j,q)
are uncontrollable input parameters for calibration. Among the con-
trollable input variables, xl is the distance from the surface to the
point being measured, q is the applied heat flux, L is the thickness,
T0 is the initial temperature of the device at time zero, and t is time.

x

ey

'my

x

ey

'my

Physical experiment

Distribution of 

ey

'my

Fig. 3. Likelihood value indicates the agreement between the output distribution of
the updated model and the dispersion of physical experiments.

Fig. 4. Schematic of thermal challenge problem.
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Since T0 is fixed at 25 �C for all data and analyses, it is considered as
a static model parameter instead of an input variable. Among the
uncontrollable input parameters, j and q stand for the thermal con-
ductivity and the volumetric heat capacity, respectively; both j and
q are material properties, the values of which may vary from unit to
unit due to the variability in the manufacturing process. The goal of
this challenge problem is to assess if a regulatory requirement is
satisfied for a specified setting of model input, i.e., at an application
site x� ¼ ðq�; L�; x�l ; t�Þ. To satisfy the regulatory requirement, the
probability that the predicted temperature at a particular time
not exceeding a threshold value 900 �C, should be less than the tar-
get probability limit (0.01), that is,

PfTpredðq� ¼ 3500; L� ¼ 0:019; x�l ¼ 0; t� ¼ 1000Þ > 900g < 0:01:

ð16Þ

As described in the original problem statement, the prior knowl-
edge about j, q are given in the form of material property charac-
terization (MPC) data. Note that the measurements of MPC data
are collected under different temperatures T at the material sub-
component level rather than at the device level. Therefore the infor-
mation of MPC cannot be directly used for device level prediction.
The first two moments of the distributions of the above two param-
eters are evaluated based on the MPC data and summarized in Table
1. The linear dependency of j versus temperature T can be easily
observed (Fig. 5). Since temperature T is also an output response
of the device-level model (Eq. (15)), this creates a closed-loop situ-
ation where T is both an input and output of the model.

The full set of physical experiments consist of a subset of
‘ensemble’ (EN) data of 176, and a subset of ‘accreditation’ (AC)
data of 126. The primary difference between the EN data and the
AC data is that the former is gathered at model input sites far from
the application site, while the latter is closer. Both EN and AC data
are collected at several configurations (different settings of x), and
each configuration is a combination of model inputs (q,L,xl), while t
varies at discrete time interval spots (11 spots for EN, 21 spots for
AC) within the range 0–1000. For each configuration, data is col-

lected respectively for 1–4 times. Table 2 lists the values of these
configurations. The EN data and the AC data are selectively used
at three levels of data sufficiency, namely, low, medium, and high.
The sizes of EN data and AC data are considered at three different
levels of sufficiency: 44 + 63 for low level, 88 + 63 for medium le-
vel, and 176 + 126 for high level. In this work, we use EN and AC
data at the high level of sufficiency by default.

5.2. Bayesian approaches to the thermal challenge problem

Several different approaches [20,26–31] have been developed
and presented in the literature on the thermal challenge problem
as a result from the Sandia Validation workshop. We find these
methods differ in how they utilize three different data sources
(MPC, EN and AC data), the model updating formulations (e.g.
including bias or not), and the solution method (e.g. Bayesian or
non-Bayesian). Additionally, some of these works focus on predic-
tion (whether the regulatory requirement will be met), while some
others also study the model validity (accuracy). The readers should
refer to Hills et al. [27] for a complete summary of the existing
approaches.

In terms of the solution method, the Bayesian calibration meth-
odology of Kennedy and O’Hagan [3] was followed by Higdon et al.
[26], Liu et al.[32], McFarland and Mahadevan [28] to calibrate j
andq with the bias function included. In Refs. [32,26], no formal
model validation is considered, while in Ref. [28], model validation
metrics based on the significance test are employed. These works
use different prior specifications of Gaussian Process hyperparam-
eters and assume different prior distributions for calibration
parameters j and q. Refs. [32,26] assign prior distributions for
parameters j and q based on either full or partial MPC data. Ref.
[28] specifies vague priors for j and q without using any MPC data.
By utilizing both the EN and AC data, the predicted failure proba-
bilities are determined to be 0.03 for using all levels of data suffi-
ciency in Ref. [26], and are determined to be 0.02 and 0.04,
respectively for using the medium and high levels of data suffi-
ciency in Ref. [32]. In Ref. [28], the failure probability is computed
as 0.166 using the high level of data sufficiency. All studies indicate
that the thermal device cannot meet the regulatory requirement
(<0.01) as specified in Eq. (16).

5.3. Three model updating formulations for testing the MLE method

In this study, we test the MLE based model updating approach
with three different model updating formulations. The formula-
tions of the updated model ym0 ðx;HÞ and the corresponding model
updating parameters H are listed in Table 3.

In all formulations, we assume that the uncontrollable output
variable e is a zero-mean random variable (le = 0). Formulation
(2) is exactly the one used in Eq. (8) to explain the MLE method
first described in Section 4. While Formulation (1) is the simplest
updating formulation, the bias function d(x) is introduced in both
Formulations (2) and (3), where a first-order polynomial regression
model, governed by parameters bd0,bd1, . . . ,bd4, is used to represent
d(x). To capture the linear dependency of j versus the temperature

Table 1
Statistics of the given material property characterization (MPC) data.

j q

lj rj lq rq

0.0628 0.0099 393900 36252

0 100 200 300 400 500 600 700 800 900 1000
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0.085

Temperature

k

Fig. 5. The dependency of thermal conductivity j to temperature T.

Table 2
Statistics of the given characterization data.

Data set Config # (q,L,xl)

EN Config 1 xl = 0 q = 1000, L = 1.27
Config 2 q = 1000, L = 2.54
Config 3 q = 2000, L = 1.27
Config 4 q = 2000, L = 2.54

AC Config 5.1 xl = 0 q = 3000, L = 1.9
Config 5.2 xl = L/2
Config 5.3 xl = L
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T observed from the MPC data (Fig. 5), in Formulation (2), we as-
sume that h is a function of x, i.e., h = h(x). Given that the temper-
ature field of the thermal device is primarily influenced by the
distance (xl) from the surface to the measured point, we further
simplify the function of h(x), by modeling the mean of j, namely
lj, as linearly dependent on xl (rather than all x) through a linear
model lj = b0 + b1xl.

5.4. Results of model updating parameters for different formulations

Using the MLE method described in Section 4.2, the model
updating parameters for each formulation are obtained based on
the selected data from the given data sets EN and AC. To study
the extrapolation capability of the updated model, three scenarios
are considered. For Scenario 1, only EN data set is included; for Sce-
nario 2, only AC data set is included; For Scenario 3, both EN and
AC data sets are included. In searching for model updating param-
eters H via MLE optimiation, the mean and variance values from
the MPC information in Table 1 are utilized to provide search
bounds. In this example, we use relatively loose bounds by multi-
plying a factor 0.1–10. For example, based on lj = 0.0628 and
rj = 0.0099 in Table 1, the bounds applied in MLE optimiation
are 0.00628–0.628 for lj and 0.00099–0.099 for rj.

For the purpose of demonstration, we provide in Table 4 only
the results of the model updating parameters under Scenario 1
with high level data sufficiency. These results provide statistical
representations of model updating parameters, which will be used
further to characterize the uncertainty of model response in both
prediction and validation.

5.5. Studying the predictive capability of updated models

We use the results from Formulation (2) as an example to dem-
onstrate how the predictive capability of an updated model can be
studied. As a reference, we first show the results from the ‘Original’
model without model updating (Eq. (15)), but with the consider-
ation of uncertainty of model parameters j and q as observed from
the MPC data. Fig. 6 shows the predicted response with uncertainty
yielded by the ‘Original’ model at two selected configuration sites:

Config 1 and Config 5.1 (defined in Table 2). Uncertainty of the pre-
diction is represented by the 95% prediction intervals (PIs). Also
plotted in the figures are the validation data collected (EN data
for Config 1 at left; AC data for Config 5.1 at right). It is observed
that for this particular problem, even without model updating,
uncertainty predictions based on the MPC data encompass the
physical observations quite well. However, the magnitude of the
prediction uncertainty at Config 5.1 (the accreditation site) appears
to be much larger than the true dispersion observed from data.

Figs. 7 and 8 show the predictions using the updated model
based on Formulation (2) under data Scenario 1 and Scenario 2,
respectively. Similar to Fig. 6, we only show data at Config 1 and
Config 5.1. In Fig. 7, the EN data is used for model updating while
the EN data (‘in-sample’ test) and the AC data (‘out-sample’ test)
are used separately to validate the updated model (Scenario 1).
In Fig. 7, the AC data is used for model updating while EN (‘out-
sample’ test) and AC (‘in-sample’ test) are used separately as vali-
dation data (Scenario 2).

In comparing the left plot in Fig. 7 with the left plot in Fig. 6, and
then the right plot in Fig. 8 with the right plot in Fig. 6, we observe
that after using the MLE method for model updating, the predic-
tions with uncertainty quantification match much better with
what observed in the physical data, i.e., the uncertainty bandwidth
is significantly reduced to match with the dispersion of physical
data. Such an improvement is accredited to using MLE as the opti-
mization criterion for determining the model updating parameters.
The right plot in Fig. 7 and the left plot in Fig. 8 (both for out-sam-
ple tests) show the predictive capability of the updated models. It
is found that the predictions in the out-sample tests are not as
good as those in the in-sample tests, and somewhat worse than
those made by the ‘Original’ model (Fig. 6).

5.6. Model validation metrics

As shown in the proposed model updating framework (Fig. 1), a
model validation metric is needed to assess the validity of either
the original model ym(�) or the updated model ym0 ð�Þ. The metric
is also useful for comparing the effectiveness of multiple model
updating formulations. Although various validation metrics are
widely studied in the literature[13,33,34], most of them are limited
to comparing the mean prediction of a computer model and the
mean performance from the physical observations [9]. This differs
from the principle of model updating in this work, i.e., to match the
dispersion of physical experiments with the distributions of com-
puter model output.

In this paper, we adopt the u-pooling method recently devel-
oped by Ferson et al. [9] for model validation. A nice feature of
the u-pooling method is that it allows to integrate or pool all avail-
able physical experiments over a validation domain at different in-
put settings x into a single aggregate metric. First, a value ui is
obtained for each experiment by calculating the CDF at ye

i , i.e.,
ui ¼ Fxe

i
ðye

i Þði ¼ 1; . . . ;NeÞ, where ye
i represents a physical observa-

tion at the experimental site xe
i ði ¼ 1; . . . ;NeÞ. Fxe

i
ðyÞ represents

the corresponding CDF in our case generated by the updated model
ym0 ðx;HÞ at xe

i . The distribution of ui could be characterized after
pooling all values of ui for all physical experiments. According to
Ferson et al., if each physical observation ye

i hypothetically comes
from the same ‘mother’ distribution Fxe

i
ðyÞ, all ui’s are expected to

constitute a standard uniform distribution on [0,1]. An illustration
of the u-pooling method with three (Ne = 3) experimental sites is
given in Fig. 9. By comparing the empirical distribution of ui to that
of the standard uniform distribution, the area difference (depicted
as the shaded region in Fig. 9) can be used to quantify the mis-
match between the dispersion of physical experiments and the dis-
tributions of model output. The larger the difference, the less
agreement, and therefore the less accuracy of a model.

Table 3
Model updating formulations and model updating parameters.

Model form.
#

ym0 ðx;HÞ Model updating parameters H

For h (i.e.,j and
q)

For e For d(x)

(1) ym(x,h) + e lj, rj,lq,rq le(=0),
re

(2) ym(x,h) + d(x) + e lj, rj, lq, rq le(=0),
re

bd0,
bd1, . . . ,bd4

(3) ym(x,h(x)) + d(x) + e bj0,bj1, rj, lq,
rq

le(=0),
re

bd0,bd1, . . . ,bd4

Table 4
Estimated model updating parameters (Scenario 1).

Model
#

j q e d(x)

lj rj lq rq re bd0,bd1, . . . ,bd4

(1) 0.0579 0.00099 387,026 12,266 9.8001 N/A
(2) 0.0493 0.00099 399,822 22,210 5.2399 14.751, 118.593,

�0.010,
�663.605, 0

bj0 bj1

(3) 0.0508 0.025850 0.00110 391,171 20,549 5.4833 14.293, 176.377,
�0.010,
�606.117, 0
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In addition to the u-pooling metric, we also employ the Rooted
Mean Square Error (RMSE), a traditional accuracy metric, to assess
the goodness-of-fit in terms of the mean prediction. In calculating

the RMSE, the residual error ei is the difference between ye
i and the

mean of the updated model ym0 ðx;HÞ at xe
i , i.e., ei ¼ ye

i�
EHym0 ðxe

i ;HÞ.
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Fig. 6. Prediction through the ‘Original’ model at Config 1 and Config 5.1.
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Fig. 7. Prediction through Formulation (2) (Scenario 1).
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Fig. 8. Prediction through Formulation (2) (Scenario 2).
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5.7. Comparing model updating formulations based on validation
metrics

For comparing the validity (accuracy) and the predictive capa-
bility of the three different model updating formulations, we pro-
vide in Tables 5–7 the model validation results under different
scenarios, all with the high data sufficiency level. Both the ‘u-pool-
ing’ and the RMSE metrics are considered in comparison; smaller
values are desired for both metrics. Under Scenario 1 (Table 5)
and Scenario 2 (Table 6), one set of data (either EN or AC) is used
for model updating, called in-sample test; while the other set is
used for verifying the predictive capability, called out-sample test.
Under Scenario 3 (Table 7), since both EN and AC data are used in
model updating, validation is performed over the joint data set,
which is essentially an ‘in-sample’ test. For comparison, the met-
rics are also evaluated for the original model, with the uncertainty
of parameters j and q characterized directly from the material
property characterization (MPC) data without updating the model

itself. The results are summarized in the row marked with
‘Original’.

In Tables 5 and 6, the best and the second best ‘u-pooling’ or
RMSE values in any single column across different model formula-
tions are marked out with ‘**’ and ‘*’ respectively. In Table 5, when
the EN data is used for model updating, Formulation (2) is found to
be the best in the in-sample test in terms of both ‘u-pooling’ and
RMSE values. In the out-sample test, Formulation (2) ranks the sec-
ond best under ‘u-pooling’ and the best under RMSE. This indicates
that when the EN data is used for model updating, Formulation (2),
which uses constant calibration parameter h and bias function d(x),
can best adapt to the data with acceptable extrapolation capability.
In Table 6, when the AC data is used for model updating, Formula-
tion (2) again wins over others in the in-sample test. However, in
the out-sample test, no model updating formulation is superior
to the ‘Original’ model, which indicates that, although an updated
model favors the data it used, the extrapolation should be treated
with caution. In Table 7, where EN data and AC data are both incor-
porated in model updating, Formulation (2) is the best over other
formulations and the ‘Original’ model. Overall, Formulation (2)
achieves the best performance over other formulations and the
‘Original’ model. One common observation in Tables 5–7 is that
all three model updating formulations are better than the ‘Original’
in all in-sample test columns. It is interesting to note that Formu-
lations (3), in which one calibration parameter is considered as a
function of one model input, do not bring a significant benefit as
we expect based on the physical principle.

5.8. Comparison of the predicted failure probability in regulatory test

Based on the study in Section 5.7 and the fact that the applica-
tion site x* is close to the domain of AC data, it is determined that
both the EN and AC data sets should be used for updating the mod-
el (i.e., Scenario 3) which will be further used to make the final pre-
diction at x* in the regulatory test. All data in EN and AC (i.e., high
level data sufficiency) is considered. Model prediction introduced
in Section 4.4 is used for evaluating the regulatory requirement
stated in Eq. (16). To assess the failure probability, 1000 Monte
Carlo simulations are used for propagating the parameter uncer-
tainty determined by the model updating parameters which are
identified by the MLE approach. Table 8 shows the estimated fail-
ure probabilities using different model updating formulations
including the ‘Original’ model. The specified threshold value
(0.01) is exceeded in all cases.

It is found that our estimations of failure probabilities are con-
sistent with the results reported in the other works [20,26] on the
thermal challenge problem. Considering that Formulation (2)
achieves the best overall accuracy over others, our best estimation
of failure probability is 0.028.

6. Closure

In this work we examine various strategies for model updating
and study its relationship with model validation activities. The
maximum likelihood estimation (MLE) method is introduced as
an alternative approach to the traditional Bayesian method to esti-
mate the model updating parameters, so that it seeks optimal dis-
tribution parameters underlying model updating parameters

1u0 u

uniform 
distribution 

(0,1) 

3u2u

1/3

2/3

1

1

distribution of iu

Fig. 9. Illustration of the u-pooling method.

Table 5
Summary of model validation metrics (Scenario 1).

Model # Validation data: EN (in-sample
test)

Validation data: AC (out-sample
test)

u-Pooling RMSE u-Pooling RMSE

Original 0.634 16.96 0.830** 29.13*

(1) 0.566 15.12* 1.138 33.36
(2) 0.521** 15.07** 0.901* 19.43**

(3) 0.579 15.16 1.041 31.39

Table 6
Summary of model validation metrics (Scenario 2).

Model # Validation data: EN (out-sample
test)

Validation data: AC (in-sample
test)

u-Pooling RMSE u-Pooling RMSE

Original 0.634** 16.96** 0.830 29.13
(1) 0.891 17.87* 0.540 11.27*

(2) 0.813* 18.14 0.471* 11.24**

(3) 1.002 19.53 0.463** 11.40

Table 7
Summary of model validation metrics (Scenario 3).

Model # Validation data: EN + AC (in-sample test)

u-Pooling RMSE

Original 0.456 22.84
(1) 0.420* 14.98
(2) 0.388** 14.29**

(3) 0.429 14.60*

Table 8
Summary of predicted failure probability (Scenario 3).

Original Model #

(1) (2) (3)

P{Tpred(x*) > 900} 0.26 0.060 0.028 0.092
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through MLE. Unlike the traditional Bayesian approach which treats
calibration parameters as fixed but unknown due to lack of knowl-
edge, the MLE based approach treats calibration parameters as
intrinsic random to account for the uncertainty due to experi-
ment-to-experiment variability. Other differences of the two meth-
ods are summarized in Section 4.3 and will not be repeated here.

Through the thermal challenge example, we demonstrate that
model updating can be used to refine a computer model based
on the physical observations gathered before the validation met-
rics are applied and the model is used for prediction. Our presented
model updating formulations explicitly account for various sources
of uncertainties in the associated process. We illustrate that with-
out running into numerical complexity, the MLE based model
updating method is easier to implement and interpret compared
to the existing Bayesian methods. Using the newly developed u-
pooling method by Ferson et al, we show that the validation metric
can be applied to both the original and the updated models to as-
sess the accuracy and predictive capability of different model
updating formulations. Our study also provides insights into the
potential benefits and limitations of using model updating for
improving the predictive capability of a model. Through in-sample
and out-sample tests based on different data sets, we observe that
the model updating approach used in this work improves the
agreement between the model and the physical experiment data.
However, when applying the updated model at a region that is
far from the domain where data is used for model updating, the
extrapolation capability of the updated model is not guaranteed.
By comparing our approach to the existing works on the thermal
challenge problem, we point out the differences of various meth-
ods in utilizing available data, the model updating formulations
adopted, and the solution method employed. Even though our
method is different from other works in the literature for solving
the thermal challenge problem, we find the conclusion we reach
on device failure probability is very close to other estimations re-
ported. As for which model updating formulation is the most
appropriate, we think it is problem dependent and should be se-
lected by exercising the model validation metrics as demonstrated.
While model updating is shown to be useful for improving the
accuracy of a model, as the process is fully data-driven, we believe
the method should be used with caution, especially when used for
extrapolation.

Due to the nature of the MLE method, its effectiveness and accu-
racy may be downgraded when the data amount is extremely
small. In our test with the ‘low level’ data sufficiency for the ther-
mal challenge problem, it is found that the bandwidth of the pre-
diction uncertainty could be degenerated to fairly small values.
To mitigate this problem, prior knowledge may be used to specify
more conservative bounds of model updating parameters to pre-
vent them from running into ‘absurd’ values. Another potential
weakness of the MLE based model updating approach might be
associated with the numerical instability when optimizing the like-
lihood function, especially when a complex model updating formu-
lation that involves many parameters is considered. To mitigate
this issue, sensitivity analysis could be performed prior to MLE
optimization to leave out parameters that are insensitive to model
output and the likelihood function.

In this research, none of the model updating strategies studied
account for the uncertainty due to insufficient data. Our future re-
search is to investigate how we may quantify the impact of lack of
data and provide decision support to resource allocation in plan-
ning physical experiments.
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