
Tolerance allocation for compliant beam structure assemblies

B.W. SHIU1, D.W. APLEY2, D. CEGLAREK3;* and J. SHI4

1Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
E-mail: mmbshiu@polyu.edu.hk
2Department of Industrial Engineering, Texas A & M University, College Station, TX 77843, USA
E-mail: apley@tamu.edu
3Department of Industrial Engineering, University of Wisconsin, Madison, Madison, WI 53706, USA
E-mail: darek@engr.wisc.edu
4Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA
E-mail: shihang@umich.edu

Received June 1999 and accepted June 2002

This paper presents a tolerance allocation methodology for compliant beam structures in automotive and aerospace assembly
processes. The compliant beam structure model of the product does not require detailed knowledge of product geometry and thus
can be applied during the early design phase to develop cost-effective product specifications. The proposed method minimizes
manufacturing costs associated with tolerances of product functional requirements (key product characteristics, KPCs) under the
constraint(s) of satisfying process requirements (key control characteristics, KCCs). Misalignment and fabrication error of
compliant parts, two critical causes of product dimensional variation, are discussed and considered in the model. The proposed
methodology is developed for stochastic and deterministic interpretations of optimally allocated manufacturing tolerances. An
optimization procedure for the proposed tolerance allocation method is developed using projection theory to considerably simplify
the solution. The non-linear constraints, that ellipsoid defined by s (stochastic case) or rectangle defined by Tx (deterministic case)
lie within the KCC region, are transformed into a set of constraints that are linear in r (or Tx)-coordinates. Experimental results
verify the proposed tolerance allocation method.

Nomenclature

� fPg = total structural force applied to the whole
structure;

� [K] = total stiffness matrix of the whole struc-
ture;

� fDg = displacement of the whole structure
under the influence of fPg;

� fPgi = total structural forces applied to the stru-
cture at node i;

� fDgi = structure displacement due to structural
forces at node i;

� ½K�ii = direct structure stiffness matrix in global
coordinate;

� ½k�ij = cross stiffness matrix, relating to forces at
the i end to the displacement of j end;

� ½k�jij = direct stiffness matrix, relating to forces
and displacement at the i end;

� ½K�ij = cross structure stiffness matrix in global
coordinate;

� ½b�ij = compatibility matrix (transformation of
member axis to global axis);

� fdsgij = member ij displacement caused by the
fabrication error;

� dx; dy ; dz = magnitude of translation fabrication
error in x; y; z direction respectively;

� hx; hy ; hz = magnitude of rotation fabrication error
in x; y; z direction respectively;

� xi; x = variables and vector of Key Control Cha-
racteristics (KCCs);

� zi; z = variable and vector for Key Product Cha-
racteristics (KPCs);

� Txi ;Tx = constraint elements and vector for toler-
ance allocation;

� Tzi ;Tz = constraint elements and vector for toler-
ance analysis;

� C = KCC and KPC relationship matrix for
tolerance allocation;

� ci = the vector of C matrix in tolerance allo-
cation KCC and KPC relationship ma-
trix;

� Ai = the ith cost function coefficient assign-
ment for the ith variable;

� yi = normalized constraint vector;* Corresponding author
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� Si = linear variety of the constraints defined
by yi;

� vi = vector in Si with minimum norm;
� �yyi = modified constraints constant vector;
� ri = sigma designation of the optimization

variables;
� R = diagonal vector of inverse of major axis

dimension of ellipsoid;
� K = a variable obtained from v2 distribution

with certain confidence level;
� a = confidence level of the probability of a

point within the ellipsoid.

1. Introduction

Manufacturing companies in various industries, including
automotive and aerospace, are generally interested in
predicting the effects of part and tooling variation on
final product quality during the design stage (Juster, 1992;
Liu et al., 1995). Dimensional variation of the final
product caused by part variation and assembly tooling
dimensional discrepancies decreases product functionality
such as automobile performance (e.g., wheel misalign-
ment, squeaks and rattles, or vibration) and increases
warranty costs (e.g., problems related to wind noise, door
closing efforts or panel closure alignment). Problems
caused by dimensional variation include rework, quality
rejects and resulting engineering changes.

Whenever a component is manufactured, there are
small variations in its size and shape from the desired
design nominal. These variations are an inevitable fact
of any manufacturing process. In general, dimensional
variation is caused by: (i) part-to-part interference; (ii)
lack of stability in part location; and (iii) part variation.
Interference is dependent on the types of joints between
various parts and part fabrication error, whereas locating
instability (part misalignment) is dependent on the types
and positions of locators in the assembly stations. Inter-
ference and misalignment were identified in the aerospace
and automotive industries as the two most frequent
causes of engineering changes (Shalon et al., 1992; Ceg-
larek and Shi, 1995). A third cause of dimensional vari-
ation, part variation, is due to fabrication error occurring
during the part manufacturing process (e.g., stamping or
machining).

To account for these sources of dimensional variation,
the designer specifies allowable limits, or tolerances, on
the dimensions. For example, when knowledge of actual
assembly process behavior (such as welding induced in-
ternal stress or part misalignment in fixtures) and/or
component characteristics (such as flexibility of sheet
metal or fabrication error) is limited, tolerances ensure
acceptable functional requirements, given variations in
assembly process behavior and component characteris-

tics. Thus, tolerances accommodate the uncertainty that
is inherent in engineering practice and manufacturing
processes. Tolerances that are set too wide can result in
poor quality, while overly-tight tolerances generally result
in increased manufacturing costs.

Product quality is generally characterized by a group of
features that affect the designed functionality and the
level of customer satisfaction. In the automotive industry,
this group of critical features is referred to as Key
Product Characteristics (KPCs), an example of which is
dimension z1 in Fig. 1. The fixture locators or part joint(s)
position errors are the dimensional control characteristics
for product positioning, and thus are the determining
factors in achieving the required dimensional accuracy of
the KPCs. These are referred to as Key Control Char-
acteristics (KCCs), examples of which are x1; x2, and x3 in
Fig. 1. The impact of KCC variation on KPC dimen-
sional accuracy depends on the process configuration,
which includes the geometry/layout of locating fixtures
and part-to-part joints/mating features. An intuitive de-
composition of product and process into key character-
istics is discussed in Ceglarek et al. (1994), Ceglarek and
Shi, (1996), whereas Thornton (1999) proposed a more
mathematical framework.

Referring to Fig. 1, the manufacturing process must
maintain sufficiently small variations in the dimensional
lengths of x1; x2, and x3 in order to produce sufficiently
small variations in final assembly dimension z1.

The goal of tolerance allocation is to optimally allocate
tolerances to the KCCs, subject to constraints on the
tolerances of the KPCs. Optimality is usually understood
to mean some measure of manufacturing cost (which
increases with tighter KCC tolerances) subject to product
requirements (which defines the KPCs constraints) (Lee
and Woo, 1990).

Increasingly, emphasis is being placed on integrating
manufacturing considerations from product tolerance
specification(s) (Juster 1992; Liu et al., 1996). This is of
great importance because product accuracy cannot be
disassociated from the manufacturing process. Difficulties
in integrating manufacturing process information with

Fig. 1. An example of the KPC and KCC relationship.
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product characteristics have been observed by many re-
searchers (e.g., Hillyard and Braid, 1978; Faux, 1986;
Etesami, 1993; Roy et al., 1991; Zhang, 1997; Hong and
Chang, 2002; Chase et al., 1990; Kumar and Raman,
1992; Nigam and Turner, 1995; Liu et al., 1996; Ceglarek
and Shi, 1997; Voelcker, 1998; Choudhuri and DeMeter,
1999). The traditional ANSI tolerancing methods are no
longer applied in sheet metal assembly or, in general, in
compliant structure assemblies (Takezawa, 1980; Liu
et al., 1996). Liu et al. (1996) developed a method of
tolerance analysis in compliant sheet metal assembly
using one-dimensional linear mechanics that take into
account the assembly behavior of component/part char-
acteristics. Limitations of three-dimensional assembly
tolerance analysis, such as the lack of appropriate sta-
tistical and assembly interaction models, are discussed in
Scott and Gabriele (1989) and Chase and Parkinson
(1991). However, these works have not investigated a
three-dimensional compliant structure assembly incor-
porating the product/design dimensional and functional
requirements.

The most common approaches to tolerance allocation
are based on recursive Monte Carlo simulation, non-lin-
ear programming, or first order Taylor series approxi-
mations (Lehtihet and Dindelli, 1989; Eggert and Mayne,
1990; Parkinson et al., 1990; Jastrzebski, 1991). Some of
the shortcomings of the Monte Carlo simulation include
intensive computational requirements and inaccurate re-
sults for small sample sizes (Nigam and Turner, 1995).
The probabilistic tolerance optimization problem can be
simplified to a deterministic non-linear programming
problem (Parkinson, 1985; Anderson, 1990; Lee and
Woo, 1990). The Taylor series approach (Lee and Woo,
1990) is an approximate method in which non-linear
tolerance constraints are linearized. This results in a
computationally expensive algorithm due to the recursive
approach needed to find the optimal solution. In addition
to the computational expense, these methods are some-
what difficult to implement.

Another main body of tolerance allocation research
is based on cost optimization. The tolerance alloca-
tion problem is to systematically search for the combi-
nation of tolerances which results in the least overall
manufacturing cost, while at the same time satisfying all
dimensional requirements. Numerous researchers have
proposed different search algorithms and different forms
of explicit cost functions (Parkinson, 1984, 1985; Wu
et al., 1988; Lee and Woo, 1990; Chase and Parkinson,
1991; Guilford and Turner, 1993). They are based mainly
on estimated algebraic cost functions. A further refine-
ment of cost tolerancing is based on association of cost
with different manufacturing processes. Consideration is
given to processes that can most economically produce
each part dimension while satisfying tolerance of all parts
(Bjorke, 1989; Lee and Woo, 1989; Ostwald and Blake,
1989; Chase et al., 1990).

There is no existing algorithm for tolerance allocation
in three-dimensional compliant structure assemblies. In
this paper, a tolerance allocation algorithm that is rela-
tively straightforward to implement will be developed for
this scenario. The proposed algorithm allows designers to
specify and verify proper tolerances for compliant struc-
ture assemblies at the design stage. This method inte-
grates characteristics of both the assembly process and
the final product. Additionally, this method uses design
requirements as constraints while minimizing manufac-
turing costs in order to maximize the allowable tolerances
in each of the process characteristics or process control
points.

2. Review of fabrication error in structure analysis

A beam-based model of an automotive body has been
used to analyze the bending and torsional stiffness of the
vehicle structure with high accuracy. These models (Chon
et al., 1986) allow one to predict the distortion of the
automotive body under external loading such as driving,
cargo, and passenger loads. Recent dimensional control
applications have used similar concepts (Ceglarek and
Shi, 1997; Shiu et al., 1997; Rong et al., 2000; Rong
et al., 2001). The use of a beam-based model for toler-
ancing of compliant assembly structures offers the fol-
lowing benefits:

1. Beam structures allow for the modeling of major pro-
duct dimensional discrepancies caused by: (i) part-to-
part interference; (ii) lack of part location stability
(part misalignment during assembly); and (iii) part
fabrication error variation;

2. Tolerancing must be considered early during the design
phase in order to develop cost-effective product speci-
fications (Narahari et al., 1999; Voelcker, 1998).
However, existing approaches to allocate tolerances
require detailed knowledge of the geometry of the as-
semblies and are applicable mostly during the ad-
vanced stages of design, leading to a less than optimal
design process. During the design process of assem-
blies, both the assembly structure and associated tole-
rance information evolve continuously. Therefore,
significant gains can be achieved by effectively using
this information to influence the design of the assem-
bly. It was shown in Ceglarek and Shi (1997), Shiu et al.
(1997), and Rong et al. (2000) and Rong et al. (2001)
that the beam-based model provides a simplified but
effective representation of tolerancing information
during the early stages of design that can be used to
model dimensional discrepancies before detailed 3D
CAD models are available. The development of the
beam-model requires only limited information such as
part stiffness (modeled via beams) and geometrical
position of both ends, which is consistent with the

Compliant beam structure assemblies 331



information that is used during the early stages of the
design process. The detailed part geometries are typi-
cally not determined until the later stages of the design
process and are based on the structural requirements
from the early stages. Hence, the beam-based toler-
ancing approach is well-suited for use during the very
early stages of design.

In structural analysis (West, 1993), member (beam or
part) interactions can be viewed as self-straining. Fabri-
cation error is defined as the self-straining phenomenon
caused by the assembly of erroneous or misaligned
components into a structure. Interaction occurs when a
structure is subjected to internal strains and a resulting
state of stress with no externally applied forces. An ex-
ample is the interaction of assembly faults caused by di-
mensional errors in fixtured parts, in which a member or
part of erroneous length or alignment is forced to fit
during the assembly process. Such an assembly fault is
characterized as statically indeterminate. The structure
responds to the fabrication error by equalizing the in-
ternal stresses caused by the erroneous parts. The re-
sulting internal stresses generate related self-equilibrating
external reactions. The structure itself serves to inhibit the
deformation and is ‘‘straining against itself.’’

These fabrication error concepts apply to automotive
body assembly, as illustrated in Fig. 2. Part misalignment
and fabrication errors are the major sources of variation
and errors in the automotive assembly process. The in-
duced structure forces from fabrication errors are used in
the stiffness analysis. Assume members a-b, c-d, e-f, and
g-h have fabrication errors as shown in Fig. 2. For ex-
ample, node a of the a-b beam has a fabrication error of
fdsgab ¼ ½0ðdsÞ20 0 0 0�Tab (i.e., dimensional error in y di-
rection), the fabrication error of node b is
fdsgba ¼ ½0ðdsÞ2ðdsÞ3 0 0 0�Tba (i.e., dimensional errors in
the y and z directions), and so on.

Figure 3(a) shows a generic member ij with fabrication
error denoted by the solid line, whereas, the nominal
design is the dashed line. The fabrication error is repre-
sented by the vector fdsgij ¼ fds1ds2ds3ds4ds5ds6gij. If this
displacement is restrained (i.e., if the displacement – fdsgij
is applied to correct the error), a set of fixed-end forces is
imposed at joints i and j as shown in Fig. 3(b). If the
structure analysis is limited to fabrication error, then
the equivalent force fPgi that is required to self-restrain
the error is

fPgi ¼ �
X
j

½b�Tijð�½k�jiifdsgijÞ ð1Þ

where ½b�Tij and ½k�jii are the compatibility matrix and cross
stiffness matrix defined in West (1993).

Moreover, for an n-noded structure, the overall struc-
tural displacement for all nodes can be expressed as a
function of the equivalent forces via

fDg1
fDg2
fDg3
. . .
fDgn

2
66664

3
77775 ¼

½K�11 ½K�12 ½K�13 . . . ½K�1n
½K�21 ½K�22 ½K�23 . . . ½K�2n
½K�31 ½K�32 ½K�33 . . . ½K�3n
. . . . . . . . . . . . . . .
½K�n1 ½K�n2 ½K�n3 . . . ½K�nn

2
66664

3
77775

�1 fPg1
fPg2
fPg3
. . .
fPgn

2
66664

3
77775:

ð2Þ
The significance of the preceding results is that Equa-

tions (1) and (2) can be combined to give

½D� ¼ F ðdÞ: ð3Þ
The vector D represents the nodal displacements with 6n
elements for an n-noded structure, the vector d represents
the fabrication error of each individual part, and F rep-
resents the linear relationship obtained from a structure
analysis formulation (West, 1993).

3. Linear/linearized model relating KPCs to KCCs

Consider the simple beam-based structure shown in
Fig. 4. The solid beams represent the nominal dimensions
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Fig. 2. The automotive body structure with fabrication error.

{δs}ij = { s1
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δ s5
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δ

Fig. 3. Self-straining in structure analysis: (a) fabrication error
of a single beam within a structure; and (b) forces required to
correct the fabrication error.
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of the structure, and the shaded beams the actual di-
mensions. The structural stress caused by fabrication er-
rors (d of Equation (3)) in the two horizontal components
will influence the overall dimensional integrity (D of
Equation (3)) of the vertical beam. If the assembly pro-
cess were perfect in both the tooling conditions and the
dimensions of the detail parts, the resulting assembly
would be the solid beam of Fig. 4. In practice, however,
each of the two beams will contain fabrication errors
inherited from the tooling errors, parts errors, etc., which
will contribute to the assembly error shown as the shaded
beam in Fig. 4.

The displacements x1 and x2 represent the errors of the
two horizontal beams in their assembly stations (fixture
locator error and/or supporting part joint misallocation
due to part fabrication). We refer to these as the process
Key Control Characteristics (KCCs). The displacements
z1 and z2 represent the product assembly dimensions. We
refer to these as the Key Product Characteristics (KPCs),
whose behaviors are dictated by product design require-
ments.

The governing equation of the assembly that relates the
KPCs to the KCCs is given by

c11x1 þ c12x2 ¼ z1;

c21x1 þ c22x2 ¼ z2:
ð4Þ

The constants c11; c12; c21 and c22 may be obtained by
evaluating the coefficients in Equations (1) and (2), details
of which can be found in Shiu et al. (1997). More gen-
erally, with m KPC points and n KCC points, one can
write the linearized model as

Cx ¼ z; ð5Þ
where z ¼ ½z1 z2 . . . ; zm�T is the vector of KPCs, x ¼
½x1 x2 . . . xn�T is the vector of KCCs, and C ¼ ½c1 c2 . . .
cm�T is the matrix of coefficients with ci ¼ ½ci1 ci2 . . . cin�.
Note that here, as in the remainder of the paper, all
dimensions are referenced as deviations from design
nominal.

4. Deterministic and stochastic interpretation of KPC
constraints

In tolerance allocation, the goal is to specify the allowable
tolerances for the KCC points fxigni¼1 based on the al-
lowable tolerances for the KPC points fzigmi¼1, which are
assumed to be given and are based on the required
functionality of the assembled product. For example, the
set of KPCs on a chassis mounting surface of a vehicle
have to be within certain tolerances in order to have
proper wheel alignment. Denote the specified allowable
tolerances for the KPCs as fTZigmi¼1. Satisfying the KPC
constraints means that the following must hold

jzijOTZi : i ¼ 1; 2; . . . ;m: ð6Þ
Using the linear model of Equation (5), the KPC

constraints can be transformed into KCC coordinates via

jcTi xjOTZi : i ¼ 1; 2; . . . ;m: ð7Þ
Figure 5(a and b) graphically illustrates Equations (6)

and (7). The KPC constraint region is rectangular in KPC
coordinates, as shown in Fig. 5(a). In contrast, the KPC
constraint region obtained from Equation (7) will not be
rectangular in KCC coordinates in general, as shown in
Fig. 5(b).

Fig. 4. Illustration of the linearity of a flexible assembly.

Tz1

-Tz2

Tz2

-Tz1

z2

z1

(a)

x2

x1

c1x = Tz1
T

c2x = -Tz2
T

c2x = Tz2
T

c1x = -Tz1
T

(b)

Fig. 5. Illustration of the KPC constraint region in: (a) KPC
coordinates; and (b) KCC coordinates.
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There are different interpretations of how to constrain
(i.e., allocate tolerance to) the KCCs in order to achieve
the constraints on the KPCs. One may view the KPCs
and KCCs as deterministic variables and select the KCC
tolerances so that the KPCs satisfy the KPC constraints
deterministically (100% of the time). Alternatively, one
may view the KPCs and KCCs as random variables and
specify the KCC tolerances (e.g., in the form of �3r
variation limits) so that the KPCs satisfy the KPC con-
straints with a desired probability. Both interpretations
are elaborated in the following subsections.

4.1. Deterministic case

Let Txi denote the allocated tolerance for xi, so that the
allowable range for xi is the interval ½�Txi ; Txi � and define
Tx ¼ ½Txi ; . . . ; Txn �. Assuming the KCCs vary indepen-
dently, x can then lie anywhere within the rectangular
region of Fig. 6, which we refer to as the KCC tolerance
region. Thus, if the KPC constraints are to be satisfied,
we must specify Tx, so that the rectangular KCC toler-

ance region lies within the KPC constraint region shown
in Fig. 5(b).

Two examples of KCC tolerancing schemes for which
the KCC tolerance region lies within the KPC constraint
region are illustrated in Fig. 7. Both tolerancing schemes
satisfy the KPC constraints.

Since there are an infinite number of KCC tolerancing
schemes for which the KPC constraints are satisfied, the
tolerance allocation problem is how to ‘‘optimally’’
specify Tx, under the constraint that the rectangular KCC
tolerance region lies entirely within the KPC constraint
region. One possible optimization criterion is to maximize
the volume of the KCC tolerance region rectangle, or
equivalently, minimize

F1ðTxÞ �
Yn
i¼1

1

Txi
: ð8Þ

A draw back of this criterion is that it weights each xi
equally. One may wish to penalize more for assigning
tighter tolerances to the xi’s that are more costly to con-
trol. Thus, a more attractive approach is to attempt to
define the manufacturing costs of tight tolerances and
minimize the cost. Popular cost functions are of the form

F2ðTxÞ �
Xn
i¼1

Ai

ðTxiÞj
; ð9Þ

where the Ai are relative weights for the KCCs and j is
some positive integer, e.g., one, two, three or four. Wu
et al. (1988) and Chase et al. (1990) provide more de-
tailed descriptions of these and other cost functions. The
minimization is under the constraint that jcTi xjOTzi , for
all x in the KCC tolerance region, as illustrated in Fig. 7.

4.2. Stochastic interpretation

Often, it is more appropriate to think of the xi’s as ran-
dom variables and, instead of specifying ‘‘hard’’ tolerance

Tx1

-Tx2

Tx2

-Tx1

x2

x1

Fig. 6. Deterministic KCC tolerance region.

x2

x1

x2

x1

KCC Tolerance Regions

KPC Constraint Regions

Fig. 7. Example of two KCC tolerancing schemes that satisfy the KPC constraints.
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constraints on them, specify probabilistic constraints.
Assuming all KCC variables are normally independently
distributed, this amounts to appropriately specifying the
standard deviation of each xi, which we denote by ri. By
making the ri’s larger or smaller, one can control the
probability that the KPC constraints are violated. In
many cases the stochastic model is more appropriate,
since the deterministic approach is usually overly con-
servative, as illustrated in Fig. 8. In Fig. 8 the rectangle
associated with the larger tolerancing scheme would be
rejected because the KPC constraints are violated.
However, if x1 and x2 vary independently, there may be a
negligibly small probability that they fall in the darkened
regions lying outside the KPC constraint region. Addi-
tionally, the deterministic approach may not even be
valid, since it may be impossible to guarantee that
jxijOTxi 100% of the time with no exceptions.

Assume that xi � NIDð0; r2i Þ, i.e., that the KCCs are
normally, independently distributed with zero mean and
standard deviation ri. The stochastic tolerance allocation
task is to specify each ri (or 3ri limits for each xi) such
that the probability of lying outside the KPC constraint
region is an acceptable specified small value, say a. Fur-
thermore, the ri’s are to be specified optimally in a
manner that minimizes some appropriate cost function.
This approach has been considered in Lee and Woo
(1990). One difficulty is that given frigni¼1, it is difficult to
calculate the exact probability of lying outside the KPC
constraint region. In contrast, it is quite easy to come up
with an upper bound on this probability using ellipsoids
that are contained within the KPC constraint region.

To illustrate, suppose we have a stochastic KCC tole-
rance vector r � ½r21 r22 . . . r

2
n�T , and define

R � diag
1

r21
;
1

r22
; . . . ;

1

r2n

� �
:

Consider the ellipsoid xTRx ¼ K for some arbitrary
positive constant K. If the ri are made small enough, we
can ensure that the ellipsoid is contained inside the KPC
constraint region as illustrated in Fig. 9. If this is the case,
then the probability that x falls outside the KPC con-

straint region is less than or equal to the probability that
x falls outside the ellipsoid.

The probability that x lies outside the ellipsoid
xTRx ¼ K is exactly a if the constant K is chosen to be
1-a percentile of the v2ðnÞ distribution, i.e., the v2 distri-
bution with n degrees of freedom. This follows by
noting that

xTRx ¼
X
i¼1

x2i
r2i
; ð10Þ

which is a v2ðnÞ random variable. Thus the probability
that x lies outside the ellipsoid is:

Pr½xTRx > K� ¼ Pr½v2ðnÞ > K� � a: ð11Þ
Hence, if the ri’s are small enough so that the ellipsoid is
contained within the KPC constraint region, a is an upper
bound on the probability of violating a KPC constraint.

In general, the larger the ri’s are, the closer the upper
bound a is to the true probability of violating a KPC
constraint. This coincides with the goals of choosing the
ri’s to minimize a manufacturing cost function, since
manufacturing cost will always decrease as the ri’s in-
crease.

This suggests a procedure for optimally allocating
tolerances (i.e., choosing the ri’s) that guarantees the
probability that one or more of the KPC constraints are
violated is less than a: Set K to be the 1-a percentile of
the v2ðnÞ distribution, and choose the ri’s so that the
ellipsoid xTRx ¼ K is as large as possible (in the sense
of minimizing one of the cost functions below) while
still being contained entirely within the KPC constraint
region.

Similarly to the deterministic case, one could minimize
the cost function

F1ðrÞ �
Yn
i¼1

1

ri
; ð12Þ

which is inversely proportional to the ellipsoid volume.
Alternatively, one may use a cost function of the form,

x2

x1

KPC constraints
satisfied

minor violation of
KPC constraints

KPC Constraint Region

Fig. 8. Illustration of the conservative nature of the determin-
istic approach.

x2

x1

x Σx = KT

Fig. 9. Acceptable conditions.
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F2ðrÞ �
Xn
i¼1

Ai

ðriÞj
; ð13Þ

so that different KCCs can be weighted differently. Here,
we can chose i ¼ 1; 2; 3; 4; . . . etc. The optimal stochastic
tolerance allocation is illustrated in Fig. 10(a–c), which
shows three different tolerancing schemes each satisfying
the constraints but with different costs.

5. Reformulation of the constraints

Other authors have proposed similar optimal tolerancing
concepts (e.g. Lee and Woo (1990) for the stochastic in-
terpretation problem). See Chase and Parkinson (1991)
for a survey of these methods. In their present form,
however, the constraints that the ellipsoid defined by r
(stochastic case) and the rectangle defined by Tx (deter-
ministic case) lie within the KCC constraint region are
not easy to work with and the resulting optimization al-
gorithms are complicated. In this section, we show that
the constraints can be reformulated into a very manage-
able form so that the resulting optimization problem is
simple and can be easily solved using standard optimi-
zation packages. Moreover, the constraint equations have
exactly the same form for both the deterministic and the
stochastic approaches.

5.1. Stochastic case

For the stochastic interpretation, the optimization crite-
rion is expressed in terms of r. We would also like to
express as a simple function of r, the constraint that the
ellipsoid xTRx ¼ K lies within the KPC constraint region.

Consider the ith KPC constraint jcTi xjO TZi . By sym-
metry of both the constraint and the ellipsoid, we need
only consider the constraint cTi xO TZi . Rewrite this as
yTi xO 1 where yi � ci=TZi . The optimization problem is to
find the r that minimizes the cost function F ðrÞ subject to

the constraints yTi xO1 (i ¼ 1 to m) for all x on and within
the ellipsoid xTRx ¼ K.

Given an arbitrary r and K, all points x on and within
the ellipsoid xTRx ¼ K satisfy the ith constraint yTi xO1
iff the hyperplane Si � fxjyTi x ¼ 1g lies outside the ellip-
soid. This, in turn, is true iff xTRxPK 8x 2 Si. Since <n

with inner product hxjyiR � xTRy is a valid Hilbert space

with norm xk kR�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xjxh iR

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
xTRx

p
, this last condition

is true iff

inf
X2si

xk kRP
ffiffiffiffi
K

p
:

Define

vi ¼ argmin
x2si

kxkR;

i.e., vi is the point on Si with smallest R-norm, as illus-
trated in Fig. 11.

To find vi, note that Si can be represented as

Si ¼ fxjyTi x ¼ 1g ¼ fxjyTi R�1Rx ¼ 1g ¼ fxjwT
i Rx ¼ 1g

¼ fxj wijxh iR¼ 1g;
where wi � R�1yi. Thus, Si is a hyperplane generated
from an inner product constraint. As a result, the classical
projection theorem (Luenberger, 1997) implies that

vi ¼ biwi; ð14Þ
where

bi �
1

wijwih iR
¼ 1

wT
i Rwi

¼ 1

yTi R
�1RR�1yi

¼ 1

yTi R
�1yi

: ð15Þ

Therefore,

vi ¼ R�1yi

yTi R
�1yi

;

and

vik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
vTi Rvi

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yTi R

�1RR�1yi

ðyTi R�1yiÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

yTi R
�1yi

s
:

x2

x1

x2

x1

x2

x1

(a) (b) (c)

Fig. 10. Tolerancing schemes satisfying the probabilistic constraints, but with different costs: (a) high cost; (b) high cost; (c) lower
cost.
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Consequently, all points on and within the ellipsoid
xTRx ¼ K satisfy the ith constraint yTi x

�� ��O 1 iff

kvikRP
ffiffiffiffi
K

p
, 1

yTi R
�1yi

PK , yTi R
�1yiO

1

K

,
Xn
j¼1

y2i;jr
2
jO

1

K
, �yyTi rO

1

K
; ð16Þ

where yi � ½y2i;1y2i;2 � � � y2i;n�T , and yi;j is the jth element of yi.
Figure 11 (a and b) illustrates two cases. In Fig. 11(b)

the ellipsoid lies within the constraint region since
v1k kR P

ffiffiffiffi
K

p
, and v2k kR P

ffiffiffiffi
K

p
. In Fig. 11(a) the ellipsoid

violates both constraints since kv1kR <
ffiffiffiffi
K

p
and kv2kR <ffiffiffiffi

K
p

.
The significance of Equation (16) is that the KCC

constraint region within which the ellipsoid lies, and
which is non-linear in x-coordinates, has been trans-
formed into a set of constraints that are linear in r-co-
ordinates. The optimal tolerance allocation problem for
the stochastic case then becomes

min F ðrÞ; ð17Þ
subject to

yi
TrO

1

K
ði ¼ 1; 2; . . . ;mÞ; ð18Þ

riP0 ði ¼ 1; 2; . . .mÞ: ð19Þ
The optimization problem is illustrated in Fig. 12. Since
the constraints are linear and the constraint region is
convex, the optimization problem can be easily and ro-
bustly solved using standard optimization packages, e.g.
Matlab. Note that the constraint vectors �yyi have all non-
negative elements.

5.2. Deterministic case

For the deterministic case, the constraint that the rect-
angular region defined by jxijOTxi ði ¼ 1; 2; . . . nÞ lies

within the KPC constraint region can be transformed into
a form that is nearly identical to the ellipsoidal constraint
for the stochastic case. First, note that the rectangle lies
within the KPC constraint region iff all of its vertices
do, and all 2n vertices will be of the form x ¼ ½�Tx1
�Tx2 . . .� Txn �T . Thus, the ith KPC constraint yTi x

�� ��O
1, will be satisfied by all vertices iff

yi
TTxO1; ð20Þ

where we have re-defined yi � ½jyi;1jjyi;2j . . . jyi;nj�T and
Tx ¼ ½Tx1Tx2 . . . Txn �T :

Thus, the constraints on Tx for the deterministic tole-
rance allocation case are of the exact same linear form as
the constraints on r in the stochastic tolerance allocation
case. The only difference is that for the stochastic case
yi � ½y2i;1y2i;2 . . . y2i;n�T , whereas, for the deterministic case
yi � ½jyi;1jjyi;2j . . . jyi;nj�T . Note that for both cases the el-
ements of the constraint vectors fyigmi¼1 are non-negative.
The optimization problem for the deterministic case is
also represented by Fig. 12, if r is replaced by Tx.

x2

x1

x x = KT

x
2

x1

S2S1

v2 v1

Kv
1

Kv
2

Kv1

<

Kv2

<

S2S1

v2 v1

(a) (b)

<

<

Σ x Σx = KT

Σ

Σ
Σ

Σ

Fig. 11. (a) A R such that the ellipsoid violates the KPC constraints; and (b) a R such that the ellipsoid satisfies the KPC constraints.

decreasing objective function F(σ)

Transformed
Constraint Region

optimal tolerance allocation

K/1yT
1 =

σ 2
1

σ
σ

K/1yT
2 =σ

2
2

Fig. 12. Converted optimization space.
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6. Implementation procedure and case study

The optimal tolerancing algorithm is summarized as fol-
lows:

Step 1. Formulate the linear or linearized model relating
the KPCs to the KCCs zi ¼ cTi xði ¼ 1; 2; . . . ;mÞ
and specify tolerance on each of the KPCs
zij jOTziði ¼ 1; 2; . . . ;mÞ:

Step 2. For i ¼ 1; 2; . . . ;m, define yi � ci=Tzi and set yi �
½y2i;1y2i;2 . . . y2i;n�T for the stochastic case. yi �
½jyi;1jjyi;2j . . . jyi;nj�T for the deterministic case.

Step 3. Select the most appropriate cost function: F ðrÞ
for the stochastic case, or F ðTxÞ for the deter-
ministic case.

Step 4. (a) Stochastic case; select a (the algorithm ensures
that the probability of violating one or more KPC
constraints is no larger than a) and set K equal to
the 1-a percentile of the v2ðnÞ distribution. Mini-
mize F ðrÞ subject to yTr O 1=K ði ¼ 1; 2; . . . ;mÞ
and ri > 0 ði ¼ 1; 2; . . . ; nÞ
The ith element of the optimal r is the allocated
variance of xi.
(b) Deterministic case; minimize F ðTxÞ
subject to yTTxO1 ði ¼ 1; 2; . . . ;mÞ and Tx >
0 ði ¼ 1; 2; . . . ; nÞ
The ith element of Tx is the allocated hard toler-
ance of xi.

A three-dimensional experimental case study is pro-
vided below. A two-dimensional example is also provided
to illustrate how different choices for the cost function
influence the shape of the optimal ellipsoid and, hence,
the optimal tolerance allocation.

6.1. Experimental verification

An experimental three-beam assembly depicted in Fig. 13
was constructed to verify the beam-based modeling and
tolerance allocation methodology. The elements of the
three-length KPC vector z are the x-, y-, and z-coordi-
nates, respectively, of the joined end (node 1) of the three
beam members. The three-length KCC vector x consists
of the deviation from nominal of the lengths of beams 21,
31, and 41, respectively, and represents fabrication errors.
In the experiment, this fabrication error was introduced
by adding shims at the base ends (nodes 2, 3, and 4) of the
three beams.

Considering the geometry of the assembly and using
the procedures described in the earlier sections, the model
relating the KPCs to the KCCs is

z1
z2
z3

2
4

3
5 ¼

0:707 0:707 0
0:707 0:707 �1:414
�0:707 0:707 0

2
4

3
5 x1

x2
x3

2
4

3
5: ð21Þ

Suppose the three KPCs are each assigned tolerances of
�2.89 mm and that the cost function shown in Equation
(12) is chosen so as to maximize the ellipsoidal volume. If
a ¼ 0:01 is selected, this results in K ¼ 11:34, the 0.99
percentile of the v2 distribution with three degrees-
of-freedom. Numerical optimization using the methods
described in previous sections results in allocating toler-
ances of r1 ¼ 0:701, r2 ¼ 0:701, and r3 ¼ 0:350 to the
three KCCs. The optimal ellipsoid is (x1=r1Þ2þ
ðx2=r2Þ2 þ ðx3=r3Þ2 ¼ K or, equivalently, ðx1=2:36Þ2þ
ðx2=2:36Þ2 þ ðx3=1:18Þ2 ¼ 1. This ellipsoid intersects the
x1, x2, and x3 axes at �2.36, �2.36, and �1.18, respec-
tively. It can be verified that the ellipsoid lies strictly in-
side the S1 and S3 planes, but just touches the S2 plane at
the point v2 ¼ ½1:36 1:36� 0:68�T . Note that the equa-

x

y

z

x

y

z

y

z

x

s x

s x

s x

Fig. 13. Experimental assembly.
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tions for the S1; S2, and S3 planes are the three rows of
Equation (21), with z1, z2, and z3 each set to their assigned
tolerances of 2.89 mm.

Suppose, instead, that one wished to allocate tolerances
deterministically using the cost function (8), so as to
maximize the rectangular volume. In this case, using the
methods described in previous sections results in allo-
cating deterministic tolerances of Tx1 ¼ 1:36; Tx2 ¼ 1:36,
and Tx3 ¼ 0:68 to the three KCCs. It is interesting to note
that this rectangle is contained entirely within the optimal
ellipsoid for the stochastic case, with the two touching at
the vertices [�1:36 � 1:36 � 0:68�T . This illustrates the
overly conservative nature of the deterministic approach:
if the deterministic approach is used, one attempts to
control the KCC to lie within the relatively small rect-
angle. In contrast, if the stochastic approach is used, one
only attempts to control the KCCs to lie within (with
probability 0.99) the much larger ellipsoid.

To verify the effectiveness of the beam-based model
and tolerance allocation methodology, the following ex-
periment was conducted on the experimental assembly
depicted in Fig. 13. Over each of 14 experimental runs,
shims of various thickness were added/removed at the
base of the three beam members to represent fabrication
errors in their lengths. The net increase/decrease in their
lengths for each run are listed as the KCC values in Table
1. The table also shows the predicted values using
Equation (21) and the observed experimental values of
the KPCs for each run. Each run was replicated five
times, and the observed KPC values shown are the ave-
rage of the five replicates. The numbers in parentheses are
the 6r values for the five replicates. The variability in the
replicates was due to a combination of measurement er-
ror, modeling approximations, and errors in the shim

thicknesses. The KCC combinations throughout the ex-
periment were all chosen to fall within the optimal ellip-
soid ðx1=2:36Þ2 þ ðx2=2:36Þ2 þ ðx3=1:18Þ2 ¼ 1. As the
model predicts, all of the observed KPC values satisfied
the KPC tolerance constraints jzijO2:89.

6.2. Effects of varying the cost function

As mentioned previously, there are a number of different
cost functions that may be considered, examples of which
are shown in Table 2.

In Table 2, ki, k, Ai may be chosen so that each toler-
ance carries different weight in the overall manufacturing
cost. To illustrate the effects of changing the weights,
consider the cost functions

F1ðrÞ ¼ 2

r1
þ 1

r2
; F2ðrÞ ¼ 1

r1
þ 1

r2
; and F3ðrÞ ¼ 1

r1
þ 2

r2
:

The optimal ellipses for these three cost functions are
shown in Fig. 14(a), where the two constraint surfaces
that were assumed are also shown. Clearly, the weight
assigned to each KCC tolerance in the cost function af-
fects the shape of the optimal ellipse and hence, the op-
timal tolerance assignment. For example, assigning tight
tolerance to x1 incurs more cost than assigning tight tol-
erance to x2 when F1ðrÞ is assumed. The converse is true
when F3ðrÞ is assumed. Consequently, relative to the
optimally allocated r2, the optimally allocated r1 would
be larger for F1ðrÞ than for F3ðrÞ. This is evident from
Fig. 14(a), in which the optimal ellipsoid for F1ðrÞ is
stretched longer in the x1 direction than is the optimal
ellipsoid for F3ðrÞ.

Similar conclusions apply when the cost functions
F4ðrÞ ¼ r�1

1 r�1
2 , F5ðrÞ ¼ r�4

1 r�1
2 , and F6ðrÞ ¼ r�1

1 r�4
2 are

Table 1. Experimental results for tolerance prediction and allocation

Run KCC values KPC values

x1 x2 x3 Predicted Experimental

z1 z2 z3 z1 z2 z3

1 2.37 0.00 0.00 1.68 1.68 �1.68 1.64(0.16) 1.46(0.71) �1.59(0.34)
2 �2.37 0.00 0.00 �1.68 �1.68 1.68 �1.66(0.98) �1.93(1.01) 1.72(1.04)
3 0.00 2.37 0.00 1.68 1.68 1.68 1.70(0.66) 1.42(1.21) 1.71(0.61)
4 0.00 �2.37 0.00 �1.68 �1.68 �1.68 �1.75(0.47) �2.17(0.77) �1.86(2.51)
5 0.00 0.00 1.18 0.00 �1.67 0.00 �0.01(0.68) �2.01(0.50) 0.16(0.50)
6 0.00 0.00 �1.18 0.00 1.67 0.00 0.10(0.65) 1.41(1.21) 0.09(0.65)
7 1.36 1.36 0.68 1.92 0.96 0.00 1.75(0.43) 0.16(0.81) �0.02(0.44)
8 1.36 1.36 �0.68 1.92 2.88 0.00 1.75(0.34) 2.04(1.25) 0.02(0.25)
9 1.36 �1.36 �0.68 0.00 0.96 �1.92 0.04(0.40) 0.34(0.70) �1.63(0.36)
10 1.36 �1.36 0.68 0.00 �0.96 �1.92 0.07(0.40) �1.69(0.65) �1.73(0.67)
11 �1.36 1.36 0.68 0.00 �0.96 1.92 0.05(0.62) �1.64(0.70) 1.77(0.47)
12 �1.36 1.36 �0.68 0.00 0.96 1.92 0.07(0.60) 0.36(0.92) 1.78(0.25)
13 �1.36 �1.36 �0.68 �1.92 �0.96 0.00 �1.70(0.45) �1.56(1.35) 0.02(0.42)
14 �1.36 �1.36 0.68 �1.92 �2.88 0.00 �1.58(0.37) �2.04(1.25) 0.11(0.78)
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compared. The optimal ellipses for these cost functions
are shown in Fig. 14(b). When tight tolerance on x1 is
more costly (i.e., for F5ðrÞ), the optimal allocated r1
increases relative to the optimal allocated r2, and the
optimal ellipse is elongated in the x1 direction and con-
tracted in the x2 direction.

7. Conclusions

In order to properly allocate tolerances for modern
complex products made of compliant parts (e.g., sheet
metal assemblies such as automotive bodies, airplane
fuselages, or household appliances), it is necessary to
predict the effects of part and process variation on final

product quality during the early stages of design. In
general, existing approaches to allocating tolerances:

1. require detailed knowledge of final product geometry
and thus, are applicable primarily during advanced
stages of the design, which leads to a less than optimal
design process; and

2. consider only rigid body characteristics of parts.

This paper addresses these limitations and presents a
tolerance allocation methodology for compliant assem-
blies based on a beam structure model. The method is
reasonably generic and can be applied to a broad class of
assembly processes for compliant parts. The compliant
beam structure model of the product does not require
detailed knowledge of product geometry and thus, can be
applied during the early design stages to develop cost-
effective product specifications. The proposed method
minimizes manufacturing costs associated with tolerances
of critical process requirements (Key Control Charac-
teristics (KCCs)) under the constraint of satisfying
product functionality (represented as Key Product
Characteristics (KPCs)). Misalignments and fabrication
errors of compliant parts, two critical causes of product
dimensional variation, are discussed and included in the
model. The proposed methodology applies with either a
stochastic or a deterministic interpretation of allocated
manufacturing tolerances. An easily implemented opti-
mization procedure for allocating tolerances was devel-
oped using classical projection theory to reformulate the
tolerance constraints into a much more manageable form.
The non-linear constraints, that ellipsoid defined by r
(stochastic case) or rectangle defined by Tx (deterministic
case) lie within KCC region, are transformed into a set of
constraints that are linear in r (or Tx)-coordinates.
Standard optimization packages can then be used to solve
the problem. It was also shown that the reformulated
constraint equations have exactly the same form for both
the deterministic approach and the stochastic approach.
Experimental results verify the proposed tolerance allo-
cation method.
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