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Large sets of multivariate measurement data are now routinely available through automated in-process
measurement in many manufacturing industries. These data typically contain valuable information re-
garding the nature of each major source of process variability. In this article we assume that each variation
source causes a distinct spatial variation pattern in the measurement data. The model that we use to rep-
resent the variation patterns is of identical structure to one widely used in the so-called “blind source
separation” problem that arises in many sensor-array signal processing applications. We argue that meth-
ods developed for blind source separation can be used to identify spatial variation patterns in manufac-
turing data. We also discuss basic blind source separation concepts and their applicability to diagnosing
manufacturing variation.
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1. INTRODUCTION

In-process, or in-line, measurement technology in manufac-
turing is now widespread in many industries. In automobile
body assembly, for example, laser-opticalmeasurement stations
are commonly built into the assembly line at various stages.
In each measurement station, well over 100 key dimensional
characteristics distributed over the auto body or its subassem-
blies may be measured. Moreover, 100% of the auto bodies
produced are measured. The availabilityof abundant in-process
measurement data creates tremendous potential for monitoring,
diagnosing, and eliminating major root causes of process vari-
ation.

In any manufacturing process, there are generally numerous
independentvariation sources that contribute to the overall level
of variability in the measurement data. Each variation source
may result in a distinct spatial variation pattern across any or
all of the process characteristics measured. The presumption
throughout this article is that if we can identify the precise na-
ture of each spatial variation pattern, then we can use this in-
formation as a diagnostic tool to facilitate the ultimate goal of
identifying and eliminating the root causes.

This was the objective considered by Apley and Shi (2001)
(hereafter A&S), who used the following model to represent
the variation patterns. Let x D [x1;x2; : : : ;xn]0 be an n £ 1 ran-
dom vector that represents a set of n measured characteristics
from the product or process. Let xi; i D 1;2; : : : ;N , be a sam-
ple of N observations of x. In auto body assembly, for example,
x would represent the vector of all measured dimensional char-
acteristics across a given auto body, and N would be the num-
ber of auto bodies in the sample. It is assumed that x obeys the
model

x D Cv C w; (1)

where C D [c1;c2; : : : ;cp] is an n £ p constant matrix with lin-
early independent columns. The vector v D [v1;v2; : : : ; vp]0 is

a p £ 1 0-mean random vector with independent components,
each scaled (without loss of generality) to have unit variance.
The vector w D [w1;w2; : : : ; wn]0 is an n £ 1 0-mean random
vector that is independentof v.

The interpretation of the model is that there are p indepen-
dent variation sources fvi : i D 1;2; : : : ;pg that affect the mea-
surement vector x. Each source has a linear effect on x that is
represented by the corresponding column of C. Together, civi

describes the effect of the ith source on x. The variation pattern
vector, ci, indicates the spatial nature of the variation caused by
the ith source. Because the elements of v are scaled to have unit
variance, ci also indicates the magnitude or severity of the ith
source. The random vector w represents the aggregated effects
of measurement noise and any inherent variation not attributed
to the sources. Unless otherwise noted, it is assumed throughout
that the covariance matrix of w is 6w D ¾ 2I, a scalar multiple
of the identity matrix. In Section 8 we discuss how to apply
the methods of this article in situations where this assumption
would not be reasonable. All random variables are assumed to
be 0 mean. If not, then the mean of x should be estimated and
subtracted from the data.

The objective is to estimate each of the variation pattern vec-
tors in C, as well as the number of sources, p, based on a sam-
ple of observations of x. The estimated pattern vectors could
then be used to illustrate the nature of the spatial variation
and provide insight into the root causes. If the physics of the
process were well understood,and one were able to analytically
model the variation pattern vectors off-line, then the on-line
task would reduce to pattern recognitionor classi� cation.Apley
and Shi (1998) and Ceglarek and Shi (1996) presented methods
for accomplishing this. In many manufacturing processes there
are far too many potential variation sources to model, however,
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although the number p of actual sources present at any given
time may be reasonable. In addition, the physics of the process
may be so complex that analytical modeling becomes impossi-
ble. Consequently, the more challenging and less restrictive ob-
jective addressed in this article—estimating C “blindly” from
on-line data with no off-line modeling required—has practical
importance.

Because the model (1) is similar to what is assumed in stan-
dard linear orthogonalfactor analysis and principal components
analysis (Jackson 1980, 1981; Johnson and Wichern 1998),
one may consider using those methods to estimate C. Princi-
pal components analysis (PCA) and factor analysis produce an
estimate of C that is unique only up to postmultiplicationby a
p £ p orthogonal rotation matrix. The objective of factor rota-
tion (Johnson and Wichern 1998) is to � nd the rotation matrix
that yields the clearest interpretation of the resulting estimate
of C. The most common factor rotation methods (e.g., the vari-
max method) involve the optimization of somewhat arti� cial,
prede� ned interpretability criteria. Depending on the structure
of the true C, which is determined by the nature of the vari-
ation sources and the underlying physics of the process, these
methods may or may not rotate the estimate of C into some-
thing closer to the true value. This is discussed in more detail in
Section 6 (also see A&S).

The method proposed by A&S can be viewed as a form of
factor rotation that, rather than using some prede� ned inter-
pretability criterion, attempts to rotate the estimate of C so that
it is as close as possible to the true C. This will presumably re-
sult in the clearest interpretability, in the sense of leading to the
clearest understandingof the true nature of the variation sources
and their root causes. To accomplish this, the method of A&S
assumes certain structural constraints on the true C. Although
their assumptions are less restrictive than the implicit assump-
tions involved in the varimax method (see Sec. 6), they limit the
method’s applicability to some extent. In addition, the method
of A&S involves a level of user subjectivity that may prohibit
its use by process operators and engineers who have limited
statistical training. A more generic and black-box method (i.e.,
requiring less user input) of blindly estimating C would have
broader applicabilityand could be used by a wider audience.

A class of signal processing methods, commonly termed
blind source separation (Cardoso 1998; Haykin 2000), seems

to provide a solution to this problem. Blind separation meth-
ods were originally developed for processing sensor array (e.g.,
radar, sonar, wireless communication) signals. Although these
signal processing problems differ in many respects from the
manufacturing variation diagnosis problem described earlier,
they use a model with a structure nearly identical to (1). The
main purpose of this article is to demonstrate that existing
blind source separation methods provide a reasonably effective,
generic, and black-boxmeans of uniquely identifyingmanufac-
turing variation patterns in the aforementioned context.

The remainder of the article is organized as follows. Sec-
tion 2 provides an example illustrating the suitability of (1) for
representing spatial manufacturingvariation patterns. Section 3
brie� y introduces the blind source separation problem in sen-
sor array signal processing. Section 4 provides an overview of
blind source separation methods, and Section 5 provides an il-
lustrative example from automotive crankshaft manufacturing.
Whereas the method of A&S imposes assumptionson the struc-
ture of C, blind separation methods impose assumptions on the
distribution of the sources. Section 6 compares the various as-
sumptions and discusses some of their implications in the con-
text of diagnosing manufacturing variation. Section 7 investi-
gates the effects of violating the blind separation assumptions.
Finally, Section 8 discusses strategies for applying blind sepa-
ration methods when the noise covariance matrix is not a scalar
multiple of the identity matrix.

2. ILLUSTRATION OF THE MODEL

In this section, the model (1) is motivated with an exam-
ple from auto body assembly. Apley and Shi (1998) and A&S
have provided more detailed discussions of similar examples.
Figure 1(a) shows the measurement layout on the rear quar-
ter panel subassembly of an auto body. The quarter panel sub-
assembly consists of a quarter panel, joined to a D-pillar rein-
forcement. The measurements are taken after the quarter panel
subassembly is joined to the body side (although the body side
is omitted from the � gure). The y-direction is toward the front
of the vehicle, and the z-direction is up. The measurement vec-
tor x consists of n D 10 y=z-plane dimensional coordinates of
� ve features [numbered 1–5 in Fig. 1(a)] on the quarter panel
subassembly. Although roughly 200 dimensional coordinates

(a) (b)

Figure 1. Two Linear Spatial Variation Patterns in Auto Body Assembly: (a) A Rotation of the Quarter Panel Subassembly About Locating Hole 5
and (b) a Translation of the D-Pillar in the z-Direction.
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were measured on the entire auto body, this example considers
only the quarter panel subassembly measurements for illustra-
tive purposes.

Before the individual panels are welded together, they must
be located accurately with respect to one another in � xtures and
then clamped into place. The panels are positioned in the y=z
plane using pins rigidly attached to the � xtures. Each pin mates
with either a hole or a slot in the panel, so that the panel position
is constrained but not overly constrained. For example, before
the D-pillar is joined to the quarter panel, the quarter panel is
located by pins that mate with one hole (feature 5) and one slot
(feature 2) that are punched into the quarter panel after stamp-
ing. Likewise, the D-pillar is located by pins that mate with one
hole (feature 3) and one slot (feature 1) that are punched into
the D-pillar. When the complete quarter panel subassembly is
subsequently joined to the body side, it is constrained by pins
that mate with the same hole and slot (features 5 and 2) that
were used to locate the quarter panel in the previous operation.

Through repeated use (1,000 panels per day may be placed
into each � xture), the pins frequently become worn or loose.
If this occurs, the panel will no longer be constrained to lie
in its proper location when placed into the � xture. In one case
study, the pin that mates with the feature 2 slot had become
loose in the operation joining the quarter panel subassembly to
the body side. When the quarter panel subassembly was placed
into the � xture, it was free to rotate by a small amount in the
y=z plane about the feature 5 hole. If an individualquarter panel
subassembly rotated by (say) 1 degree in the clockwise direc-
tion, it retained the incorrect position when it was subsequently
clamped into place and welded to the rest of the body side. For
the next auto body, the quarter panel subassembly might ro-
tate in the counterclockwise direction. From auto body to auto
body, the loose pin caused a distinct spatial variation pattern in
the measurement vector x.

Referring to this as variation pattern 1, v1 is the random vari-
able (scaled to have unit variance) that represents the angle of
rotation of a quarter panel subassembly. The vector c1 indicates
that the pattern is a rotation of the quarter panel about feature 5,
and the signs and magnitudes of the elements of c1 depend on
the geometry of the panels and � xtures and the location of the
measurements. The elements of c1 are plotted as arrows in Fig-
ure 1(a) at the locations of the features to which they corre-
spond. The scaling is for visual convenience, and the y=z coor-
dinates of each feature have been combined into a single arrow.

In the same case study, the feature 3 hole had been elongated
in the z-direction due to improper stamping of the D-pillar.
When each D-pillar was placed into the � xture before being
welded to the quarter panel, the pin no longer completely con-
strained the D-pillar in the z-direction.This resulted in a second
distinct variation pattern in which the D-pillar translated up on
some autobodies and down on others. Referring to this as vari-
ation pattern 2, v2 is the unit variance random variable propor-
tional to the amount a D-pillar translates. The pattern vector c2

is shown in Figure 1(b). The elements of c2 are all 0, except
for those that correspond to the z-direction coordinates of the
D-pillar features.

This example illustrates not only the applicability of the lin-
ear model (1), but also how the results of estimating C might
be used to gain insight into the root causes of the variation. The

pattern vectors c1 and c2 illustrated in Figures 1(a) and 1(b)
were, in fact, estimates produced by one of the methods de-
scribed in Section 4. Based on this illustration, c1 and c2 were
clearly interpreted as a rotation of the quarter panel subassem-
bly about feature 5 and an up/down translation of the D-pillar.
Operators and engineers familiar with the process tooling then
identi� ed a small set of potential root causes, and a brief in-
vestigation at the assembly line veri� ed the actual root causes
described earlier.

In the preceding example, it was implied that the variation
patterns were linear. The rotation pattern depicted in Figure 1(a)
is nonlinear, strictly speaking, because the exact relationship
between the elements of x involves geometric functions such as
sines and cosines. But the relationship is closely approximated
as linear when small angles of rotation are involved. In practice,
most manufacturing variation patterns would involve some de-
gree of nonlinearity.As discussed by Apley and Shi (1998) and
A&S, the model (1) may be viewed as the linearized approxi-
mation of a more exact nonlinear model.

3. THE BLIND SOURCE SEPARATION PROBLEM

Blind source separation is a term used to describe a number
of related signal processing problems in which there is an array
of spatially distributed sensors, each of which picks up signals
from a number of distinct, signal-emitting sources (Cardoso
1998; Haykin 2000). Applications include radar and sonar sig-
nal processing, biomedical (e.g., electroencephalography, elec-
trocardiography, fetal heartbeat) and geophysical signal moni-
toring, wireless communications, and speaker localization. We
illustrate the situation with the classic blind separation example
of speaker localization, sometimes referred to as the “cocktail-
party problem.” Suppose that there are a number of people (the
sources) speaking simultaneously in a room, and that there are
also a number of microphones (the sensors) spatially distrib-
uted throughout the room. Let p and n denote the number of
speakers and microphones, as shown in Figure 2. Let xi;t de-
note the signal recorded by the ith microphone at time t, and let
vj;t denote the speech signal emitted by the jth speaker at time t.
Each microphone signal will generally be a mixture of source
signals received from all of the speakers (typically assumed to

Figure 2. The Blind Separation Problem for Speaker Localization.
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be a weighted linear combination)plus additive noise. Ignoring
any time delays, we can write the model as

xi;t D ci;1v1;t Cci;2v2;t C¢ ¢ ¢Cci;pvp;t Cwi;t; i D 1;2; : : : ;n;

(2)
where each ci;j is a weighting coef� cient that depends on the
distance between the ith microphone and the jth speaker. The
quantity wi;t is the noise affecting microphone i at time t.
Combining (2) for i D 1; 2; : : : ; n, the form of the speaker lo-
calization model is identical to (1). Many other sensor-array
signal processing problems yield a sensor/source model with
this same linear structure. In radar signal processing, for exam-
ple, the sources are p spatially distributedobjects to be detected,
and the sensors are an array of n spatially selective radar anten-
nas. It is generally assumed that the p source signals are ran-
dom and independent. The noise is sometimes assumed to be
negligible in sensor-array signal processing, whereas in most
manufacturing applications it would be nonnegligible.

The term “blind” in blind separation refers to the situation
in which information on the sources must be determined solely
from the data sample (xt; t D 1;2; : : : ;N/, with no prior knowl-
edge of the relationship between the source and sensor signals
other than the assumed structure of (1). To accomplish this, it
is necessary to � rst estimate C “blindly” from the data. If the
objective in the speaker localization problem were purely to
identify and track the location of each speaker, then estimation
of C would be the primary objective.Because the weighting co-
ef� cients contained in C depend on the distances between the
speakers and the microphones, triangulationprinciplescould be
used to determine the location of each speaker. In radar, sonar,
and other applications, the location of the sources can also be
determinedbased on the weighting coef� cients in C (Monzingo
and Miller 1980). If, on the other hand, the objective in the
speaker localization problem were to distinguish between the
speech signals of each speaker, then estimation of C would be
only an intermediate step. Once an estimate of C is obtained,
straightforward linear regression could be used to estimate each
of the p individual speech signals over the data sample. This
is similar to the objective in typical wireless communications
applications,where the original source signals bear some trans-
mitted information.

In manufacturing variation diagnosis, it may be useful to es-
timate both C and the source signals. The columns of C provide
information on the spatial nature of the variation patterns, and
the estimated source signals provide information on the tempo-
ral nature of the variation over the data sample. Although the
primary focus of this article is on estimating C, the example in
Section 5 illustrates how the source signals may be estimated
and utilized.

4. BLIND SOURCE SEPARATION METHODS

Because the classic blind source separation model is identi-
cal to (1), many of the blind separation methods apply directly
to manufacturing variation diagnosis. This section discusses
two main classes of blind separation algorithms: second-order
methods and fourth-ordermethods. Each class involvesa differ-
ent set of additional assumptions regarding the characteristics
of the source distributions, discussed in Sections 4.2 and 4.3.

Within each class there are many variants. Rather than provide
a comprehensive survey of the different variants, we focus on a
single method from each class that illustrates the main princi-
ples and that is relatively straightforward to implement. (Com-
prehensive discussions can be found in Cardoso 1998; Hyvari-
nen 1999; Hyvarinen and Oja 2000).

4.1 The Common Step: Principal Components Analysis

Most blind separation methods, including those discussed in
this article, use a form of PCA as the � rst step. PCA, which in-
volves the eigenvectors and eigenvalues of the covariance ma-
trix of x, is also the basis for most factor rotation methods. We
describe the methods in the context that the true covariancema-
trix of x, denoted by 6x, is known. In practice, one must work
with an estimate of 6x obtained from the data sample. To im-
plement the methods discussed in this section, all distributional
parameters would be replaced by their sample estimates.

From the model structure and assumptions, the covariance
of x is

6x D E[.Cv C w/.Cv C w/0] D CC0 C ¾ 2I: (3)

Let fzi : i D 1; 2; : : : ;ng denote an orthonormal set of eigen-
vectors of 6x, and let f¸i : i D 1;2; : : : ;ng denote the corre-
sponding eigenvalues, arranged in descending order. It follows
from (3) that ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸p > ¾ 2

D ¸pC1 D ¸pC2 D ¢ ¢ ¢ D
¸n . Thus p is the number of dominant eigenvalues, and ¾ 2 is
equal to any of the smallest n ¡ p eigenvalues.

A PCA decompositionof 6x also yields

6x D
n

X

iD1

¸iziz0
i D

p
X

iD1

.¸i ¡ ¾ 2/ziz0
i C ¾ 2

n
X

iD1

ziz0
i

D Zp[3p ¡ ¾ 2I]Z0
p C ¾ 2I; (4)

where Zp D [z1; z2; : : : ; zp], and 3p D diagf¸1; ¸2; : : : ; ¸pg.
For the covariance structures in (3) and (4) to be consistent,
C must be of the form Zp[3p ¡ ¾ 2I]1=2Q for some p £ p or-
thogonal matrix Q.

Using PCA to � nd p, Zp , 3p, and ¾ 2 is the � rst step of both
the second-orderand the fourth-orderblind separationmethods.
The remainder of the problem reduces to � nding Q and then us-
ing C D Zp[3p ¡ ¾ 2I]1=2Q. Note that PCA provides no infor-
mation regarding Q, because any orthogonal matrix will result
in a covariance structure (3) that is consistent with (4). When
applying PCA to the sample covariance matrix, it may not be
clear how many eigenvalues are dominant. A&S discussed var-
ious methods for estimating p. The average of the n¡p smallest
eigenvalues is then used as an estimate of ¾ 2.

Rather than working directly with the measurements x,
blind separation methods usually work with a transformed
version with spatially whitened (uncorrelated) components.
The p-length whitened vector of measurements is de� ned as
y D W¡1x, where W D Zp[3p ¡ ¾ 2I]1=2, and W¡1

D [3p ¡
¾ 2I]¡1=2Z0p is a left inverse of W (W¡1W D I). From the rela-
tionship C D Zp[3p ¡ ¾ 2I]1=2Q D WQ, it follows that

y D W¡1x D W¡1[Cv C w] D Qv C W¡1w: (5)

Because y has diagonal covariance matrix I C ¾ 2[3p ¡ ¾ 2I]¡1,
W¡1 is often referred to as the “whitening matrix.”
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4.2 Second-Order Methods

Second-order methods use only second-order statistics (co-
variance and autocovariance) of the data. These methods im-
pose the additional assumption that of the p sources present, no
pair has the exact same autocorrelation function. A necessary
condition for this assumption to hold is that at least p ¡ 1 of the
p sources are temporally autocorrelated. The noise is assumed
to be temporally uncorrelated.

Let vt denote the source vector at time t. De� ne 6v;¿ D
E[vtvtC¿ ] to be the autocovariancematrix of v at lag ¿ ¸ 0. By
the assumption of source independence,6v;¿ is a diagonal ma-
trix with diagonal elements ½1;¿ ; ½2;¿ ; : : : ; ½p;¿ , where ½i;¿ is
the autocorrelation function of vi.the autocorrelation and auto-
covariancefunctionsof the sources are equivalent,because they
are scaled to have unit variance). From (5), the autocovariance
matrix of y at lag ¿ ¸ 1 is 6y;¿ D E[.Qvt C W¡1wt/.QvtC¿ C
W¡1wtC¿ /0] D Q6v;¿ Q0. Because Q is an orthogonalmatrix,

Q06y;¿ Q D 6v;¿ D

2

6664

½1;¿

½2;¿

: : :

½p;¿

3

7775
(6)

is diagonal for all ¿ ¸ 1. Equation (6) forms the basis for
second-order blind separation methods. Its signi� cance is that
the p £ p orthogonal matrix Q that we seek is the matrix that
jointly diagonalizesthe entire set 6y;¿ ; ¿ ¸ 1. This joint diago-
nalizer is unique if the assumption holds that no pair of sources
have the exact same autocorrelation function (see theorem 3 of
Belouchrani, Abed-Meraim, Cardoso, and Moulines 1997).

When working with sample data, no single Q will jointly di-
agonalize the sample 6y;¿ ’s for all ¿ ¸ 1. Tong, Soon, Huang,
and Liu (1990) proposed choosing Q to be the orthogonal ma-
trix that diagonalizes6y;¿ for a single speci� ed ¿ . Belouchrani
et al. (1997) improved the approach by choosing Q to be the
orthogonalmatrix that jointly approximatelydiagonalizes 6y;¿

for a set of ¿ ’s (e.g., ¿ D 1;2; : : : ;10/. Speci� cally, Q is chosen
to minimize the sum of the squares of the off-diagonal elements
of the set of matrices, Q06y;¿ Q, for the speci� ed set of ¿ ’s. For-
tunately, there is a computationally ef� cient numerical method
for accomplishing this. Belouchrani et al. (1997) have provided
details of the algorithm, which is a generalization the Jacobi
technique (Golub and Loan 1989) for exactly diagonalizing a
single matrix.

The reason that the second-order method requires that the
autocorrelation functions differ is somewhat apparent from
the relationship 6y;¿ D Q6v;¿ Q0. Consider the extreme case
in which all p sources have the exact same autocorrelation
function, ½i;¿ D ½¿ , i D 1; 2; : : : ;p. Then for each ¿; 6y;¿ D
Q6v;¿ Q0 D ½¿ QQ0 D ½¿ I, a scalar multiple of the identity ma-
trix. Thus any orthogonalmatrix will diagonalize the entire set,
and Q cannot be uniquely identi� ed.

4.3 Fourth-Order Methods

As the name suggests, fourth-ordermethods use fourth-order
statistics to uniquely estimate Q under their own speci� c set of
additionalassumptions.Whereas second-ordermethods impose

assumptions on the source and noise autocorrelation, fourth-
order methods impose the assumptions that no more than one of
the p sources follows a Gaussian distribution,and that the noise
is either negligible or follows a Gaussian distribution. Fourth-
order methods can be derived as approximate maximum like-
lihood estimation (MLE) methods (Cardoso 1998). In addition
to the foregoing assumptions, exact MLE methods typically as-
sume that additional characteristics of the source distributions
are known (e.g., that the sources follow uniform distributions).
In this sense, the fourth-order methods involve a more relaxed
set of assumptions and less a priori knowledge than exact MLE
methods. There also is a computationallyef� cient algorithm for
their implementation (Cardoso and Souloumiac 1993).

For an arbitrary 0-mean random vector u D [u1;u2; : : : ;up]0,
the fourth-order cumulant of its ith, jth, kth, and lth elements,
1 · i; j;k; l · p, is de� ned as

Ci;j;k;l.u/ D E[uiujukul] ¡ E[uiuj]E[ukul] ¡ E[uiuk]E[ujul]

¡ E[uiul]E[ujuk]: (7)

Note that Ci;i;i;i.u/ is the kurtosis of ui . Three important cumu-
lant properties are as follows (Rosenblatt 1985; Stuart and Ord
1987): (a) If u is Gaussian, then all of its fourth-ordercumulants
are 0; (b) if u and z are independent and of equal dimension,
then Ci;j;k;l.u C z/ D Ci;j;k;l.u/ C Ci;j;k;l.z/; and (c) if the ele-
ments of u are independent,then all cross-cumulants of u are 0.
A cross-cumulant is de� ned as Ci;j;k;l.u/ with i; j; k; l 6D i; i; i; i.

Let U be an arbitrary p £ p orthogonal matrix, and con-
sider the transformation U0y of the whitened data. Because w
is assumed to be Gaussian and independent of v, properties (a)
and (b) and eq. (5) imply that Ci;j;k;l.U0y/ D Ci;j;k;l.U0Qv/.
When U is the desired orthogonal matrix Q, U0Qv D v has in-
dependentcomponents, and all cross-cumulants of U0y are 0 by
property (c). This fact forms the basis for fourth-order meth-
ods. The objective is to � nd the orthogonal matrix U that min-
imizes the cross-cumulants of U0y, and Q is then taken to be
the minimizer. This can be viewed as � nding the orthogonal
transformation of (the already spatially uncorrelated) y whose
components are as independent as possible, where the cross-
cumulants provide the measure of independence. This bears a
close relationship to PCA, in which the data are transformed to
have uncorrelated,but not necessarily independentcomponents.
Because of this, Comon (1994) has referred to blind separation
methods of this type as independentcomponents analysis.

Comon (1994) has suggested taking Q to be the minimizer
(over all p £ p orthogonal matrices U) of the sum of the
squares of the entire set of cross-cumulants of U0y. Cardoso
and Souloumiac (1993) proposed taking Q to be the minimizer
of a similar criterion,

X
1·i;j;k;l·p

l 6Dk

C2
i;j;k;l.U0y/; (8)

which involves only a subset of the cross-cumulants. Cardoso
and Souloumiac (1993) showed that U D Q is the unique mini-
mizer of (8) if there is at most one Gaussian source (more pre-
cisely, if there is at most one source with zero kurtosis). The ad-
vantage of (8), known as the joint approximate diagonalization
of eigenmatrices (JADE) criterion, is that there exists a com-
putationallyef� cient method for � nding its minimizer. Cardoso
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Figure 3. Geometry of the Crankshaft in the Example of Section 5.

and Souloumiac (1993) have shown that an equivalent expres-
sion for (8) is

X

1·i;j;k;l·p
l 6Dk

C2
i;j;k;l.U0y/ D

X

1·i;j;k;l·p
l 6Dk

[U0M.i; j/U]2
k;l; (9)

where [²]k;l denotes the kth-row, lth-column element of a ma-
trix, and each p £ p cumulant matrix M.i; j/ .1 · i; j · p/ is
de� ned such that [M.i; j/]k;l D Ci;j;k;l.y/.

From (9), the JADE criterion is equivalent to � nding the or-
thogonalmatrix U that minimizes the sum of the squares of the
off-diagonal elements of the set of transformed cumulant ma-
trices fU0M.i; j/U : 1 · i; j · pg. This gives rise to the “joint di-
agonalization” term in the JADE acronym. The “approximate”
term in the acronym stems from the fact that with sample data,
no orthogonal transformation will result in all sample cross-
cumulants exactly equal to 0. The sample cumulant matrices
can be only approximately diagonalized in the sense that (9) is
minimized. The sample cumulants are de� ned in the obvious
way by replacing the expectations of the quantities in (7) with
their sample averages.

Because the second-order and fourth-order methods involve
similar joint approximate diagonalizations, the same computa-
tionally ef� cient generalization of the Jacobi technique can be
used for both cases. Cardoso and Souloumiac (1993) have pro-
vided details on the JADE algorithm, which is often used as
a benchmark for evaluating other algorithms (Reed and Yao
1998; Wax and Sheinvald 1997). Matlab code is available on
request from the authors.

5. AN ILLUSTRATIVE EXAMPLE

The automotive crankshaft manufacturingprocess comprises
forging,roughcutting, � nish cutting,drilling,grinding,and pol-
ishing. Figure 3 shows the geometry of a crankshaft produced
in a manufacturing line in which an extensive amount of in-
process measurement and inspection occur. Near the end of the
line, for example, stylus traces around the circumference at a
number of locations on the main bearings and pin bearings are
taken automatically (for 100% of the crankshafts produced).
The difference between the target diameter and the maximum,
minimum, and average diameter at each location is then logged.

(This example considers only the maximum diameter measure-
ments.) The “²” symbols in Figure 3 indicate the locations at
which the diameter measurements are taken. The diameters are
measured at three locations along each of the � ve main bear-
ings (mains 1–5) and at � ve locations along each of the four pin
bearings (pins 1–4). Thus the measurement vector x for each
crankshaft consists of n D 35 diameter measurements.

Based on a sample of N D 247 crankshafts, it was estimated
(using the methods discussed in A&S) that p D 3 major vari-
ation sources were present. Estimates of the three variation
pattern vectors and the corresponding source signals using the
fourth-order method are shown in Figures 4–6. The rotated ver-
sion Q0yt of the whitened data was used as an estimate of vt.
Each element of a pattern vector is represented as an arrow at
the location of the corresponding diameter measurement. The
length of the arrow is proportional to the magnitude of the el-
ement. (The same scaling was used in all three � gures.) The
sign of each element is represented by the direction of the ar-
row (pointing out of the crankshaft for a positive element and
into the crankshaft for a negative element). Many elements of
each pattern vector were negligibly small, in which case their
arrows were omitted. Note that we could reverse the direction
of all arrows without changing the meaning of the patterns. In
other words, the ith pattern represents variation in x in both
the positive ci and the negative ci directions. Whether the ith
pattern causes a diameter to increase or to decrease on a par-
ticular crankshaft (say, crankshaft t/ depends on whether vi;t is
positive or negative. An arrow pointing out of the crankshaft,
coupled with a positive source signal, represents an increase in
diameter.

The three variation patterns were ordered in terms of de-
creasing severity, which is somewhat apparent by comparing
the lengths of the arrows in Figures 4–6. We can quantify the
severity of each source by noting that the total variance of x is

n
X

iD1

E£x2
i
¤ D E[x0x] D

p
X

iD1

E[.civi/0.civi/] C E[w0w]

D
p

X

iD1

c0
ici C n¾ 2:

Thus the contribution of the ith source to the total variance
is c0

ici. The total variance for this example was 113, and the

TECHNOMETRICS, AUGUST 2003, VOL. 45, NO. 3



226 DANIEL W. APLEY AND HO YOUNG LEE

(a)

(b)

Figure 4. Estimates of the First Pattern Vector c1 (a) and Source Signal v1;t (b) in the Crankshaft Example. The � rst pattern affects only the
main bearings and appears to be caused by shaft �exibility during rough cutting.

contributions of the three sources were c0
1c1 D 44:5 (39.3%),

c0
2c2 D 17:2 (15.2%), and c0

3c3 D 16:0 (14.2%). Together, the
three sources account for 68.7% of the total variance of x.

The illustrations in Figures 4–6 might be used by process op-
erators and engineers to aid in diagnosing the major root causes
of variation in the bearing diameters. The � rst variation source,
illustrated in Figure 4, has a pronounced effect on all but one
of the main bearings and no effect on the pin bearings. Be-
cause the arrows on mains 1–4 all point in the same direction,
this source causes all of the diameters on these bearings to ei-
ther increase together or decrease together from crankshaft to
crankshaft. The relative lengths of the arrows indicate that the
diameters located near the middle of the crankshaft (mains 2
and 3) vary by a much larger amount (roughly 2.5 times larger)
than the diameters located nearer to the ends of the crankshaft
(mains 1 and 4). The diameters on main 5, which is nearest to
the end of the crankshaft, do not vary at all. One possible ex-
planation is that the large cutting forces generated during rough
cut machining cause the middle of the crankshaft to � ex more
than the ends, which are held securely in chucks. We note that
the � rst variation source alone accounted for 83.5% of the total
variance of the main 2 and main 3 diameters.

The second variation source, illustrated in Figure 5, affects
primarily pins 1 and 2. Main 2, which is located between pins 1
and 2, is slightly affected. The arrows in Figure 5 indicate

that the second source causes the diameters on pin 1 to in-
crease/decrease uniformly along its length, while simultane-
ously causing a taper along pin 2. The estimated source sig-
nal also provides insight into the temporal nature of the varia-
tion pattern that may aid in identifying its root cause. The plot
of v2;t in Figure 5 shows that the second source tends to wan-
der both above and below the zero value for extended periods
of time, with a substantial shift occurring around the time of
crankshaft 200. The third variation source, illustrated in Fig-
ure 6, affects only the pins. If we visually smooth the arrows
for this pattern, then it appears that when the diameters near the
middle of the crankshaft (pins 2 and 3) increase, the diameters
near the ends of the crankshaft (pins 1 and 4) tend to decrease,
and vice versa. The plot of v3;t in Figure 6 also reveals an in-
teresting temporal pattern. A large portion of the variation in
the third source is due to only a few spikes in the data, occur-
ring at around the times of crankshafts number 60 and 180. By
inspection of the plot of v3;t , it appears that the third source
may come from a mixture of two different distributions dur-
ing these temporary periods of large variability. The suspected
root cause relates to the use of parallel machines to perform the
same operation at certain locations in the production line. The
mixture distribution observed in v3;t most likely resulted from
an intermittent problem experienced by only one of the parallel
machines.
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(a)

(b)

Figure 5. Estimates of the Second Pattern Vector c2 (a) and Source Signal v2;t (b) in the Crankshaft Example. The predominant effects of the
second pattern are on pins 1 and 2, and the plot of v2;t indicates a substantial shift around crankshaft number 200.

(a)

(b)

Figure 6. Estimates of the Third Pattern Vector c3 (a) and Source Signal v3;t (b) in the Crankshaft Example. The third pattern affects only the
pin bearings, and the plot of v3;t indicates that the temporal nature of the source is intermittent bursts of large variability.
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6. DISCUSSION OF THE ASSUMPTIONS

Virtually all methods that attempt to uniquely estimate C im-
pose explicit or implicit assumptions regarding either the struc-
ture of C or the source distributions. This includes the method
of A&S, blind source separation, and the varimax factor rota-
tion method.Which method we could expect to produce a better
estimate of C depends largely on which assumptions are better
satis� ed. The purpose of this section is to compare the various
assumptions and provide guidelines for verifying whether they
are satis� ed.

6.1 Comparing the Assumptions

The varimax optimization criterion is intended to produce an
estimate of C whose elements are either large in magnitude or
small in magnitude, with as few moderate-sized elements as
possible (Johnson and Wichern 1998). For any valid estimate
of C, the sum of the squares of the elements of any one of its
rows is a � xed quantity (equal to the variance of the correspond-
ing element of x, minus ¾ 2). Consequently,the varimax method
seeks an estimate of C whose structure is as close as possible to
what we refer to as the ideal varimax structure,

C D

2

6664

c1;1

c2;2
: : :

cp;p

3

7775
; (10)

where ci;i is an ni £ 1 vector with Pp
iD1 ni D n. This assumes

an appropriate reordering of the elements of x. Hence the ideal
varimax structure is that the p variation sources affect p disjoint
subsets of the elements of x. If the true C does not have this
implicitly assumed structure, then the varimax estimate would
most likely be inaccurate.

The method of A&S assumes that C has the ragged lower
triangular structure

C D

2

666664

c1;1

c2;1 c2;2

c3;1 c3;2 c3;3
:::

:::
:::

: : :

cp;1 cp;2 cp;3 ¢ ¢ ¢ cp;p

3

777775

; (11)

where ci;j is an ni £ 1 vector with Pp
iD1 ni D n. An additional

assumption that each ni is strictly greater than 1 is required
so that the subsets discussed later can be identi� ed. The inter-
pretation of (11) is that there exists a subset of n1 measure-
ments fx1;x2; : : : ; xn1g that are affected by only a single vari-
ation source, which we call the � rst source. The effects of the
� rst source on the � rst measurement subset is represented by
c1;1. There must also exist a second subset of n2 measurements

fxn1C1;xn1C2; : : : ; xn1Cn2g that are affected by only one of the
remaining p ¡ 1 variation sources, which we call the second
source. But the second subset of measurements may also be
affected by the � rst source (c2;1 6D 0), which is a major dis-
tinction between the ideal varimax structure and the assumed
structure of A&S. There must also exist a third subset of mea-
surements affected by only one of the remaining p ¡ 2 sources
(although these measurements may also be affected by the � rst
two sources), and so on.

Comparing (10) and (11), it is clear that the ideal varimax
structure is a rather restrictive special case of the structure as-
sumed by A&S. Hence their method could be expected to pro-
duce a reasonable estimate of C in many situations where the
varimax method would not. Consider the crankshaft example
discussed in Section 5, and assume the true C coincides with
the estimates shown in Figures 4–6. Because the second and
third sources both have a strong effect on the diameter mea-
surements for pins 1 and 2, C does not have an ideal varimax
structure. In contrast, C does have the structure of (11). Pins 3
and 4 are affected by only a single source (the source illus-
trated in Fig. 6). The � rst measurement subset fx1;x2; : : : ; xn1g
would consist of the 10 diameter measurements taken on pins 3
and 4. Although pins 1 and 2 are also affected by this source,
they are affected by only one of the remaining two sources—
the source illustrated in Fig. 5. Thus the second measurement
subset fxn1C1;xn1C2; : : : ; xn1Cn2 g would consist of the 10 diam-
eter measurements taken on pins 1 and 2. The situation is simi-
lar for the two variation patterns depicted in Figure 1. Because
features 2 and 4 are affected by only one of the two variation
sources, C has the structure of (11), but does not have the ideal
varimax structure.

Even when C has the structure (11) required in the A&S
method, there is often ambiguity in selecting the measure-
ment subset affected by a single source, for reasons discussed
in Section 6.2. When this measurement subset is selected in-
correctly or when C does not have the required structure,
the method of A&S would not be expected to produce ac-
curate estimates. Blind separation methods may still apply in
these situations, because they make no assumptions regarding
the structure of C. This broader applicabilitywith respect to the
structure of C comes at the expense of narrower applicability
with respect to the source distributions. Recall that the fourth-
order method requires that no more than one of the p sources
follows a Gaussian distribution, and the second-order method
requires that no pair of sources shares the same autocorrela-
tion function. The latter is equivalent to requiring that for each
pair .i; j/ with 1 · i 6D j · p, there exists a ¿ D ¿ .i; j/ such that
½i;¿ 6D ½j;¿ . In other words, the second-order assumptions are
satis� ed as long as the autocorrelation functions for each pair
of sources differ for at least one time lag (providing that the au-
tocovariance matrix at this time lag is included in the set to be
jointly diagonalized).

Lee and Apley (2003) developed a method for optimally
combining the second-orderand fourth-order joint diagonaliza-
tion criteria to relax the blind separation assumptions required
for uniquely identifying C. They showed that the condition for
uniquely identifying C using the combined criteria is that no
pair of Gaussian sources shares the same autocorrelation func-
tion. This is weaker than the assumption in the second-order
method that no pair of sources, whether Gaussian or not, shares
the same autocorrelation function. It is also weaker than the
assumption in the fourth-order method that no more than one
source is Gaussian, because two or more Gaussian sources are
allowed if their autocorrelationfunctionsdiffer. Hence the com-
bined method would have broader applicability then either the
second-order method or the fourth-order method individually.

It shouldbe noted that the blind separation conditionsare the-
oretical conditionsthat result in the unique identi� cation of C in
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the hypotheticalsituation where the theoretical covariances and
cumulants (or, equivalently, in� nitely large samples) are avail-
able. With � nite sample sizes, the performance of the methods
depends on the extent to which their assumptions are satis� ed,
as illustrated in Section 7.

6.2 Verifying the Assumptions

Regardless of which method is used, an attempt to verify
that its assumptions are satis� ed is recommended. In this re-
spect, the blind separation methods have an advantage over the
method of A&S. For the fourth-ordermethod, histograms of the
estimated sources are useful for determining whether there is
more than one Gaussian source. For the second-order method,
a plot of the sample autocorrelation functions of the estimated
sources is useful for determining whether a pair of sources
shares the same autocorrelation function. Figures 7 and 8 show
histograms and sample autocorrelation functions for the three
source signals from the crankshaft example (with the estimated
signals shown in Figs. 4–6). The distributions of the second
and third sources appear to be non-Gaussian, which satis� es
the assumptions of the fourth-order method. In contrast, the au-
tocorrelation functions for the � rst and third sources appear to
be quite similar, which would violate the assumptions of the
second-order method.

When using the method of A&S, it is more dif� cult to verify
whether the structural requirement (11) for C is satis� ed. This

relates to how one identi� es the measurement subset that is af-
fected by only one source. The strategy described by A&S is as
follows. The latent covariance matrix is de� ned as the portion
of 6x due to the sources. From (3) and (4), the latent covariance
matrix is CC0 D Zp[3p ¡ ¾ 2I]Z0p, which can be determined
from the PCA step. The latent correlation matrix is de� ned in
the usual way from the latent covariance matrix. A&S showed
that if a subset of measurements is affected by a single varia-
tion source, then the (theoretical) latent correlation coef� cients
of these measurements are all §1. The procedure for � nding the
subsets is to inspect the (sample) latent correlation matrix for a
subset of measurements with latent correlation coef� cients that
are all close to 1 in magnitude.

Although a subset of measurements affected by a single
source will have latent correlation coef� cients that are all §1,
the converse is not always true. Consider the situation where
n D 4, p D 2, c1 D [1 1 1 1]0, and c2 D [1 1 ¡1 ¡1]0.
The latent correlation matrix in this case is

2

664

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

3

775
:

Because two measurement subsets fx1;x2g and fx3;x4g have
unit magnitude latent correlation coef� cients, we might incor-
rectly conclude that each of these subsets is affected by only

(a)

(b)

(c)

Figure 7. Histograms for the Three Source Signals From the Crankshaft Example: (a) v1, (b) v 2, (c) v3.
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Figure 8. Sample Autocorrelation Functions for the Three Source Signals From the Crankshaft Example (±, ½1;¿ ; C, ½2;¿ ; ¤, ½3;¿ ).

a single source. The reason that these subsets have high la-
tent correlation is that the effects on fx1;x2g of the � rst and
second sources are [1 1]0 and [1 1]0, which are identical.
Likewise, the effects on fx3;x4g of the � rst and second sources
are [1 1]0 and [¡1 ¡1]0, which differ by only a constant
scale factor. If the method of A&S were applied using either
of these two subsets, then the estimates of c1 and c2 would be
[p2 p2 0 0]0 and [0 0 p2 p2]0, which differ sub-
stantially from the true pattern vectors. Note that these also co-
incide with the varimax estimates. In situations like this, it is
dif� cult to verify whether high latent correlation is the result
of C truly having the structure of (11) or the result of two or
more sources having exactly the same effect (up to a constant
scale factor) on a measurement subset.

Consequently, there is a higher level of subjectivity involved
in the A&S method than in blind separation methods. The pri-
mary subjectivity in blind separation lies in deciding whether
the fourth-order method or the second-order method should be
used, which relates to verifying whether the fourth-order as-
sumptions or the second-order assumptions are better satis� ed.
It is relatively straightforward to do this using histograms and
autocorrelationplots, as described earlier. This subjectivitymay
be reduced further if the fourth-order and second-order criteria
are combined as was done by Lee and Apley (2003).

7. THE EFFECTS OF VIOLATING ASSUMPTIONS

The purpose of this section is to provide insight into how the
performance of the blind separation methods is affected when
their assumptionsare violated or close to being violated.We use

a simulation example in which a beam represents the part be-
ing manufactured and n D 20 measurements are distributeduni-
formly across the beam. There are two variation sources, with
c1 and c2 as illustrated in Figures 9(a) and 9(b). For simplicity,
the number of sources is assumed known, although in practice
this must also be estimated. A&S discussed in detail a number
of methods for estimating p.

The beam could be considered a subcomponent of a larger
assembly, in which case the variation patterns may represent
assembly variation.The � rst pattern would represent a rigid ver-
tical translation of the beam; the second pattern, a rigid rotation
about the beam centroid. Alternatively, the beam could be con-
sidered a separate part, in which case the variation patterns may
represent fabrication (e.g., extrusion) variation. In this case, the
� rst pattern would represent variation in the thickness of the
beam that occurs uniformly across its length, and the second
pattern would represent thickness variation that when larger on
one end of the beam is smaller on the other end.

Both pattern vectors were scaled so that the total variance
due to each source (c0

ici) was equal to the total variance due
to the noise (n¾ 2). In other words, the signal-to-noise ratio
c0

ici.n¾ 2/¡1 was unity for each source. The noise variance ¾ 2

was also unity. The � rst source follows a � rst-order autoregres-
sive (AR) model v1;t D Áv1;t¡1 C at , where Á D :9 and the
at’s are 0-mean independent Gaussian random variables with
variance ¾ 2

a D 1 ¡ Á2 . First-order AR processes are widely en-
countered in industrial environments(Box, Jenkins, and Reinsel
1994).The variance and autocorrelationfunctionof a � rst-order
AR process are ¾ 2

a .1 ¡ Á2/¡1 and ½¿ D Á¿ .¿ D 0; 1;2; : : :/.
Thus the marginal distribution of the � rst source is Gaussian

Figure 9. The Two Variation Patterns in the Example of Section 7: (a) c1, Which Represents a Beam Translation, and (b) c2 , Which Represents
a Beam Rotation.
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(a) (b)

Figure 10. Estimates of the Pattern Vectors and Source Signals in the Simulation Example. (a) Estimates of c1 and v1;t ; (b) Estimates of c2
and v2;t .

with 0 mean and unit variance, and its autocorrelation function
is ½1;¿ D :9¿ . The second source, v2;t, follows a (scaled and
shifted) Bernoulli distribution, where the two values §1 each
occur with equal probability .5. Variation sources of this nature
are also commonly observed in manufacturing, the root cause
of which may be two parallel machines performing the same
operation or the use of components or raw materials from two
different suppliers. The second source was temporally uncorre-
lated. Because only one source is Gaussian and the autocorre-
lation functions for the two sources differ, the assumptions of
both the second-order method and the fourth-order method are
satis� ed.

Figure 9 shows that C D [c1; c2] has neither the ideal vari-
max structure (10) nor the structure (11) required in the A&S
method. But the structure of C is close to (11), because the sec-
ond source has very little effect on the two measurements that
lie closest to the beam centroid. Ordering the measurements
from left to right, we refer to these two measurements as x10

and x11. The elements of c1 and c2 associated with fx10;x11g
are [1 1]0 and [:087 ¡:087]0. It can be shown that the latent
correlation coef� cient for x10 and x11 is .985, which is rela-
tively large. When fx10;x11g was selected as the measurement
subset affected by only a single source, the performance of the
A&S method was quite similar to the blind separation perfor-
mance discussed later. One must use caution when applying the
A&S method in this example, however. The elements of c1 and
c2 associated with the two left-most measurements fx1;x2g are
[1 1]0 and [1:65 1:47]0. It follows that the latent correlation
coef� cient for x1 and x2 is .9986, which is even larger than the
latent correlation for x10 and x11. When {x1;x2g was selected
as the measurement subset affected by only a single source,
the A&S estimates (using the theoretical covariance matrix) of

the two pattern vectors were the orthogonal linear combinations
:55c1 C :84c2 and :84c1 ¡ :55c2 of the true pattern vectors.

A Monte Carlo simulation with 10,000 replicates was used
to compare the second-order and fourth-order blind separation
methods. A sample size of N D 200 was assumed, and the auto-
covariance matrices for lags ¿ D 1; 2; : : : ; 6 were used in the
second order-method. Figure 10 shows the estimated pattern
vectors and source signals for a typical replicate. The estimated
pattern vectors are reasonably close to the true pattern vectors
shown in Figure 9 and would most likely be correctly inter-
preted as a translation and a rotation of the beam. The estimated
source signals shown in Figure 10 are noisy versions of the
true source signals. The second source is clearly non-Gaussian,
which indicates that the fourth-order assumptions were met.
Figure 11 shows that the two sources have substantially differ-
ent sample autocorrelation functions, which indicates that the
second-order assumptions were met.

To evaluate the performance of the second-order and fourth-
order methods over the entire Monte Carlo simulation, con-
sider the performance measure Ji D E[kOci ¡ cik]kcik¡1, where

Oci denotes an estimate of ci .i D 1;2/. The average value of

kOci ¡ cikkcik¡1 over the 10,000 replicates was used to estimate
J1 and J2 for both methods. The results, given in the � rst row
of Table 1, indicate that both methods perform similarly for this
example.

In the remainder of this section we investigate the perfor-
mance of the two methods as their assumptions become closer
to being violated. While the � rst source remained Gaussian,
the distribution of the second source was modi� ed from the
Bernoulli distribution to the uniform, triangular, and Gaussian
distributions shown in Figure 12, each having 0 mean and unit
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Figure 11. Sample Autocorrelation Functions for the Estimated
Source Signals in the Simulation Example (±, ½1;¿ ; ¤, ½2;¿ ).

variance. This represents the second source distribution becom-
ing successively closer to the Gaussian distribution, in terms
of its kurtosis. Note that the kurtosis for the Bernoulli, uni-
form, triangular, and Gaussian distributionsare ¡2, ¡1:2, ¡:6,
and 0. When the second source is exactlyGaussian, the assump-
tions of the fourth-order method are violated. The results of us-
ing 10,000 Monte Carlo replicates to estimate J1 and J2 are
shown in Table 1. The performance of the fourth-order method
clearly deteriorates as the distribution of the second source be-
comes closer to Gaussian. But its performance is still reason-
able (Ji ¼ :1) when the second source distribution is uniform.
The performance of the second-order method is unaffected by
the source distribution.

The situation is reversed as the assumptions regarding the
source autocorrelation in the second-order method become
closer to being violated.While the second source remained tem-
porally uncorrelated, the autocorrelation of the � rst source was
reduced by decreasing the AR parameter Á, as illustrated in
Figure 13. For Á D 0, the � rst source is uncorrelated, and the
assumptions of the second-order method are violated. Table 1
indicates that the performance of the second-order method de-
teriorates rapidly for Á < :5, whereas the fourth-order method
is unaffected by the source autocorrelation.

The last row of Table 1 gives the results when the assump-
tions for both methods are violated, in which case neither
method performed well. In comparison, the A&S method was
still quite effective (J1 D :108, J2 D :085) in this situation when

Table 1. Performance of the Second-Order and Fourth-Order Methods
as Their Assumptions Become Closer to Being Violated

Fourth-order Second-order
method method

v1 autocorrelation v2 distribution J1 J2 J1 J2

Á D :9 Bernoulli .075 .097 .103 .082
Á D :9 Uniform .103 .116 .104 .083
Á D :9 Triangular .234 .236 .103 .082
Á D :9 Gaussian .362 .360 .104 .082
Á D :7 Bernoulli .075 .098 .116 .098
Á D :5 Bernoulli .075 .098 .144 .132
Á D :3 Bernoulli .075 .097 .277 .270
Á D 0 Bernoulli .074 .098 .568 .567
Á D 0 Gaussian .361 .360 .567 .567

Figure 12. The Bernoulli, Uniform, Triangular, and Gaussian Distrib-
utions (With Mean 0 and Unit Variance) Used for the Second Source.
The Bernoulli distribution is discrete, whereas the others are continuous
distributions.

fx10;x11g was selected as the � rst measurement subset. But for
the reasons discussed earlier, it performed poorly (J1 D :574,
J2 D :573/ when fx1;x2g was selected as the � rst measurement
subset.

We have also observed that the performance measures for
both the second-orderand the fourth-ordermethods are roughly
inversely proportional to the square root of the sample size N
and the square root of the signal-to-noiseratio. This agrees with
the asymptotic results discussed by Cardoso (1998).

8. ACCOMMODATING OTHER NOISE COVARIANCE
STRUCTURES

Throughout this article, we have assumed that 6w D ¾ 2I—
in other words, the noise variables associated with each element
of x are uncorrelated and have equal, but unknown variance. In
applications where the elements of x are similar entities ob-
tained via similar measurement principles, this often would be
a reasonable assumption. In this situation, one may even take
the view that the noise variance for each element of x should be
equal. If 6w D ¾ 2I were assumed, but a particularelement of w
had a much larger variance (because of larger measurement er-
ror, for example), then this would appear as an additionalvaria-
tion pattern. The only nonzero element of the associated pattern

Figure 13. Autocorrelation Function ½1;¿ D Á¿ of the First-Order AR
Source, v1, for Various Á.
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vector would correspond to the element of w with larger vari-
ance. This may provide an indication that the apparatus used to
measure that particular element of x should be recalibrated or
replaced.

Many factor rotation methods assume only that 6w D
diagf¾ 2

1 ; ¾ 2
2 ; : : : ; ¾ 2

n g is diagonal (Johnson and Wichern 1998).
When the elements of x represent different entities measured on
different scales, this would be more appropriate than assuming
that 6w D ¾ 2I. The blind separation algorithms may still be
applied in this situation, as long as the diagonal 6w is known
(up to multiplication by a scalar constant) or a reasonable es-
timate is available. Before the algorithms are applied, the data
must � rst be transformed via 6¡1=2

w x D .6¡1=2
w C/v C 6¡1=2

w w,
where 6¡1=2

w D diagf¾ ¡1
1 ; ¾ ¡1

2 ; : : : ; ¾ ¡1
n g. Because the covari-

ance matrix of the transformed noise 6¡1=2
w w is a scalar mul-

tiple of the identity matrix, blind separation algorithms can be
applied directly to the transformed data to produce an estimate
of 6¡1=2

w C. This estimate can then be transformed back to C by
premultiplyingby 61=2

w .
An estimate of 6w would often be available in the con-

text of manufacturing statistical process control (SPC). The
estimate could be obtained by estimating the noise variances

f¾
2
1 ; ¾ 2

2 ; : : : ; ¾ 2
n g from a sample of data collected when the

process is known to be in control (i.e., when no variation
sources are present, so that x D w). Gage repeatability and re-
producibility studies might also be used to estimate the noise
variances.

An alternative to estimating the noise variances is to as-
sume that they are such that ¾i D ®Ti (i D 1; 2; : : : ; n), where
Ti denotes the width of the tolerance interval assigned to xi

and ® is some arbitrary scale factor. In other words, the as-
sumption would be that the standard deviation of each xi is
proportional to its tolerance width when no variation sources
are present other than the noise. Borrowing SPC terminology,
we may view this as common cause variability. This assump-
tion translates to equal process capability ratios (the tolerance
width divided by six standard deviation units) for all elements
of x when only common cause variability is present. Although
there is no statistical validity to this assumption, it has a con-
ceptual appeal that we tend to favor for two reasons. First, tol-
erances are often assigned and/or manufacturing processes de-
signed so that common cause variability is proportional to the
tolerance width. Second, suppose that with only common cause
variability present, the process capability ratio for a particular
element of x was substantially smaller than for the other ele-
ments. If the blind separation methods were applied under the
assumption of equal process capability ratios, then the result
would be an additionalvariation pattern affecting only the vari-
able with the low process capability. This would rightly call
attention to the variable in most need of quality improvement
efforts.

9. CONCLUSIONS

In this article we have reported on a blind source separa-
tion approach to identifyingvariation patterns in manufacturing
measurement data. We considered two main classes (second-
order and fourth-order) of blind separation methods and con-
trasted these with alternative methods for identifying variation

patterns. The relative performance of the various methods de-
pends predominantly on whether their speci� c sets of assump-
tions are satis� ed. Whereas the varimax factor rotation method
and the method of A&S assume conditions on the structure
of C, blind separation methods assume conditions on the dis-
tribution of the sources. Because of this, it is dif� cult to ar-
gue that one method is more broadly applicable than the oth-
ers for diagnosing manufacturing variation. Nonetheless, blind
separation methods have certain advantages over the method
of A&S, in that their implementation involves less subjec-
tivity and their assumptions are more straightforward to ver-
ify.

As a � nal comment, we point out that as in-process mea-
surement proliferates, manufacturing data structures become
increasingly spatially and temporally dense. The once-clear
boundary between typical data structures encountered in man-
ufacturing SPC versus those encountered in signal processing
applications is disappearing.As we have illustrated here, signal
processing methods may provide very useful tools for diagnos-
ing manufacturing variation.
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