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As manufacturing quality has become a decisive factor in global market competition, statistical quality techniques such as
Statistical Process Control (SPC) are widely used in industry. With advances in information, sensing, and data collection tech-
nology, large volumes of data are routinely available in processes employing Automatic Process Control (APC) and Engineering
Process Control (EPC). Although there is a growing need for SPC monitoring in these feedback-controlled environments, an
effective implementation scheme is still lacking. This research provides a monitoring method, termed the dynamic T 2 chart that
improves the detection of assignable causes in feedback-controlled processes.

1. Introduction

Many manufacturing processes are equipped with Au-
tomatic Process Control (APC) and Engineering Process
Control (EPC) capabilities, such as feedback control, to
reduce short-term variation. However, for long-term
process improvement, Statistical Process Control (SPC)
techniques are still needed to detect any out-of-control
conditions and remove their root causes. In the past,
SPC and APC have been developed in parallel with little
interaction between researchers in the two areas. Al-
though the concept of combining SPC and APC was
suggested decades ago, this issue has received very little
attention until recently (Box and Kramer, 1992; Mont-
gomery et al., 1994; Tsung and Shi, 1999). How SPC and
APC can be integrated to take advantage of both of
their strengths is now an important subject for both
academics and practitioners (Woodall and Montgomery,
1999).
SPC monitoring of a feedback-controlled process (also

called a close-loop process) is usually not effective, be-
cause feedback control action causes the output of the

process to adapt to process changes. An alternative to
monitoring the feedback-controlled process is to apply
SPC techniques to the control action of the controlled
process as suggested in Faltin and Tucker (1991) and
Messina et al. (1996). As the control action compensates
for process changes, monitoring the control action may
more effectively detect these changes. Moreover, Tsung
et al. (1999) showed that joint monitoring of both the
process output and control action using bivariate charts
such as Hotelling’s approach may outperform many
conventional SPC approaches. However, its sensitivity to
process change can be further improved by considering
the effects of dynamics and autocorrelation due to feed-
back adjustment.
In this research, we propose to improve the detect-

ability of joint monitoring schemes using dynamic T 2

statistics that take into consideration the effects of dy-
namics and autocorrelation due to feedback control. In
Section 2, we discuss some technical challenges in process
monitoring due to feedback control. In Section 3, the
dynamic T 2 monitoring scheme is proposed. Guidelines
for determining the time shift factor and the covariance
matrix, which are critical in designing and implementing
the proposed scheme, are provided in Sections 4 and 5. In
Sections 6 and 7, we analyze the performance of dynamic
T 2 monitoring for mean-shift detection, and for model-
change detection. Section 8 concludes the paper with
some recommendations.*Corresponding author
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2. Challenges of SPC due to feedback control

Some technical challenges need to be addressed in order
to develop effective SPC methods for a feedback-con-
trolled process.
One challenge is the existence of the ‘‘Window of Op-

portunity’’ (WO) for detection. Wardell et al. (1994) in-
dicate that the application of Shewhart control charts to
forecast errors in an autocorrelated process may result in
poor detection of process changes, as there is only a
limited period during which the process changes can be
detected. SPC for open-loop autocorrelated processes and
SPC for closed-loop processes both suffer from the WO
problem. However, the nature and cause of the WO are
different. For open-loop autocorrelated processes, the
WO is due to the forecast recovery phenomenon (Su-
perville and Adams, 1994; Apley and Shi, 1998) that oc-
curs when there is high positive autocorrelation and
residual-based control charts are used. Closed-loop pro-
cesses may also suffer from the same WO problem, as
feedback-controlled processes are usually autocorrelated.
In addition, they suffer from a second WO problem due
to the fact that mean shifts are compensated by the
feedback control action and there is only a short window
for detection (Box and Kramer, 1992). All conventional
SPC techniques suffer from these problems. In this paper,
we focus on the second WO problem. Tsung et al. (1999)
indicated that this problem may be alleviated by moni-
toring the input, as well as the output. Fig. 1(a) illustrates
how a feedback controller eliminates the mean-shift in the
controlled output. The control input in Fig. 1(b), how-
ever, experiences a sustained mean-shift. This is an insight
as to why we are monitoring both the input and output.
Another challenge is the impact of dynamics and

autocorrelation due to feedback control, which cannot
be handled by most conventional SPC methods. Most
conventional methods were developed for monitoring
processes in their steady-state operation under an as-

sumption of time independence. Consequently, lack of
autocorrelation and stationarity must be established be-
fore utilizing these methods. However, the statistical basis
for these methods is lost in feedback-controlled processes
because they are usually autocorrelated due to feedback
adjustment. Hence, misleading results may be generated.
In the existing literature, most studies on autocorrelated
SPC focus on processes without feedback control, and
usually consider how to reduce the effects of dynamics
and autocorrelation (see Wardell et al. (1994) and refer-
ences therein). Even the joint monitoring schemes pro-
posed by Tsung et al. (1999) did not take advantage of
the dynamic relation between input and output. Here we
extend the joint monitoring scheme by monitoring a dy-
namic T 2 that incorporates information on the process
dynamics and autocorrelation.

3. Methodology

Consider the process under feedback control shown in
Fig. 2, and assume without loss of generality that the
target value is zero. The measured output yt can be

Fig. 1. Shewhart charts for: (a) the feedback-controlled outputs; and (b) the control actions of a ARMA(1,1) process (where
/ ¼ 0:7 and h ¼ �0:3) with PID control (where kP ¼ 0:72, kI ¼ 0:53, kD ¼ �0:21). The solid lines show their corresponding mean
shifts.

Fig. 2. Block diagram of a feedback-controlled process.
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viewed as the deviation from target. ut represents the
control action (i.e., the adjustable control input). yt is the
sum of two components: (i) a term xt that depends on
the control input; and (ii) the process disturbance dt. Let
ut represent the control action, i.e., the process input, with
the initial input assumed to be zero. We consider a simple
dynamic model with xt ¼ ut�1, where the output at run t,
xt, only depends on the input at the start of run t (end of
run t � 1), ut�1. This is frequently used to model Run-To-
Run (RTR) manufacturing processes such as Chemical-
Mechanical Polishing (CMP) processes and epitaxial
growth processes (Ingolfsson and Sachs, 1993; Del Ca-
stillo and Hurwitz, 1997), where the input immediately
has its full effect on the output in one run.
The output yt can be written as

yt ¼ xt þ dt ¼ ut�1 þ dt: ð1Þ
We consider an autoregressive-moving average (ARMA-
(1,1)) disturbance model

dt ¼ /dt�1 þ at � hat�1; ð2Þ
where j/j < 1, jhj < 1, and at represents white noise. We
only consider ARMA(1,1) models because actual sta-
tionary industrial process time series can often be pre-
sented by ARMA models with orders less than two (Box
et al., 1994). Also, when / is close to one, dt is ap-
proximately an integrated-moving-average (IMA(0,1,1))
model, which is a popular nonstationary model (Box
et al., 1994).We illustrate the conceptswith anARMA(1,1)
disturbance, although the method applies to higher-order
ARMA disturbance models as well.
In industrial practice, Proportional-Integral-Derivative

(PID) feedback control schemes are the most commonly
used. The PID control law can be expressed as

ut ¼ �kPyt � kI
X1
j¼0

yt�j � kDðyt � yt�1Þ; ð3Þ

where kP, kI, and kD are constants. Both Exponentially-
Weighted-Moving-Average (EWMA) control and Pro-
portional-Integral (PI) control are special cases of PID
schemes in which only one or two of these three modes
of action are used (Tsung et al., 1998). Note that, re-
lated to the WO problem, complete steady-state
compensation of mean shifts only happens when the
controller has Integral control action (Astrom and
Wittenmark, 1990).
To address the WO problem and consider the dynamic

relations between the input and output, we propose to
monitor a dynamic joint-monitoring statistic. The form is
similar to the usual T 2 statistics but the data vector is
composed of time shifted observations of both the input
and output. This utilizes the concept of appending lagged
data, which has been used in system identification and
modeling (Ljung, 1999). To monitor the closed-loop
process, one may consider monitoring a Dynamic T 2

statistic of the form

DTL
t ¼ XTt R�1Xt ð4Þ

where Xt ¼ ½yt; ut; yt�1; ut�1; . . . ; yt�L; ut�L	T, R is the co-
variance matrix of Xt, and L is a user-specified time shift
factor. This is a more general version of the joint-moni-
toring procedure presented in Tsung et al. (1999), in
which L was restricted to zero. Tsung et al. (1999) dem-
onstrated that jointly monitoring the input and output is
more effective than just monitoring the output at dealing
with the WO problem that results from the controller
compensating mean shifts in the process output. As will
be shown in this paper, better performance may be
achieved when L > 0 is used. Guidelines for selecting L
and calculating R will be presented in subsequent sections
of this paper.
The fact that the process is closed-loop, however,

presents a problem when trying to implement the Dy-
namic T 2 chart for L > 0. Specifically, the covariance
matrix Rmay not be invertible due to multicollinearity, in
which case DTL

t cannot be calculated. This is the direct
result of using feedback control. For example, the PID
control law in Equation (3) can also be expressed as

ut ¼ ut�1 � ðkP þ kI þ kDÞyt þ ðkP þ 2kDÞyt�1 � kDyt�2;

ð5Þ

which sets ut equal to a linear combination of
fut�1; yt; yt�1; yt�2g for all t. If PI control is used, so that
kD ¼ 0, then ut is a linear combination of fut�1; yt; yt�1g.
To illustrate, suppose L ¼ 1 and Xt ¼ ½yt ut yt�1 ut�1	T.

If PI control is used, the linear relationship ut � ut�1 þ
ðkP þ kIÞyt � ðkPÞyt�1 ¼ 0 holds at every timestep. There-
fore, the rank of R will only be three, and R will be
noninvertible. In this case, DT 1t cannot be calculated. On
the other hand, if PID control is used, there is no linear
relationship between fyt; ut; yt�1; ut�1g. R will have full
rank, and DT 1t can be calculated.
Now suppose L ¼ 2 andXt ¼ ½yt ut yt�1 ut�1 yt�2 ut�2	T.

If PI control is used, the two linear relationships
ut � ut�1 þ ðkP þ kIÞyt � ðkPÞyt�1 ¼ 0 and ut�1 � ut�2þ
ðkP þ kIÞyt�1 � ðkPÞyt�2 ¼ 0 both hold at every timestep.
Therefore, the rank of R will only be four, and DT 2t can-
not be calculated. Even if PID control is used, the
linear relationship ut � ut�1 þ ðkP þ kI þ kDÞyt � ðkPþ
2kDÞyt�1 þ kDyt�2 ¼ 0 will still hold, and R will only have
rank five. DT 2t cannot be calculated in this case either.
For any L > 0, it can be shown that R will have rank

Lþ 2 if PI control is used and rank Lþ 3 if PID control is
used. Thus, since R is a 2ðLþ 1Þ � 2ðLþ 1Þ matrix, it is
never possible to calculate DTL

t directly when L  2.
There are two possible solutions to this problem. The first
is to eliminate some of the linearly dependent elements of
Xt. For example, if L ¼ 2 and PID control is used, one
could redefine Xt ¼ ½yt ut yt�1 ut�1 ut�2	T. R would then
be of full rank five. If L ¼ 2 and PI control is used, one
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could redefine Xt ¼ ½yt ut ut�1 ut�2	T or Xt ¼ ½yt ut
yt�1 yt�2	T. In both cases, R would be of full rank four.
When L is large, however, it may be difficult to identify

exactly which elements of Xt are linearly dependent and
must be removed. A more attractive solution is to use a
generalized inverse (Rao, 1973) of R when calculating
DTL

t . Let the eigenvectors of R (taken to be an ortho-
normal set) be denoted fe1; e2; . . . ; e2ðLþ1Þg and let the
corresponding eigenvalues be denoted fk1; k2; . . . ;
k2ðLþ1Þg. It is well known that R can be represented as

R ¼
X2ðLþ1Þ
i¼1

kieie
T
i : ð6Þ

Furthermore, if R is full rank (which occurs if and only if
all eigenvalues are strictly greater than zero), then the
inverse of R is given by

R�1 ¼
X2ðLþ1Þ
i¼1

1

ki
eie

T
i : ð7Þ

In light of this, a generalized inverse of R, denoted R�, is
(Rao, 1973)

R� ¼
X2ðLþ1Þ
i¼1
ki 6¼0

1

ki
eie

T
i : ð8Þ

In other words, R� is identical to (7) except that the
summation is over only the positive eigenvalues.
For a given L, let Xt ¼ ½yt ut yt�1 ut�1 � � � yt�L ut�L	T as

earlier, and let p denote the rank of R. p is also the
number of nonzero eigenvalues of R. As discussed above,
when PI control is used, p ¼ Lþ 2, and when PID control
is used, p ¼ Lþ 3.
Based on this, we redefine the dynamic T 2 statistic DTL

t
as

DTL
t ¼ XTt R�Xt: ð9Þ

The joint decision rule is to sound an alarm when DTL
t

is outside a user-defined control limit. Because ut is a
linear combination of the yi’s, Xt has a multivariate
normal distribution. This implies that when the process is
in-control, DTL

t follows a chi-squared distribution with p
degrees-of-freedom (Rao, 1973; result 8a.2 (viii)). Thus,
an appropriate control limit CLDT for DTL

t would be v2a;p.

4. Guideline for selecting L

It is critical to select an appropriate time lag parameter L
for the dynamic monitoring scheme. Selecting an L
smaller than necessary may lead to ineffective monitoring,
as the test statistic cannot fully capture the dynamic re-
lation between the input and output. Selecting an L larger
than necessary may lead to redundant computing because
of the repeated dynamic structure between the input and
output. Also, as will be observed from the simulation
study in a later section, the effect of L is analogous to the

effect of the discount factor k in an EWMA chart or the
sample size in an X -bar chart. The larger L is, the larger
the ‘‘memory’’, and the more data are considered in the
test statistic. Thus, for large L, we expect better detection
of small shifts, but slower detection of large shifts.
Apley and Tsung (2001) have considered a related

problem in SPC for open-loop autocorrelated processes.
Their recommendations are to select an L value by fitting
an AR(1) model to yt. The suggested L will be the lag
after which the magnitude of the AR(1) model param-
eters decay to negligible values (e.g., 0.1). The AR(1)
model parameters can be easily found using the methods
in Pandit and Wu (1983). The AR(1) model parameters
for the process

yt ¼
1� hB
1� /B

at; ð10Þ

are the coefficients in the expansion

1�/B
1�hB

yt¼ 1þ/1Bþ/2B
2þ/2B

3þ���
� �

yt¼at; ð11Þ

which are given by Equation (3.1.19) of Pandit and Wu
(1983) with h and / reversed. That is, the equivalent
AR(1) model is

yt þ
X1
j¼1

h � /ð Þhj�1yt�j ¼ at: ð12Þ

Thus, the ‘‘best’’ L for ensuring Xt contains a full
‘‘summary’’ of the process dynamics would be such that

h � /ð Þhj�1
�� �� < n for j > L. Here, n would be some small
number. Apley and Tsung (2000) did extensive simula-
tions for open-loop autocorrelated processes, and found
the dynamic scheme effective using this guideline with
n ¼ 0:1.
As discussed before, for L > 0, R will typically be

noninvertible when feedback control is used. Using the
generalized inverse method in the previous section gives
exactly the same results as eliminating some of the lin-
early dependent elements of Xt. For example, suppose PI
control is used. For L ¼ 4, we can see that Xt ¼
½yt ut yt�1 yt�2 yt�3 yt�4	T has the exact same T 2 statistic
as Xt ¼ ½yt ut yt�1 ut�1 yt�2 yt�3 yt�4	T. This follows since
the additional term ut�1 is linearly dependent on
fyt; ut; yt�1; yt�2g through the feedback control law at time
t. Thus, we gain nothing by including the extra ut�1 term
in Xt. Likewise, Xt ¼ ½yt ut yt�1 yt�2 yt�3 yt�4	T and Xt ¼
½yt ut yt�1 yt�2 ut�2 yt�3 yt�4	T have the exact same T 2

statistic, so it is not necessary to include the additional
ut�2 term in Xt. However, Xt ¼ ½yt ut yt�1 yt�2 yt�3 yt�4	T
and Xt ¼ ½yt ut yt�1 yt�2 yt�3 yt�4 ut�4	T do not have the
exact same T 2 statistic, because ut�4 is not linearly de-
pendent on the other elements of Xt. So we may gain
something by including the additional ut�4 term. An ad-
vantage of using the generalized inverse method is that it
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automatically determines which additional terms in Xt are
not linearly dependent and add information.
If one does not wish to deal with generalized inverses

and large data vectors in practice, we suggest a simplified
method of including only one input term in the data
vector, i.e., Xt ¼ ½yt ut yt�1 yt�2 � � � yt�L	T. The L value can
be selected by fitting an AR(1) model to yt as discussed.
If the feedback controller has Integral (I) control action,
R will always be of full rank, and we can then use the
standard T 2 statistic. Some information may be lost,
however, depending on the process model and feedback
control scheme.

5. Guideline for determining the covariance matrix

It is also necessary to determine the covariance matrix R
for dynamic monitoring. In general, R will depend on the
feedback control law that is used. One possibility is to
estimate the covariance matrix from closed-loop data. We
suggest, however, an alternative method that uses open-
loop data as follows: (i) use open-loop data to estimate
the ARMA disturbance model; (ii) determine the feed-
back control rule (i.e., determine kP, kI, and kD for the
PID scheme) based on the ARMA model; then (iii) cal-
culate the covariance matrix R based on the ARMA
model and feedback control rule.
A systematic procedure for calculating the covariance

matrix R from the ARMA model and the PID control
scheme is as follows:
From Equations (1)–(3), we have

yt ¼ ð1� ð1þ hÞBþ hB2Þ � u�1ðBÞ � at; ð13Þ

and

ut ¼ ½ð�kP � kI � kDÞ þ ð2kD þ kP þ h � ðkP þ kI þ kDÞÞ
� B� ðkD þ h � ð2kD þ kPÞÞB2 þ kD � hB3	
� u�1ðBÞ � at; ð14Þ

where B is the backward shift operator, and
uðBÞ ¼ 1� ð1� kP � kI � kD þ /ÞB

� ðkP þ 2kD �/� ð1� kP � kI � kDÞÞB2

� ð�kD � /� ðkP þ 2kDÞÞB3 � ð/� kDÞB4: ð15Þ

By following a derivation similar to one in Pandit and
Wu (1983, p. 105), we can express both yt and ut in terms
of their Green’s function representations:

yt ¼
X1
j¼0

Gjat�j; ð16Þ

with Gj ¼ g1k
j
1 þ g2k

j
2 þ g3k

j
3 þ g4k

j
4, where k1; k2; k3 and

k4 are the roots of

uðBÞ ¼ 1�ð1� kP� kI� kDþ/Þ
�B�ðkPþ 2kD�/�ð1� kP� kI� kDÞÞ
�B2�ð�kD�/�ðkPþ 2kDÞÞB3�ð/� kDÞB4 ¼ 0;

g1 ¼
k31 � ð1þ hÞk21 þ h � k1

ðk1 � k2Þðk1 � k3Þðk1 � k4Þ
;

g2 ¼
k32 � ð1þ hÞk22 þ h � k2

ðk2 � k1Þðk2 � k3Þðk2 � k4Þ
;

g3 ¼
k33 � ð1þ hÞk23 þ h � k3

ðk3 � k1Þðk3 � k2Þðk3 � k4Þ
;

g4 ¼
k34 � ð1þ hÞk24 þ h � k4

ðk4 � k1Þðk4 � k2Þðk4 � k3Þ
:

Similarly,

ut ¼
X1
j¼0

Hjat�j;

with Hj ¼ h1k
j
1 þ h2k

j
2 þ h3k

j
3 þ h4k

j
4;

where

A simpler alternative for calculating Green’s functions
for ut and yt is based on the interpretation of Green’s
function as the response of the system to a single pulse of
unit magnitude at timestep zero (Astrom andWittenmark,

h1 ¼
ð�kP � kI � kDÞk31 þ ð2kP þ kD þ h � ðkP þ kI þ kDÞÞk21 � ðkD þ h � ð2kD þ kPÞÞk1 þ kD � h

ðk1 � k2Þðk1 � k3Þðk1 � k4Þ
;

h2 ¼
ð�kP � kI � kDÞk32 þ ð2kP þ kD þ h � ðkP þ kI þ kDÞÞk22 � ðkD þ h � ð2kD þ kPÞÞk2 þ kD � h

ðk2 � k1Þðk2 � k3Þðk2 � k4Þ
;

h3 ¼
ð�kP � kI � kDÞk33 þ ð2kP þ kD þ h � ðkP þ kI þ kDÞÞk23 � ðkD þ h � ð2kD þ kPÞÞk3 þ kD � h

ðk3 � k1Þðk3 � k2Þðk3 � k4Þ
;

h4 ¼
ð�kP � kI � kDÞk34 þ ð2kP þ kD þ h � ðkP þ kI þ kDÞÞk24 � ðkD þ h � ð2kD þ kPÞÞk4 þ kD � h

ðk4 � k1Þðk4 � k2Þðk4 � k3Þ
;
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1990).The ‘‘system’’ is described by the input and output
equations

yt ¼ /yt�1 þ ut�1 � /ut�2 þ at � hat�1;

ut ¼ ut�1 � ðkP þ kI þ kDÞyt þ ðkP þ 2kDÞyt�1 � kDyt�2:

If the sequence at in the above equations were a single
pulse of unit magnitude at timestep zero, i.e.,

at ¼ dt ¼
0 if t 6¼ 0,
1 if t ¼ 0,

�

then yj and uj would be exactly equal to Gj and Hj, re-
spectively, for j ¼ 0; 1; 2; . . . Specifically, Gj and Hj are
solutions to the equations

Gj ¼ /Gj�1 þHj�1 � /Hj�2 þ dj � hdj�1
Hj ¼ Hj�1 � ðkP þ kI þ kDÞGj þ ðkP þ 2kDÞGj�1 � kDGj�2;

with initial conditions Gj ¼ Hj ¼ 0 for j < 0. Gj and Hj
can easily be obtained numerically using a computer to
iterate these equations for j ¼ 0; 1; 2; . . . By the definition
of dj and the initial conditions, the equations can be
simplified to

G0 ¼ 1
H0 ¼ �ðkP þ kI þ kDÞG0 ¼ �ðkP þ kI þ kDÞ;
G1 ¼ /G0 þ H0 � hd0 ¼ / � ðkP þ kI þ kDÞ � h;

H1 ¼ H0 � ðkP þ kI þ kDÞG1 þ ðkP þ 2kDÞG0;
and, for j > 1,

Gj ¼ /Gj�1 þ Hj�1 � /Hj�2;

Hj ¼ Hj�1 � ðkP þ kI þ kDÞGj þ ðkP þ 2kDÞGj�1 � kDGj�2:

Following either method for calculating Green’s func-
tion, the auto-covariance of yt at lag k can be computed
by

covðyt; yt�kÞ ¼ r2a
X1
j¼0

GjþkGj;

and the auto-covariance of ut at lag k can be computed by

covðut; ut�kÞ ¼ r2a
X1
j¼0

HjþkHj:

Also, the covariance between yt and ut at different lags
can be computed as

covðyt; ut�kÞ ¼ r2a
X1
j¼0

GjþkHj;

and

covðut; yt�kÞ ¼ r2a
X1
j¼0

HjþkGj:

Therefore, all the items in the covariancematrixR can be
obtained from the above computations. It is straightfor-
ward to calculate the Green’s function coefficients, given
the ARMA model and the feedback control rule. If the
closed-loop system is stable, all terms in the above infinite

summations will converge exponentially to zero. Thus, the
summations can typically be truncated to 100 or fewer
terms. A Matlab program for calculating the covariance
matrix is available upon request from the first author.
Note that the Green’s function method for finding the

covariance could be easily extended to higher order
ARMA models. The covariance matrix could also be
obtained analytically (Tsung et al., 1999), although the
equations are quite complex. The proposed Green’s
function approach is conceptually more straightforward
and has cleaner equations.
Generally, the open-loop method may provide better

accuracy with fewer data than directly estimating the
covariance matrix from closed-loop data. The only
quantities that must be estimated are /, h, and r2a. An
additional advantage is that if the feedback control law is
changed, the covariance matrix can be recalculated
without collecting new data. However, what the sample
size should be and how the random errors in the esti-
mated ARMA parameters propagate in to the covariance
matrix still warrant future study.

6. Performance analysis for mean-shift detection

To investigate the performance of the proposed moni-
toring scheme for mean-shift detection, we compare the
Average Run Length (ARL) of the dynamic T 2 ðDT 1 and
DT 2) and the conventional T 2ðDT 0Þ charts for monitoring
PI-controlled processes. We also compare the scheme
with Shewhart individual charts for monitoring the pro-
cess output and monitoring the control action. The ARLs
were obtained via Monte Carlo simulation. For each
process 10 000 replications were used to compute the
ARL with a standard error of less than 1%. In order to
make a fair comparison, the control limits are adjusted so
that the ARL is the same for all charts when there is no
shift in the mean. In this study the in-control ARL of 200
is used. The control limits varied depending on the dis-
turbance model parameters, the feedback control pa-
rameters, and the time lag L. One could also select the
Dynamic T 2 chart control limits to provide a desired
a-error, as discussed in Section 3. The in-control ARL
was fixed in the simulations in order to provide a basis for
comparison. Mean shifts of size 0.5, 1, 1.5, 2, 2.5, and 3
standard deviations of dtðrdÞ were added to the PI-con-
trolled process, and the different monitoring schemes
were applied.
The combinations of / and h that have positive auto-

correlations are those that would most likely be encoun-
tered in actual manufacturing environments (Wardell
et al., 1994), especially with positive / and smaller h.
Based on that, we choose eight combinations of the
ARMA parameters in order to cover a reasonable range
of the parameter space. Table 1 shows that in many cases
the detection performance for DT 0, DT 1 and DT 2 is much
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better than that of individual monitoring of the output or
the input. When both / and h are small, the advantage of
dynamic T 2 monitoring over individual monitoring is not

as significant. It is even inferior for some cases. This is
because the feedback control has less impact on the
process with little or low autocorrelation.

Table 1. ARL values of different monitoring schemes for various PID-controlled ARMA(1,1) processes under mean shifts

Process Mean shift Individual
monitoring
of output

Individual
monitoring
of input

Joint
monitoring
by DT0

Joint
monitoring
by DT1

Joint
monitoring
by DT2

(I) 0.5 187.80 142.90 130.76 132.17 127.96
/ ¼ 0:9, h ¼ 0:4, 1 161.73 59.67 57.87 56.09 54.10
kP ¼ 0:06, kI ¼ 0:48 1.5 105.76 26.44 24.17 22.75 22.66
corrðyt; utÞ ¼ �0:31 2 47.49 12.28 9.48 8.25 8.94

2.5 12.66 6.13 3.70 2.84 3.76
3 3.06 3.43 1.65 1.33 2.31

(II) 0.5 180.26 149.54 137.65 138.22 135.50
/ ¼ 0:9, h ¼ �0:4, 1 74.23 67.97 58.40 63.36 62.57
kP ¼ 0:06, kI ¼ 1:29 1.5 7.67 27.99 19.21 23.97 25.70
corrðyt; utÞ ¼ �0:74 2 1.13 9.04 4.77 6.38 8.70

2.5 1.00 2.64 1.45 1.63 3.47
3 1.00 1.18 1.03 1.03 2.06

(III) 0.5 196.16 99.28 141.19 124.66 113.76
/ ¼ 0:7, h ¼ 0:3, 1 180.61 29.55 65.93 46.52 39.55
kp ¼ 0:21, kI ¼ 0:21 1.5 146.38 13.04 26.52 16.57 14.67
corrðyt; utÞ ¼ �0:34 2 97.19 7.47 10.81 6.39 6.25

2.5 48.67 4.84 4.96 2.64 3.22
3 17.07 3.34 2.45 1.44 2.27

(IV) 0.5 189.61 148.13 114.52 109.34 105.94
/ ¼ 0:7, h ¼ �0:3, 1 158.97 54.33 44.46 41.78 40.33
kP ¼ 0:21, kI ¼ 0:85 1.5 104.55 21.97 17.00 16.05 16.31
corrðyt; utÞ ¼ �0:71 2 45.79 9.85 6.74 6.44 7.15

2.5 12.95 4.71 2.94 2.64 3.63
3 2.78 2.38 1.54 1.38 2.40

(V) 0.5 111.07 112.25 111.26 105.32 99.80
/ ¼ 0:5, h ¼ 0:2, 1 41.43 42.66 42.46 34.81 31.54
kP ¼ 0:27, kI ¼ 0:00 1.5 16.06 17.57 17.47 12.30 11.05
corrðyt; utÞ ¼ �0:28 2 6.60 7.95 7.91 4.78 4.76

2.5 2.97 3.99 3.97 2.17 2.71
3 1.61 2.23 2.22 1.33 2.15

(VI) 0.5 192.30 74.50 127.14 118.95 106.62
/ ¼ 0:5, h ¼ �0:2, 1 168.23 24.34 52.73 41.18 35.88
kP ¼ 0:50, kI ¼ 0:12 1.5 121.85 11.61 20.70 14.62 13.20
corrðyt; utÞ ¼ �0:61 2 68.19 6.46 8.75 5.67 5.80

2.5 25.74 3.71 4.08 2.40 3.10
3 7.07 2.26 2.08 1.37 2.26

(VII) 0.5 107.84 109.04 103.71 103.21 98.50
/ ¼ 0:3, h ¼ 0:1, 1 38.10 39.28 37.57 31.47 28.00
kP ¼ 0:19, kI ¼ 0:00 1.5 14.40 15.72 15.12 10.62 9.42
corrðyt; utÞ ¼ �0:19 2 5.83 7.05 6.84 4.07 4.06

2.5 2.67 3.55 3.45 1.97 2.50
3 1.51 2.08 2.04 1.27 2.10

(VIII) 0.5 116.17 117.37 114.55 109.24 104.08
/ ¼ 0:3, h ¼ �0:1, 1 44.49 45.92 45.11 36.29 32.78
kP ¼ 0:36, kI ¼ 0:00 1.5 17.18 18.81 18.47 12.73 11.43
corrðyt; utÞ ¼ �0:36 2 6.90 8.36 8.19 4.94 4.88

2.5 3.02 4.11 4.06 2.20 2.76
3 1.62 2.27 2.25 1.35 2.17
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Overall, the performance of dynamic T 2 monitoring
using DT 1 and DT 2 is better than that of static joint
monitoring by DT 0. However, for processes (II) and (IV),
the advantage of dynamic T 2 monitoring over static joint
monitoring is not as significant. This can be explained in
part by the correlation between the process output and
control action. For a process with a small to medium
correlation between the output and input, the dynamic
monitoring shows improved performance. For a process
with a large correlation, DT 0, DT 1 and DT 2 may have
similar performances.
More specifically, DT 1 is consistently better than the

other schemes for large mean shifts, while DT 2 is consis-
tently better than the other schemes for small mean shifts.
This is consistent with the discussion in Section 4, which
suggested that the larger L is, the larger the ‘‘memory’’ is.
Thus, we expect a better detection of small shifts for large
L, but a better detection of large shifts for small L.
Note that for processes (III) and (VI) the ARL of

the Shewhart chart monitoring the input is smaller than
that of the other schemes for cases when the shift is small.
Some discussion on the superiority of monitoring
the input in certain cases can be found in Tsung et al.
(1999).

7. Model-change detection and controller retuning

If the disturbance model changes, controller effectiveness
may seriously degrade. Therefore, it is desirable to detect
changes in the model parameters, so that the controller
may be retuned appropriately. We expect that the dy-
namic T 2 statistic will also be sensitive to changes in pa-
rameters of the ARMA model for the disturbance
process. This follows since the covariance matrix of Xt
will depend on the ARMAmodel parameters. Thus, if the
model changes, the covariance matrix will change from
what was estimated in the past, and the T 2 statistic may
sound an alarm. In this case, the users would want to
‘‘retune’’ their feedback controller to achieve optimum
performance. For example, when there is a change in the
ARMA parameters from (/ ¼ 0:5, h ¼ 0:2) to (/ ¼ 0:9,
h ¼ 0:3), the PI control performance (with kP ¼ 0:27 and
kI ¼ 0:00) substantially worsens with the process output
mean squared error almost doubling from 1.02 to 1.99.
The simulation results in Table 2 show the sensitivity

of the dynamic T 2 statistic to disturbance model changes,
where D/ is the size of a positive change in the distur-
bance parameter /. For most of the cases the perfor-
mance of dynamic T 2 monitoring by DT 1 and DT 2 is

Table 2. ARL values of different monitoring schemes for various PID-controlled ARMA(1,1) processes experiencing a
disturbance model change

D/ Individual
monitoring of
output

Joint monitoring
by DT0

Joint monitoring
by DT1

Joint monitoring
by DT2

/ ¼ 0:7, h ¼ 0:3, 0.1 177.14 134.37 114.71 103.57
kP ¼ 0:21, kI ¼ 0:21 0.15 156.91 96.30 76.71 68.47

0.2 131.36 62.67 49.90 44.46
0.25 106.44 40.40 32.88 30.17

/ ¼ 0:7, h ¼ �0:3, 0.1 212.13 84.48 77.28 73.80
kP ¼ 0:21, kI ¼ 0:85 0.15 214.93 54.88 50.67 48.40

0.2 217.60 37.45 34.35 32.98
0.25 217.60 25.56 23.84 23.26

/ ¼ 0:5, h ¼ 0:2, 0.1 163.54 163.06 154.51 147.62
kP ¼ 0:27, kI ¼ 0:00 0.15 141.20 140.57 123.78 114.61

0.2 115.09 114.83 93.41 84.44
0.25 88.58 88.28 68.90 61.41

/ ¼ 0:5, h ¼ �0:2, 0.1 158.46 140.61 128.90 115.85
kP ¼ 0:50, kI ¼ 0:12 0.15 134.28 114.67 95.82 84.24

0.2 111.09 88.68 70.47 62.21
0.25 89.30 66.42 52.05 46.03

/ ¼ 0:3, h ¼ 0:1, 0.1 186.17 176.37 180.13 177.64
kP ¼ 0:19, kI ¼ 0:00 0.15 171.50 161.58 156.98 150.87

0.2 152.03 145.21 131.40 122.83
0.25 132.61 126.42 106.65 97.49

/ ¼ 0:3, h ¼ �0:1, 0.1 178.06 174.41 167.32 162.82
kP ¼ 0:36, kI ¼ 0:00 0.15 159.91 156.76 141.71 133.23

0.2 141.13 138.66 116.83 107.36
0.25 119.60 117.94 92.12 83.53
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better than that of static joint monitoring by DT 0 or the
individual monitoring of the output. The advantage of
dynamic T 2 monitoring is more significant when the pa-
rameter change is larger. DT 2 monitoring, in particular, is
consistently better than the other schemes in detecting
different scales of disturbance parameter change.
Additional simulations have indicated that negative

changes in / and changes in h have little impact on the
controller effectiveness and that the monitoring schemes
are insensitive to changes of this nature.
When the Dynamic T 2 chart sounds an alarm, it is

important to know if it was caused by a mean-shift or a
model-change. If it is a change in the mean, the user
would want to follow-up an alarm with SPC-type cor-
rective action. On the other hand, if the signal is caused
by a change in the ARMA model parameters, the user
would follow-up by retuning the controller. A simple
method of diagnosis would be to use scatter plots of pairs
of elements of Xt, with the in-control ð1� aÞ constant
probability ellipses shown also. The 1� a constant
probability ellipse for a 2-dimensional Multivariate
Normal vector with mean vector l0 and covariance ma-
trix R0 is

x : x� l0½ 	TR�1
0 x� l0½ 	 ¼ v2a;2

n o
:

The following examples illustrate the idea with an
ARMA(1,1) process (/ ¼ 0:5, h ¼ �0:2) under PI control
(kP ¼ 0:50 and kI ¼ 0:12). For L ¼ 0, the in-control mean
and covariance matrix of Xt are l0 ¼ ½0 0	T and

R0 ¼
1:10 �0:61
�0:61 0:55

� 	
:

The ellipse shown in each figure is the 95% probability
ellipse when the process is in-control. Figure 3 shows 200
observations when the process mean changes from zero to
3rd .
Figure 4 shows 200 observations when the ARMA(1,1)

parameters change from (/ ¼ 0:5, h ¼ �0:2) to (/ ¼ 0:9,
h ¼ �0:3). Although the means of the elements of Xt do
not change, the covariance matrix of Xt changes to

R0 ¼
2:43 �1:36
�1:36 4:63

� 	
:

Note that an increase in the variance of the process can
also cause a change in the covariance matrix. A change in

Fig. 3. A scatter plot for a feedback-controlled process when its mean changes.
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ra
2 would only affect the ‘‘scale’’ of the covariance ma-

trix, while a change in the disturbance parameter would
cause both a ‘‘re-scaling’’ and a ‘‘rotation’’. However, this
may be difficult to distinguish in a simple scatter plot.
More advanced statistical methods may be required to
clarify between the similar change patterns for effective
diagnosis. A retrospective diagnosis procedure was pro-
posed by Tsung (2000).

8. Conclusion

This paper investigates process monitoring problems in
an APC and SPC integrated environment. A joint mon-
itoring scheme using dynamic T 2 statistics was proposed
to improve assignable cause detectability for a feedback-
controlled process. Guidelines for designing and imple-
menting the proposed monitoring scheme are provided.
The ARL performance analysis shows that the dynamic
T 2 monitoring scheme is effective in detecting both mean
shifts and changes in the process model parameters. How
to monitor the variance of a feedback-controlled process
warrants further study.
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