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This paper presents an on-line Statistical Process Control (SPC) technique, based on a Generalized Likelihood Ratio Test (GLRT),
for detecting and estimating mean shifts in autocorrelated processes that follow a normally distributed Autoregressive Integrated
Moving Average (ARIMA) model. The GLRT is applied to the uncorrelated residuals of the appropriate time-series model. The
performance of the GLRT is compared to two other commonly applied residual-based tests ± a Shewhart individuals chart and a
CUSUM test. A wide range of ARIMA models are considered, with the conclusion that the best residual-based test to use depends
on the particular ARIMA model used to describe the autocorrelation. For many models, the GLRT performance is far superior to
either a CUSUM or Shewhart test, while for others the di�erence is negligible or the CUSUM test performs slightly better. Simple,
intuitive guidelines are provided for determining which residual-based test to use. Additional advantages of the GLRT are that it
directly provides estimates of the magnitude and time of occurrence of the mean shift, and can be used to distinguish di�erent types
of faults, e.g., a sustained mean shift versus a temporary spike.

1. Introduction

With increasing automation, continuous ¯ow and dis-
crete parts manufacturing processes are being measured
at higher and higher rates. It is no longer uncommon to
®nd 100% inspection of discrete processes. As the
process is measured at higher rates, the data, to be used
for quality control and/or process control purposes, is
more likely to be autocorrelated. It is well known that
the run length properties of CUSUM tests are strongly
a�ected by data correlation, and the in control Average
Run Length (ARL) can be much shorter than claimed
if the autocorrelation is positive [1]. Vasilopoulos
and Stamboulis [2] have shown that the same is true for
X charts.
One obvious solution is to modify the control limits,

based on the autocorrelation structure, in order to
achieve the desired in control ARL. Yashchin [3] provides
a method for approximating the ARL in the presence of
autocorrelation and recommends applying a CUSUM to
the original data if the autocorrelation is not too strong.
One could also monitor the batch-means of the process,
which are less a�ected by autocorrelation [4,5]. An
alternative, increasingly popular, scheme is to model the
autocorrelated data using Autoregressive Integrated
Moving-Average (ARIMA) time-series models. Such

models can e�ectively describe a wide variety of processes
and are simple enough in structure to allow convenient
analysis [6]. If the model is accurate, the model residuals
(speci®cally, the minimum-mean-square-error, one-step-
ahead prediction errors) are approximately uncorrelated,
and any of the standard SPC techniques can be applied to
the residuals with well understood in control run length
properties [7±11].
When the process experiences a mean shift, however,

the run length properties are less well understood. Since
the residuals are a ®ltered version of the original process,
the resulting mean shift in the residuals will not have the
same form as the mean shift in the original process.
Rather, it will experience some dynamics, which depend
on the ARIMA model, before settling down to a steady-
state value. We refer to this time-varying mean of the
residuals as the ``fault signature,'' since it is a pattern, or
signature, left in the residuals by a mean shift fault in the
original data. The particular form of the fault signature
depends heavily on the ARIMA model that describes the
original process. Hu and Roan [12] have suggested visual
inspection of these patterns for distinguishing between
step mean shifts and spikes. Various authors have used
theoretical derivation, Markov chain approximation,
Monte Carlo simulation, or combinations of the three
techniques to investigate the in-control and out-of-
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control run length properties of standard monitoring
schemes such as Shewhart, EWMA, and CUSUM tests,
applied to the residuals [13±17]. One common conclusion
is that the signaling performance of standard tests is often
disappointingly poor, due mainly to what has been re-
ferred to as ``forecast recovery'' [15]. Forecast recovery
means that any signi®cant e�ect (i.e., in terms of the falt
signature) the fault has on the residuals is short lived, and
the lasting e�ects are minor.
For many ARIMA models that su�er from forecast

recovery, however, the fault signature has considerable
transient dynamics. Neither Shewhart, EWMA, nor
CUSUM tests make use of this valuable information. In
contrast, a Generalized Likelihood Ratio Test (GLRT)
can automatically take this information into account.
Because of this desirable feature, the GLRT has been
used for years in failure detection in dynamic systems,
such as aircraft [18], using state-space system models and
Kalman ®lters for generating residuals. However, it was
not until recently that this potential was exploited for the
purpose of SPC for autocorrelated data. Apley and Shi
[19] developed a GLRT for SPC of autocorrelated pro-
cesses described by a particular second order ARMA
model and found the GLRT to perform signi®cantly
better than a CUSUM test on the residuals. In contrast,
for ®rst order IMA processes, van der Wiel [16] compared
a GLRT, Shewhart, EWMA, and CUSUM test on the
residuals and found the CUSUM test to be superior.
The purpose of this paper is to: (i) elaborate on the

GLRT for mean shift detection in autocorrelated pro-
cesses; (ii) present a run length comparison between the
GLRT and the residual-based Shewhart and CUSUM
tests for step mean shifts in a variety of ARIMA pro-
cesses; and (iii) provide a simple means of determining
which residual-based test should be most e�ective for a
given ARIMA model. It will be demonstrated that which
test is most e�ective depends predominantly on the par-
ticular shape of the fault signature and thus on the AR-
IMA model used to describe the process. In situations
where the GLRT performs signi®cantly better, it is be-
cause there are pronounced fault signature dynamics that
the GLRT is able to exploit, but that the other tests
ignore.

2. Time series residuals and the fault signature

2.1. The basic model

ARIMA models are a fairly general class that can be used
to describe a wide variety of autocorrelated processes [6],
and their applicability as SPC tools for autocorrelated
processes is now widely known. This section brie¯y re-
views ARIMA models and how to use them to generate
uncorrelated residuals and illustrates the fault signatures
associated with a variety of ARIMA models.

The general model for a Gaussian ARIMA(p; d; q)
process x�t� is

x�t� � H�B�
�1ÿ B�dU�B� a�t�; �1�

where a�t� is an i.i.d. Gaussian process with mean 0 and
variance r2

a denoted a�t� � NID�0;r2
a�, t is a time index, B

is the backshift operator, and U�B� and H�B� are poly-
nomials of degree p and q, respectively, with roots lying
outside the unit circle. U�B� and H�B� are referred to as
the AR and MA polynomials, respectively, and are pa-
rameterized as U�B� � 1ÿ /1Bÿ /2B2 ÿ � � � ÿ /pBp and
H�B� � 1ÿ h1Bÿ h2B2 ÿ � � � ÿ hqBq.
It is assumed that the autocorrelated process to be

monitored is given by

y�t� � x�t� � lf �t�; �2�
where f �t� is a deterministic unit magnitude mean shift
fault (as a function of time) occurring in the original data,
and l is the magnitude of the fault. Although other forms
of faults (e.g., ramps or temporary spikes) can easily be
considered, the major focus of this paper will be step
mean shifts of the form

f �t� � 0; t < s,
1; t � s,

�
�3�

where s is the time of occurrence of the mean shift. ``Out
of control condition'', ``assignable cause'', ``special
cause'', ``unusual event'', etc., are terms commonly used
in the literature that refer to situations that result in such
faults.
Since the model of (1) is invertible, uncorrelated re-

siduals can be generated by ®ltering y�t� with the ``inverse
model'', obtained by interchanging the numerator and
denominator of the ARIMA model. Denoting the resid-
ual process by e�t�, the equation for generating e�t� is

e�t� � U�B��1ÿ B�d
H�B� y�t�: �4�

Substituting (1) into (4) gives

e�t� � a�t� � l ~f �t�; where �5�

~f �t� � U�B��1ÿ B�d
H�B� f �t�; �6�

is the fault signature of the fault f �t� as it manifests itself
in the residuals. (5) is the basis for applying SPC tech-
niques to the residuals of an autocorrelated process.
Under no fault conditions f �t�, and thus ~f �t�, is identi-
cally zero. The residuals are then the original zero-mean
i.i.d. Gaussian process a�t�, and standard SPC techniques
designed for uncorrelated data can be applied with well
understood in-control run length properties. On the other
hand, when a fault does occur the residuals are a�t� plus
the deterministic fault signature. Thus, they are uncor-
related and Gaussian with variance r2

a and with a time-

1124 Apley and Shi



varying mean that is equal to the fault signature (scaled
by l). This follows by taking the expectation of (5), which
gives
E�e�t��� E�a�t��l ~f �t�� � E�a�t�� � E�l ~f �t�� � l ~f �t�. Con-
sequently, if a fault of signi®cant magnitude occurs, it can
leave a pronounced signature in the residuals being
monitored.
These results, of course, depend on the model being

accurately known. Unless otherwise noted, it will be as-
sumed throughout the remainder of the paper that this is
the case. A thorough investigation of the e�ects of
modeling inaccuracies is beyond the scope of this paper,
but a brief analysis will be presented in Section 4.3.

2.2. Illustrative examples of fault signatures and
the associated ARIMA models

The particular form of the fault signature ~f �t� depends
heavily on the ARIMA model. Using standard termi-
nology from linear systems theory, ~f �t� (for a step mean
shift fault) is the dynamic step response of the inverse
model. It is important to note that if a step mean shift
occurs in the original process, the resulting mean shift in
the residuals will not be a step function. Rather, it will
experience some transient dynamics before eventually
settling down to a steady-state value. As will be demon-
strated shortly, the ability of various residual-based tests
to detect mean shifts depends heavily on the form of the
fault signature. To illustrate these concepts, the following
six examples of di�erent types of ARIMA models, all
with di�erent fault signatures, will be used throughout
the paper. The behavior of the models is illustrated in
Fig. 1, and Table 1 lists the AR polynomial, MA poly-
nomial, and d for each model. Without loss of generality,
ra was chosen to be one for all models.
The ®rst column of Fig. 1 shows the original autocor-

related data with a step mean shift occurring at time 60
for each of the six models. l � 3; 5; 4; 4; 2; and 3, respec-
tively, for Models 1 through 6. Note that although spe-
ci®c values of l were chosen for illustrating the processes
in Fig. 1, a broad range of values of l will be used in
Section 4.2 when analyzing and comparing the various
tests. For many of the models it is di�cult to discern the
mean shift due to the high level of autocorrelation of the
data. The second column shows the residuals, generated

from (4), for the same six processes. The fault signatures
themselves are shown directly below the residual pro-
cesses. Note that the fault signatures have the same scale,
except that they have been o�set vertically from the re-
siduals for better illustration. The ¯at portion of the fault
signature, before the fault has occurred, is taken to be
zero.
The six models were selected not to represent any

speci®c processes, but so that the general shapes of the
corresponding fault signatures cover as wide a variety as
possible (see Fig. 1). It is reasonable to expect that any of
these models could be encountered in practical applica-
tions. In certain situations one can argue the validity of a
particular ARIMA model based on physical modeling.
English and Case [20] argue that continuous ¯ow pro-

Fig. 1. Illustration of six ARIMA processes and their corre-
sponding fault signatures for a step mean shift. The parameters
of the six models are listed in Table 1. Original autocorrelated
ARIMA processes with step mean shifts at timestep 60 are
shown in the left column. The right column shows the uncor-
related residuals with the fault signature for each of the six
processes. The fault signature itself, which is o�set vertically for
clarity, is shown below the residuals.

Table 1. The six ARIMA models used throughout this paper

U(B) H(B) d

Model 1 1 ) 1.13B + 0.64B2 1 + 0.9B 0
Model 2 1 1 ) 0.31B + 0.81B2 1
Model 3 1 ) 2.19B + 2.39B2)1.4B3 + 0.41B4 1 0
Model 4 1 ) 0.9B 1 0
Model 5 1 ) 0.99B + 0.49B2 1 ) 0.7B 0
Model 6 1 ) 0.8B 1 ) 0.5B 0
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cesses such as chemical and petroleum production pro-
cesses are well modeled as a cascaded series of ®rst order
linear di�erential equations. When such continuous pro-
cesses are sampled, they become ARIMA(p; 0; p ÿ 1)
models, where p is the number of cascaded ®rst order
systems. As an example, consider four cascaded subsys-
tems with individual time constants of 1, 2, 3, and 4
minutes. If such a system is sampled every 0.4 minutes,
the resulting discrete time model is ARIMA(4,0,3) with
fault signature given by curve (a) in Fig. 2. This fault
signature has oscillatory behavior similar to that of
Models 1 through 3.
Although many production processes are far too

complicated to model physically, they may still be well
modeled as ARIMA processes. In these situations, AR-
IMA modeling can be thought of as a somewhat generic
way to describe the nature of the dynamics, or autocor-
relation, of the process [6]. Consequently, a wide variety
of ARIMA models may appear in practical examples of
real production processes. MacGregor and Harris [21]
modeled the dry basis weight in a paper making process
as an ARMA(1,1) process with /1 � 0:81 and h1 � 0:51;
which has the fault signature shown as curve (b) in Fig. 2.
This model is nearly identical to Model 6. Hu and Roan
[12] found an ARIMA(1,0,0) model with /1 � 0:99
closely ®tted dimensional data in an autobody assembly
process. The fault signature for this model is shown as
curve (c) in Fig. 2 and is very similar to that of Model 4.
Figure 3(a) shows dimensional data from another

autobody assembly process. All data is in units of mm.
The high degree of negative autocorrelation at lag 1 is
the result of multiple tooling. It was found that
an ARIMA(4,0,3) model closely ®ts the data with
U�B��1� 0:62B� 0:32B2 � 0:26B3ÿ 0:31B4 and H�B� �
1ÿ 0:17B� 0:59B2 � 0:26B3. It was known a priori that a
shim move upstream caused a sudden mean shift (with an

estimated magnitude of 0.35 mm) in the data at car
number 60. Step mean shifts are common in autobody
assembly, the result of new batches of stamped parts
being used, as well as the result of shim moves. The large
process variation caused by the multiple tooling tends to
mask the presence of the mean shift. The ARIMA re-
siduals of the process are shown in Fig. 3(b), along with
the fault signature. Not only is the mean shift more evi-
dent in the residuals, but also the oscillatory dynamics of
the fault signature are clearly present in the residuals.
Such oscillatory dynamics, like those of Models 1
through 3, are characteristic of many ARIMA models. It
should be noted that for a step mean shift fault, the form
of the fault signature uniquely determines the ARIMA
model and vice-versa.

2.3. Fault signature characteristics

For each of Models 1 through 4, the fault signatures settle
down to steady-state values that are quite small. This is
referred to as forecast recovery. It is intuitively obvious
that a CUSUM test applied to these residuals would
perform very poorly. For the ®rst three examples, the
initial oscillation of the fault signature would have a
tendency to reset the CUSUM statistic to zero when the
fault signature becomes negative. Moreover, if the mean
shift is not detected very soon after its occurrence, it is
likely that it will not be detected for a long time, since the
steady-state magnitudes of the fault signatures are so
small. Thus, there is a clear window of opportunity for
detecting the mean shift. A Shewhart test may perform
somewhat better than a CUSUM test due to the peaks

Fig. 2. Fault signatures for ARIMA models of various pro-
duction processes: (a) chemical production process [20]; (b) dry
basis weight in a paper making process [21]; and (c) dimensional
data in autobody assembly [12].

Fig. 3. Dimensional data (mm) in an autobody assembly pro-
cess with a sudden mean shift at car number 60: (a) raw data
y(t); and (b) ARIMA residuals e(t) and fault signature ~f �t�.
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during the transient phase of the fault signature, but is
still subject to the window of opportunity.
In spite of the low steady-state value, the fault signature

for each of the ®rst three models experiences signi®cant
dynamics in the transient stage. It was shown in the pa-
ragraph following (6) that the fault signature multiplied
by l is exactly the mean of the residuals. This follows
since a�t� is assumed to be zero mean and ~f �t� is assumed
to be deterministic. Consequently, the dynamics of the
fault signature are highly visible in the residuals. Neither
the Shewhart, nor the CUSUM, test is designed to make
use of this valuable information. In contrast, the GLRT
presented in the subsequent section does exactly this. It
makes explicit use of the fault signature dynamics by, in
some sense, testing for the presence of these dynamics in
the residuals. As will be demonstrated in Section 4, for
Models 1 through 3 the GLRT has drastically improved
performance over a Shewhart or CUSUM test on the
residuals. For Model 4 the improvement is only slight.
For Models 5 and 6, the situation is di�erent. The

steady-state magnitude of the fault signature is consid-
erably larger than for the ®rst four models, and thus one
could conjecture that a CUSUM test on the residuals
would perform reasonably well. Since the dynamics of the
fault signatures for these two models are not pronounced,
the GLRT has little extra information to make use of,
and the CUSUM test actually outperforms the GLRT.
These intuitive statements regarding the performance of
the GLRT, Shewhart, and CUSUM tests will be veri®ed
quantitatively in Section 4. The main conclusion will be
that, given an ARIMA description of an autocorrelated
process, the most e�ective residual-based test can be de-
termined in a simple, intuitive manner based predom-
inantly on the shape of the fault signature.
Given the availability of personal computers, it is a

straightforward matter to calculate the fault signature for
a particular ARIMA model and a particular fault. This is
done recursively using (6), rewritten as H�B� ~f �t� �
U�B��1ÿ B�df �t�. Initial conditions are ~f �t� � f �t� � 0
for t < s, where s is the time of occurrence of the fault.
If f �t� converges to a steady-state value, the fault sig-

nature always converges to a steady-state value, denoted
~fss.

~fss is of particular interest when one is considering the
e�ectiveness of a CUSUM test on the residuals. Applying
the ®nal value theorem [22] for discrete-time di�erence
equations to (6) gives

~fss �
U�B��1ÿ B�d

H�B�

�����
B�1

fss; �7�

where fss is the steady-state magnitude of f �t�. For a fault
of magnitude l, the steady-state magnitude of the mean
of the residuals is l ~fss. It follows from (7) that for an
ARIMA(p; d; q) model with d � 1, the steady-state mag-
nitude of the fault signature is always 0. This can be
observed for Model 2 in Fig. 1.

An intuitive ``proof'' of the ®nal value theorem used to
obtain (7) is as follows. For notational simplicity, assume
d � 0. Expanding (6) gives �1ÿ /1Bÿ /2B

2 ÿ� � � ÿ /pBp�
~f �t� � �1ÿ h1Bÿ h2B2 ÿ � � � ÿ hqBq�f �t�, or, equivalent-
ly, ~f �t� ÿ /1

~f �t ÿ 1� ÿ /2
~f �t ÿ 2� ÿ � � � ÿ /p

~f �t ÿ p� �
f �t�ÿ h1f �t ÿ 1� ÿ h2f �t ÿ 2� ÿ � � � ÿ hqf �t ÿ q�. Assume
that ~f �t� does, in fact, reach some constant steady-state
value, denoted ~fss. Then, for su�ciently large t, ~f �t� �
~f �t ÿ 1� � � � � � ~f �t ÿ p� � ~fss, and f �t� � f �t ÿ 1� �
� � � � f �t ÿ q� � fss. Substituting this into the above
equation gives �1ÿ /1 ÿ /2 ÿ � � � ÿ /p� ~fss � �1ÿ h1ÿ
h2 ÿ � � � ÿ hq�fss, which is the same as (7) for the special
case of d � 0.

3. A GLRT for SPC of autocorrelated processes

Although the GLRT has been extensively used for failure
detection in dynamic systems [18,23], it has only recently
been considered for SPC purposes. GLRTs suitable for
on-line SPC of autocorrelated processes have been pro-
posed for ARMA processes [19] and IMA processes [16].
In this section we present the nearly identical form of the
GLRT for ARIMA processes. A brief derivation is pro-
vided in the Appendix.
One possibility for implementing the GLRT would be,

at time t, to test for faults occurring at all prior timesteps.
The computational expense, however, would be excessive.
A more manageable approach taken in this paper is to
test only for faults occurring in a window of length N (a
user de®ned quantity), i.e., between timesteps t ÿ N � 1
and the current time t. Thus, to implement the test one
need only consider the N most recent residuals. Assuming
temporarily that only one type of fault is being tested for,
the problem is one of multiple hypotheses testing. The
null hypothesis is that no fault has occurred, and each of
the N alternative hypotheses is that the fault occurred at
one of the N timesteps within the window.
At current time t, the Generalized Likelihood Ratio

(GLR) statistic associated with the hypothesis that the
fault occurred at time t ÿ k � 1�k � 1; 2; . . . ;N� is given
by (see the Appendix)

Tk�t� � r2
a

Xk

i�1
~f
2�i�

 !ÿ1=2Xk

i�1
e�t ÿ k � i� ~f �i�; �8�

where ~f ��� is the fault signature for a fault occurring at
timestep 1. The interpretation of (8) is straightforward. It
is the inner product of the two vectors � ~f �1� ~f �2� . . . ~f �k��
and �e�t ÿ k � 1�e�t ÿ k � 2� . . . e�t��, scaled by the norm
of the former and ra. As such, Tk�t� is a measure of the
``correlation'' between the actual residuals and the sig-
nature of a fault assumed to have occurred at time
t ÿ k � 1. The higher the correlation between the residu-
als and the fault signature, the larger the magnitude of
Tk�t� and the larger the likelihood that the fault occurred
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at time t ÿ k � 1. From Fig. 1 it is clear that if the mag-
nitude of the fault is large enough, the residuals will be
highly correlated with the fault signature.
The GLRT then involves comparing

G�t� � max
k�1;...;N

jTk�t�j ; �9�

with a user de®ned threshold c chosen to provide a de-
sired in control ARL. If G�t� < c the residuals do not
correlate closely with any of the fault signatures, and it is
concluded that no fault has occurred. If G�t� � c the re-
siduals are highly correlated with one or more of the fault
signatures, and it is concluded that the fault occurred at
time k�, where k� is the value of k that maximizes (9).

Since, in practice, r2
a will not be known, one must use a

suitable estimate in (8). r2
a can be estimated either at the

same time as the ARIMA model or at some later time by
estimating the variance of the residuals when it is known
that no fault was present. Note that the same factor r2

a is
present in all of the GLR statistics in (8) and could,
therefore, be pulled out of the equation for the test sta-
tistic and absorbed into the threshold.
To implement the GLRT, the user must select the test

parameters N and c. For all examples in this paper N =
20 was chosen. Smaller values of N (e.g., 5 or 10), with c
modi®ed to provide the same in control ARL, o�er a
slightly higher probability of detection during the early
timesteps. However, use of the larger window length of 20
was warranted by the added security of increasing the
probability of detection after a reasonable amount of
time. For Models 1 through 4, window lengths larger
than 20 had little added bene®t, since by timestep 20 the
fault signatures decay to very small values. From (8), if
one computed the GLR statistic for a fault occurring 40
(for example) timesteps prior to the current time, very
little weight would be placed on the most recent residuals.
For a desired in-control ARL, the required c will de-

pend on the fault signature and N. The GLR statistics can
be put into the form of an N-dimensional Markov chain
that is stationary under no-fault conditions. Since
the state transition matrix is primitive, by the same ar-
guments presented in Brooks and Evans [24] for the
CUSUM test, the tail of the in-control run length distri-
bution is geometric. Monte Carlo techniques for deter-
mining c can thus be more e�ciently implemented by
truncating the simulations and estimating the geometric
decay constant to approximate the tail. For a discussion
on the geometric properties of the tail of the run length
distribution, see Woodall [25].
Aside from any potential run length improvements, the

GLRT possesses some attractive properties that Shew-
hart and CUSUM tests do not. The GLRT not only
detects faults, but also estimates the fault magnitude and
time of occurrence and automatically classi®es faults ac-
cording to type if more than one type is hypothesized. If a
signal is sounded, the Maximum Likelihood Estimate

(MLE) of the time of occurrence is t ÿ k� � 1. It is
straightforward to show (see the Appendix) that the MLE
of the fault magnitude l is given by

l̂ �
�Xk�

i�1
~f
2�i�
�ÿ1Xk�

i�1
e�t ÿ k� � i� ~f �i�; �10�

which is very similar in form to (8). In Apley [26] it was
shown that the estimate of the fault magnitude is un-
biased, consistent, and e�cient (i.e., achieves the Cramer±
Rao lower bound). Regarding fault classi®cation, sup-
pose that both the step mean shift of (3) and a temporary
spike (de®ned as f(t) = 0 for t 6� s and f(t) = 1 for t = s)
are to be simultaneously tested for. The fault signatures
for each, which usually di�er considerably, must be cal-
culated using (6). The set of GLR statistics in (8) would
be calculated for both faults and G(t) would be calculated
as in (9), where the maximization is over both sets of
GLR statistics. In general, the number of GLR statistics
is the number of hypothesized faults multiplied by the
window length. In complex production processes where
di�erent subsystems can experience di�erent types of
faults, the GLRT could prove to be a valuable diagnostic
tool for classifying faults and tracking down root causes.

4. Comparison of residual-based tests

This section compares the performance of three residual-
based tests for detecting step mean shifts in the original
process. The three tests are the GLRT of the previous
section, a Shewhart individuals test applied to the resid-
uals, and a two-sided CUSUM test applied to the resid-
uals. We do not include a discussion of the EWMA test.
We have found that the performance of the EWMA was
always very similar to CUSUMs with appropriately
chosen o�set values, but never better than the optimally
designed CUSUM (see also van der Wiel [16]). Conse-
quently, it has not been included in the analysis.

4.1. Three residual-based tests

The GLRT was discussed in detail in Section 3. The re-
maining two tests will be brie¯y outlined in this section.

Shewhart individuals test. The Shewhart test is the sim-
plest to implement. At each time t, je�t�j is compared with
a threshold H. If je�t�j exceeds the threshold, a fault is
signaled. Since e�t� is i.i.d. and Gaussian if no fault is
present, a desired in-control ARL can be achieved by
setting H equal to the 1/(2 ´ ARL) quantile of the stan-
dard normal distribution.

Two-sided CUSUM test. The two-sided CUSUM test
monitors for both positive and negative mean shifts. It
involves tabulating two statistics ± an upper CUSUM
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statistic SH �t� and a lower CUSUM statistic SL�t�, de®ned
by

SH �t� � maxf0; SH �t ÿ 1� � e�t� ÿ Kg; and

SL�t� � maxf0; SL�t ÿ 1� ÿ e�t� ÿ Kg;
where K is an o�set value. At each time SH �t� and SL�t�
are compared to a threshold H, and if either falls above
the threshold a fault is signaled.
Since this is a two degree-of-freedom design problem,

H and K can be chosen to optimize some measure of the
detection performance, while maintaining a desired in
control ARL. Typical values of K range from 0:25ra to
1:5ra. For uncorrelated data experiencing step mean
shifts, if one particular mean shift magnitude l is of in-
terest, then a widely used rule-of-thumb is to select
K � l=2. This choice of K very nearly minimized the
ARL for a mean shift of magnitude l, under the con-
straint of a speci®ed in control ARL [27]. However, when
monitoring the residuals of an autocorrelated process, no
such simple rule-of-thumb exists. One may consider set-
ting K � l ~fss=2, but this may be far from the optimal
value for a mean shift of magnitude l. By inspection of
Fig. 1, in particular Models 1 through 4, one may surmise
that the Shewhart test will perform better than the CU-
SUM with moderate values of K. Since the CUSUM
becomes a Shewhart test in the limit, as K approaches the
Shewhart control limit and H approaches 0, it is rea-
sonable that values of K larger than l ~fss=2 provide better
detection performance. The following section demon-
strates that this is, in fact, the case. Note that ~fss can be
obtained directly from (7) with fss � 1 for unit steps.

4.2. Test comparison

The criteria for comparison is the probability of detecting
step mean shifts of various magnitudes after a speci®ed
number of timesteps have passed ± in most cases 20
timesteps. The notation P20�l� will denote the probability
of detecting a mean shift of magnitude l on or before the
20th timestep after its occurrence, and P10�l�; P5�l�, etc.
are similarly de®ned. The parameters of the tests were
selected so that all have the same in-control ARL, de-
noted ARL(0). Because of the forecast recovery phe-
nomenon, the out-of-control ARLs tend to be
disproportionately large when compared with the P��l�
values. Speci®cally, they are larger than what would re-
sult from analogous tests for mean shifts in uncorrelated
processes with the same P10�l� or P20�l� values. Conse-
quently, following the suggestion of Superville and
Adams [15], we have chosen to use P��l� instead of the
out of control ARL as the means of comparison.
See Superville and Adams [15] for a more elaborate
discussion on forecast recovery.
For calculating the ARL(0) and P��l� values a combi-

nation of theoretical derivation, Markov chain approxi-
mation and Monte Carlo approximation was used.

Theoretical derivation [17] was used for all Shewhart
tests. ARL(0) for the CUSUM tests were estimated using
the Markov chain method [24] applied to the one-sided
version with the state-space discretized into 200 points. It
was found that a ®ner discretization was not necessary for
these examples. Since the two-sided CUSUM is sym-
metric and the ARL(0) values were relatively large, the
two-sided ARL is very accurately approximated by one-
half the one-sided ARL [28]. For discussions on alter-
natives to the Markov chain approach see Gan [29] and
Woodall [25], for example. ARL(0) for the GLRT and the
P��l� values for the GLRT and CUSUM were all eval-
uated using Monte Carlo simulation with 20 000 trials.
For ARL(0) for the GLRT, the simulations were trun-
cated at 200 timesteps, with the last 100 being used to
estimate the geometric decay constant of the tail of the
run length distribution. The remaining tail of the distri-
bution was then approximated using the estimated geo-
metric decay constant.
The P��l� comparison results for the six models of

Table 1 and Fig. 1 are illustrated in Fig. 4. In each ®gure,
P��l� for the various tests is plotted as a function of l. In
all cases P20�l� values are shown, except for Model 5 for
which P10�l� values are shown. P10�l� values are shown
for Model 5 simply because for that model the detection
probabilities for all of the tests were so high after 20
timesteps that it was di�cult to draw meaningful con-
clusions. For all cases, the parameters of all tests were
selected so that ARL(0) is 500. Similar analyses for
ARL(0) set at 100 and 300 were also conducted, but the
results were very similar and will not be shown.

Fig. 4. P10�l� values for various tests and the six models of
Table 1. P20�l� is shown for all models except Model 5, for
which P10�l� is shown. For all tests, the test parameters were
chosen so that ARL(0) = 500.
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For each of the models, CUSUM analyses were con-
ducted with K taking values of {0.2, 0.5, 0.75, 1.0, 1.25,
1.5, 2.0, 2.5} and H taking corresponding values of {9.96,
5.07, 3.54, 2.67, 2.11, 1.71, 1.11, 0.59}. For each value of
K, the corresponding value of H was chosen so that the
resulting CUSUM has an ARL(0) of 500. For the sake of
brevity CUSUMs with only selected values of K are il-
lustrated in each ®gure. For each of the six models, the
CUSUM with the K value that optimized its performance
is always shown, unless the Shewhart outperformed all of
the CUSUMs. In this event, the optimal CUSUM is the
one with the largest K value and is nearly identical to the
Shewhart. Strictly speaking, the Shewhart test can never
be better than the optimal CUSUM, since the Shewhart is
a special case of the CUSUM with K equal to the
Shewhart control limit and H � 0. The values of K were
chosen to cover the full range of values that would rea-
sonably be used. K > 2.5 is unnecessary, since CUSUM
tests with values of K larger than that are nearly identical
to the Shewhart test. It was also found that CUSUM tests
with values of K < 0.2 were never the optimal CUSUM
for the examples used here.
For Models 1 through 3, the results are nearly identi-

cal. CUSUM tests with small values of K performed very
poorly. Those with midrange values of K performed
much better, but not quite as well as the Shewhart test or
CUSUM tests with large K. Model 2 is an exception,
where the optimal CUSUM (K � 1:5) performed slightly
better than the Shewhart test. The performance of the
GLRT was signi®cantly better than any of the other tests.
This was expected, given the pronounced transient dy-
namics of the fault signatures for the ®rst three models.
Also, the results seem to hold uniformly for all values of l
ranging from 0 to 4. For Model 4 the results are quali-
tatively the same, but the GLRT performance is only
slightly better than the Shewhart test.
For Models 5 and 6, the conclusion is di�erent. Here,

the CUSUM with a midrange value of K (0.5) is the best
test for both models. The Shewhart test performs poorly.
The GLRT performs better than CUSUM tests with very
small (0.2) and large (1.0) K values but slightly worse than
the optimal CUSUM. From Fig. 1 it can be seen that
there are very little transient dynamics in the fault sig-
nature for the GLRT to take advantage of.
It should be noted that the results for Models 5 and 6

were nearly identical qualitatively and quantitatively,
except that all P��l� values were scaled higher in Model 5
( ~fss is considerably larger). Consequently, the P10�l� val-
ues for Model 5 can be used to draw conclusions about
the P10�l� values for Model 6 and vice-versa for the P20�l�
values. The main di�erence between P10�l� and P20�l�
values is that the CUSUM tests with K � 0:2 and K � 1
change relative position and the performance of the
Shewhart is more competitive after 10 timesteps than
after 20. This is reasonable, since larger values of K result
in smaller values of H and faster detection, providing the

mean shift is of su�cient size. The results for P5�l� for
Models 5 and 6 were along the same lines, with the
CUSUM tests using K � 0:75 (optimal) and K � 1 per-
forming slightly better than the GLRT, which performed
slightly better than the CUSUM test with K � 0:5. The
CUSUM with K � 0:2 was worse than the Shewhart test.
For all of the detection lags, the GLRT was quite close to
the optimal CUSUM. In addition, no single CUSUM test
outperformed the GLRT at all detection lags.
For Models 1 through 3 there was very little di�erence

in the results when P5�l� or P10�l� were considered in-
stead of P20�l�. Moreover, the performance of the GLRT
was still signi®cantly better than any of the other tests.
For Model 4 also there was little di�erence in the results,
with one exception. When P5�l� was used as the criteria,
the Shewhart test had the best performance. Close behind
were the CUSUM tests with K values larger than 1.5,
with the GLRT close behind these.
The comparison results presented in this section can be

reasonably generalized as follows. If the fault signature
has signi®cant transient dynamics (e.g., Models 1 through
3), in particular oscillation about zero, the GLRT out-
performs the other tests by a wide margin. If the fault
signature has very little transient dynamics and its steady-
state magnitude is fairly large (e.g., Models 5 and 6), a
CUSUM test with a properly chosen o�set value is the
best test, but only slightly better than the GLRT. For
fault signatures with little transient dynamics and a small
steady-state magnitude (e.g., Model 4), none of the tests
perform very well. In these situations the GLRT may
have a slight advantage over the Shewhart test, which
may have a slight advantage over the CUSUM. The
terms ``signi®cant'' and ``insigni®cant'' transient dynam-
ics are meant to be rough qualitative measures (rather
than precise quantitative measures) of the transient dy-
namics, relative to the steady-state magnitude of the fault
signature. To determine if a particular fault signature has
signi®cant transient dynamics, it can be compared to
those of Fig. 1. The transient dynamics are signi®cant for
Models 1 through 3, marginal for Model 4, and insig-
ni®cant for Models 5 and 6.

4.3. The e�ects of modeling errors

As seen in the previous section, for many examples where
CUSUM and Shewhart tests perform poorly, the GLRT
performs signi®cantly better. The explanation is simply
that the GLRT makes more complete use of the model,
both the ARIMA parameters and the shape of the fault.
Thus, some comments on modeling errors are in order.
While a thorough analysis of modeling errors is beyond
the scope of this paper, the short analysis presented
illustrates the main points. There are two types of
modeling errors we consider: errors in the ARIMA
parameters and errors in the assumed fault shape, dis-
cussed in order.
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It is unreasonable to assume that the estimated AR-
IMA model will exactly match the true model. Errors can
result from a number of sources, most commonly inade-
quate data or nonstationarities, nonlinearities, or distur-
bances in the process. Tables 2 and 3 show the e�ects of
ARIMA parameter errors on ARL(0) and P20�l� for
Models 2 and 6. The results for Models 1 and 3 were
similar to Model 2, and those for Model 5 were similar to
Model 6. It was assumed that the variance of the residuals
(no longer r2

a) was estimated correctly. For Model 2
(Table 2) it was assumed that the MA polynomial was
incorrectly estimated as Ĥ�B�. Ĥ�B� � 1ÿ 0:28B� 0:64B2

represents a 10% increase in the magnitude of the roots
of the MA polynomial, and Ĥ�B� � 1ÿ 0:62B� 0:81B2

represents a change in the phase angle of the MA roots
from 80° to 70°. For Model 6 (Table 3), it was assumed
the ®rst order AR polynomial was estimated incorrectly
as Û�B� with approximately a 10% underestimation and a
10% overestimation of U1. For both models the e�ects
depend strongly on the direction the parameters are
misestimated.
From Tables 2 and 3 it is clear that errors in the AR-

IMA parameters have strong e�ects on the performance
of both the CUSUM and the GLRT. For situations like
Model 6, where the fault signature has little dynamics and
the GLRT performs similarly to the CUSUM, the e�ects
of modeling errors are also similar. For situations like
Model 2 where the GLRT performs dramatically better
than the CUSUM, the GLRT is also more adversely
a�ected by modeling errors. However, even with model-
ing errors the GLRT still appears to have considerably
better performance than a Shewhart or CUSUM test
for Model 2.
Table 3 shows that small errors in estimating /1 can

either signi®cantly increase or decrease ARL(0) for the
CUSUM and GLRT, depending on whether /1 is over-

estimated or underestimated. For situations like Model 6,
where there are little dynamics in the fault signature, the
GLRT and CUSUM operate on similar principals: both
test for general shifts away from zero in the average of a
number of consecutive points. With /1 underestimated
the residuals still have positive autocorrelation, and this
event is more likely to occur even if there is no true mean
shift. Thus, ARL(0), is considerably decreased. With /1

overestimated the residuals have negative autocorrela-
tion, and the exact opposite is true. In contrast, the
Shewhart individuals test only tests individual points, and
moderate autocorrelation in the residuals has little e�ect
on ARL(0).
The second type of modeling error to consider is mis-

modeling of the shape of the fault f(t). We consider the
above situations where step mean shifts were assumed
and are tested for, but the actual mean shift takes three
timesteps to reach its ®nal magnitude l. Speci®cally, in
(2) f(1) = 1/3, f(2) = 2/3, and f(j) = 1, for j > 2. It is
assumed that there are no errors in the ARIMA param-
eters. P20�l� results for the various tests are shown in
Table 4 for Models 2, 4, and 6. ARL(0) is not shown
since it is una�ected when the fault shape deviates from
its assumed form. Results for Models 1 and 3 were con-
ceptually very similar to those for Model 2. Results for
Model 5 were similar to, although even less pronounced
than, those of Model 6.
It is reasonable that the error in f(t) had very little e�ect

for Models 5 and 6, given the shape of their fault signa-
tures. Since there is very little dynamics to the fault sig-
natures, all three tests rely predominantly on the size of
~fss to detect mean shifts, and ~fss was the same for both
the assumed step fault and the actual fault. In contrast,
errors in the fault shape have signi®cant e�ects for
Models 2 and 4. The tests which performed the best with
no modeling errors are the most strongly a�ected. For

Table 2. E�ects of errors in the ARIMA parameters for Model 2 on ARL(0) and P20(l). The true MA polynomial is H(B) =
1 ) 0.31B + 0.81B2. The numbers shown in parentheses are the corresponding values when the true model is used

Ĥ�B� � 1ÿ 0:28B� 0:64B2 Ĥ�B� � 1ÿ 0:62B� 0:81B2

ARL(0) P20(2) ARL(0) P20(2)

GLRT 1123 (500) 0.238 (0.617) 130 (500) 0.556 (0.617)
CUSUM, K = 0.75 375 (500) 0.096 (0.144) 161 (500) 0.255 (0.144)
Shewhart 517 (500) 0.198 (0.273) 526 (500) 0.199 (0.273)

Table 3. E�ects of errors in the ARIMA parameters for Model 6 on ARL(0) and P20(l). The true AR polynomial is
U(B) = 1 ) 0.8B. The numbers shown in parentheses are the corresponding values when the true model is used

Û�B� � 1ÿ 0:9B Û�B� � 1ÿ 0:7B

ARL(0) P20(1.5) ARL(0) P20(1.5)

GLRT 1087 (500) 0.158 (0.590) 162 (500) 0.831 (0.590)
CUSUM, K = 0.5 4223 (500) 0.122 (0.610) 133 (500) 0.854 (0.610)
Shewhart 492 (500) 0.118 (0.186) 479 (500) 0.286 (0.186)
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Model 2, the GLRT is a�ected the most, followed by the
Shewhart and CUSUM with large K values. CUSUMs
with small K values, which performed dismally with no
modeling errors, were much less a�ected. Even with the
modeling errors considered, however, the GLRT per-
formed better than any of the other tests. For Model 4 the
GLRT, Shewhart, and CUSUM with K = 1.5 are all
a�ected similarly. CUSUMs with midrange K values are
moderately a�ected, and the CUSUMs with small K are
a�ected very little.
These results have an intuitive interpretation in terms

of the shape of the fault signatures. Refer, for example, to
the fault signature for Model 4 in Fig. 1. The GLRT,
Shewhart, and CUSUMs with large K all rely heavily on
the initial spike in the fault signature in order to detect the
fault. When the mean shift is not a step, but instead takes
three timesteps to build up, the initial spike in the fault
signature is missing. For l = 1, the true fault signature
ranges from 0.33 to 0.4 for the ®rst three timesteps, after
which it remains at 0.1. Thus, these tests are strongly
a�ected. In contrast, CUSUMs with smaller K rely more
on the steady-state magnitude of the fault signature than
on initial dynamics to detect mean shifts. If the initial
spike in the fault signature is missing, their performance
does not su�er nearly as much as the GLRT or Shewhart.
It should be kept in mind that, with no modeling errors,
CUSUMS with small K performed the poorest of all the
tests.
In the short robustness analysis presented in this sec-

tion we have considered some simple estimation errors in
order to illustrate the point that the tests can be sensitive
to modeling errors. Parameter estimation errors and
errors in the fault shape were considered separately. If
such errors are considered together or if larger errors are
considered, the results could be more extreme so that the
Shewhart (for example) may be the best test. A more
thorough robustness investigation would be very useful.
A ®nal comment on the shape of the fault is in order.

Even if the true shape of the fault is not a step, when the
shape is known the GLRT can be modi®ed accordingly.
It is straightforward to develop the GLRT for mean
shifts that, for example, build up linearly or exponen-
tially, are sinusoidal, or are of any other form, providing
they are repeatable. If the faults are repeatable and data

from prior occurrences of the fault is available, the shape
of the fault can be estimated. The fault signature can
then be calculated using (6), and (8) and (9) can be used
directly.

5. Summary and conclusions

For detecting mean shifts in certain types of ARIMA
processes, the GLRT presented in this paper can achieve
dramatically improved performance over more conven-
tional residual-based tests. The GLRT is quite simple to
implement, requiring only that the fault signature (cal-
culated o�-line) be ``correlated'' with the residuals. In
addition to any potential performance improvements, the
GLRT possesses several other desirable features. It pro-
vides maximum likelihood estimates of the magnitude
and time of occurrence of the fault and can be used to
classify faults according to type, if more than one type is
to be tested for. Thus, the GLRT could serve as a pow-
erful diagnostic tool for detecting and isolating root
causes in complex production processes that experience a
number of di�erent fault types.
Throughout this paper we have emphasized the im-

portance of the fault signature. In addition to the direct
use of the fault signature by the GLRT, it provides a
simple yet e�ective means of determining which residual-
based test will have the best performance, as the GLRT is
not always the best test. By simple inspection of the fault
signatures in Fig. 1, one could have guessed the results of
the performance comparisons in Section 4: (i) for AR-
IMA models whose fault signatures have small steady-
state magnitude, but pronounced transient dynamics, the
GLRT outperforms the other tests by a wide margin,
followed by the Shewhart test, with CUSUM tests per-
forming poorly; (ii) if the fault signature has a relatively
large steady-state magnitude and insigni®cant transient
dynamics, a properly designed CUSUM test is as good,
or slightly better, than the GLRT, and the Shewhart test
performs poorly; and (iii) if the fault signature has neither
a large steady-state magnitude, nor pronounced transient
dynamics, none of the tests perform very well.
Given that the strength of the GLRT lies in its more

complete use of the model, one might consider the pos-

Table 4. E�ects of deviation from a step mean shift on P20(l) values for various models and tests. The numbers in parentheses are
the corresponding values with a step mean shift

P20(2), Model 2 P20(3), Model 4 P20(1.5), Model 6

GLRT 0.100 (0.617) 0.178 (0.566) 0.543 (0.590)
Shewhart 0.072 (0.273) 0.112 (0.494) 0.149 (0.186)
CUSUM, K � 0:2 0.010 (0.011) 0.156 (0.170) 0.517 (0.556)
CUSUM, K � 0:5 0.044 (0.063) 0.244 (0.267) 0.582 (0.610)
CUSUM, K � 0:75 0.058 (0.144) 0.235 (0.317) 0.476 (0.506)
CUSUM, K � 1:0 0.073 (0.234) 0.209 (0.392) 0.382 (0.411)
CUSUM, K � 1:5 0.081 (0.294) 0.157 (0.478) 0.227 (0.275)
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sibility of modeling errors to be a deterrent to using the
GLRT over, for example, a CUSUM test on the residu-
als. The brief analysis of modeling errors presented in
Section 4 indicates that in cases where the CUSUM and
GLRT perform comparably, they su�er comparably
from modeling errors. The GLRT appears to be more
adversely a�ected by modeling errors only in situations
where, when the model is accurate, the GLRT drastically
outperforms the CUSUM. For the examples studied
where this was the case, after the modeling errors are
taken into account, the GLRT still performed compara-
bly to or slightly better than the CUSUM.
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Appendix

This Appendix provides a brief derivation of the GLRT
of (8) and (9). If the mean shift magnitude l were known
a priori, a Likelihood Ratio Test (LRT) could be used.
The LRT consists of, at each time t, choosing the hy-
pothesis which maximizes the likelihood ratios

Ki � p�ejHi;l�
p�ejH0� �i � 1; 2; . . . ;N�: �A1�

Here, e � �e�t ÿ N � 1�e�t ÿ N � 2� . . . e�t��T is the vector
of residuals over the current data window,
Hi �i � 1; 2; . . . ;N� is the hypothesis that the fault has
occurred at time t ÿ i� 1, H0 is the null hypothesis that
no fault has occurred, and p�ejHi; l� is notation for the
conditional probability density of e, given the ith hy-
pothesis is true and the fault magnitude is l. De®ne
~fi � �0 0 . . . 0 ~f �1� ~f �2� . . . ~f �i��, where ~f ��� is the fault
signature for a fault occurring at timestep 1. It follows
directly from (5) that, under Hi, the mean vector and
covariance matrix of the jointly Gaussian random vector
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e are given by l~fi and r2
aI, where I is the N � N identity

matrix. Substituting into (A1) the multivariate Gaussian
probability density with these values for the mean and
covariance matrix gives

Ki � exp

�
1

2r2
a

2leT~fi ÿ l2~f
T
i
~fi

h i�
: �A2�

Since the fault magnitude l will not be known a priori,
the GLRT approach is to substitute for l in (A2) its
Maximum Likelihood Estimate (MLE) under Hi. The
MLE of l under Hi, denoted l̂i, is given by

l̂i � argmax
l
fp�ejHi;l�g

� argmin
l

��
eÿ l~fi

�T �
eÿ l~fi

�	 � eT~fi
~f

T
i
~fi
; �A3�

where the second equality follows from the de®nition of
the multivariate Gaussian probability density and the fact
that the mean vector and covariance matrix of e under Hi

are l~fi and r2
aI.

Maximizing (A2) with (A3) substituted for l is equiv-

alent to maximizing �r2
a
~f

T
i
~fi�ÿ1�eT~fi�2, which is the square

of (8). Maximizing over i gives the GLRT of (9).
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