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Abstract. Disassembly for recycling purposes is an emerging area of research that offers many advantages over
more traditional means of recycling. However, many technical challenges are involved in automated disassembly.
This paper addresses one of the critical challenges involved: diagnostics in the unscrewing operation. The various
conditions that can arise when one attempts to unscrew a screw (one of which is the successful removal of the
screw) are categorized, and a diagnostic procedure for detecting which condition has occurred and deciding what
subsequent action to take is developed. Experimental condition detection results are presented.
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1. Introduction

The recycling of technical consumer products is a subject in which interest is rapidly increas-
ing, due to the growing importance of conserving energy, material resources, and landfill
capacity. Many governments worldwide are stiffening legislation requiring manufacturers
to play a role in recycling products at their end of life. This is especially true in areas of
high population density, such as Germany and Japan, where resources and landfill capacity
are limited (Seliger and Hentschel, 1994; Seliger, Hentschel, and Kriwet, 1993). The land-
fill disposal cost in Germany exploded from 20 DM/ton in 1987 to 1000 DM/ton in 1993
(Seliger et al., 1993). In special purpose landfills, where products containing hazardous
substances must be disposed, the cost was over 3000 DM/ton by 1993.

Of all the recycling options, disassembly, or partial disassembly, is one of the most
promising. Disassembly makes possible the reuse of entire subcomponents, more effective
isolation of pure materials for reutilization, and isolation of hazardous substances, minimiz-
ing the waste that must be disposed of in special purpose landfills. Overviews and examples
of disassembly process planning can be found in Seliger and Hentschel (1994) and Seliger
et al. (1993).

Much of the disassembly research to date deals with designing the product with disassem-
bly in mind. Such design for disassembly is considered in Navin-Chandra (1991), Zussman,
Kriwet, and Seliger (1994), and Boothroyd and Alting (1992). Another area of research
concerns how to determine the optimum recycling strategy, in terms of the order in which
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to disassemble a product and how far to disassemble it. Hentschel, Seliger, and Zussman
(1994, 1995) present reactive approaches for doing this, which evaluate the recyclability of
an incoming product and update the disassembly strategy based on this information.

Currently, most disassembly facilities are based on manual operations with limited auto-
mated machinery (de Ron and Penev, 1995; Langerak, 1997; Kopacek and Kronreif, 1996).
However, manual disassembly operations are not well suited to deal with the recycling
scenario of the near future. The tremendous quantities of technical consumer products
that will need to be recycled necessitates automation, or at least partial automation, of the
disassembly process (Kopacek and Kronreif, 1996; Feldmann and Scheller, 1994). In addi-
tion, manual disassembly often is monotonous, unpleasant, or even hazardous work (Weigl,
1994; de Ron and Penev, 1995), an extreme case being the disassembly of explosive devices
(Ray, 1996). Consequently, considerable attention has been given recently to designing au-
tomated disassembly operations. Most of the products for which automated disassembly
has been investigated fall into the category of consumer electronics; examples include key-
boards (Langerak, 1997), personal computers (Kopacek and Kronreif, 1996), televisions
(Jorgensen, Andersen, and Christensen, 1996), and printed circuit boards (Feldmann and
Scheller, 1994). The large scale on which these types of products are manufactured and dis-
carded generally is the strongest motivating factor for automating their disassembly process.

A key issue in the automated disassembly of a product is the type of fasteners used to
assemble the product. The most common fasteners are threaded (Phillips and slot head
screws and hex head bolts); rivets; snap joints; welded, brazed, and soldered joints; and
adhesives (Juvinal, 1983). Of these, only threaded fasteners can be removed in a nonde-
structive manner. Removal of nonthreaded fasteners requires cutting the components or
fastener. Since this would be highly application specific, developing generic strategies for
removing nonthreaded fasteners would be more difficult. Consequently, this paper focuses
on nondestructive disassembly and assumes that the product components to be disassem-
bled are fastened by screws or bolts (unless otherwise indicated, subsequently referred to
as simplyscrews).

Suppose that the product is located on a fixture and ready to be disassembled. The
following three tasks must be successfully accomplished: (1) The screws must be located;
(2) after locating the screws, they must be removed; and (3) after removing the screws, the
components must be separated. A prototype vision system for locating screws has been
developed by the second author, with successful tests conducted in a laboratory environment.
Other research on vision systems in automated disassembly can be found in Jorgensen et al.
(1996), Feldmann and Scheller, (1994), Weigl, (1994), and Dario, Rucci, Guadagnini and
Laschi, (1994). In the future, the success of such vision systems may be greatly improved
by providing manufacturers’ specifications giving descriptions and nominal locations of
all screws. The third task is considered, for example, in Dutta and Woo (1995) and relies
heavily on design for disassembly.

This paper focuses on the second task, for which it is assumed that a screwdriver (or
a wrench for hex head bolts) held by a robotic manipulator is the tool used to remove
the screws. After locating a screw, attempting to engage the head of the screw with the
screwdriver, and attempting to remove the screw, the actual state of the system must be
correctly diagnosed. Specifically, is the screw coming out and, if not, why not?
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The remainder of the paper is as follows. The various conditions that are likely to arise
in the unscrewing process are categorized and modeled in Sections 2 and 3. In Section 4,
a diagnostic algorithm is developed for detecting which condition has occurred, and a
scheme for taking subsequent action is presented. Section 5 provides experimental results
illustrating the effectiveness of the diagnostic algorithm.

2. Categorizing the unscrewing conditions

This section explains and categorizes the various conditions that could arise and need to
be detected during the unscrewing process. The categorization is both qualitative and
quantitative, in terms of the appropriate process signals being measured.

One of the results of this research is that measurement of the unscrewing torque and
shaft rotation provides reliable signals with rich enough information to distinguish among
the different conditions that arise. Equally important, these signals can be measured very
economically, with little extra hardware required.

The experimental setup used in this research is shown in figure 1. A screwdriver powered
by a 7.5 volt dc motor is attached to a vertical shaft, on which it can be moved up and down
or locked into place. A potentiometer is used to measure the angle of rotation of the shaft
(θ), and a shunt is used to measure the current through the motor. The time constant of
the motor circuitry is fast enough, relative to the frequency content of the torque signal,
that it can be assumed the measured current is proportional to the motor torque (T ). Both
signals are sent to a data acquisition (DAQ) board in a PC, where the signal analysis takes
place. The DAQ hardware consists primarily of analog to digital converters for sampling
the torque and shaft rotation signals, anti-aliasing filters, and a couple of digital to analog
output channels for controlling the experiment.

Figure 1. Experimental setup.
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Figure 2. Behavior of the measured signals under each unscrewing condition. (a) and (b) screw coming out;
(c) and (d) screwdriver slipping on head of screw; (e) and (f) screwdriver missed screw; (g) and (h) screw too tight
to move.

The four most commonly occurring conditions that may arise in the unscrewing process
are explained in the following paragraphs, and their effects on the measured signals are
shown in figure 2. The signals illustrated in figure 2 are not meant to be quantitatively precise
but rather only an approximate qualitative representation to provide an idea of how theT
andθ signals differ under each condition. The conditions are numbered 0 to 3, as follows.

Condition 0 (screw coming out):The screwdriver properly engages the head of the screw
and, when a voltage is applied, the screw comes out.T (figure 2(a)) reaches some peak
torque, where it remains (approximately) constant while the screw breaks free. At timeτ

the screw begins moving, at which timeθ (figure 2(b)) begins to increase monotonically
andT decays to some steady-state value required to keep the screw turning.
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Condition 1 (screwdriver slipping on the head of the screw):As in condition 0, the screw-
driver properly engages the head of the screw. However, when a voltage is applied, the
screwdriver slips on the head of the screw. This situation occurs commonly when un-
screwing Phillips head screws that are old and rusted or made of soft, low-quality metal.
The direct cause is the edges of the slots on the head of the screw becoming rounded. In
the case of a hex head bolt, it could result from the corners of the bolt head becoming
rounded.T (figure 2(c)) reaches some peak value, at which time the screwdriver starts to
slip, andθ (figure 2(d)) begins to increase monotonically. As the screwdriver slips on the
head of the screw, a periodic torque signal is produced. The frequency of this periodic sig-
nal would be four times the shaft rpm (for a Phillips head screw) or six times the shaft rpm
(for a hex head bolt). The experimental data presented later in this paper demonstrate that
this assumed torque profile is a quite reasonable approximation of the actual torque signal.

Condition 2 (screwdriver missed the head of the screw):Condition 2 assumes the head of
the screw was missed when the screwdriver was moved to engage it, due to an error in
locating the screw or inaccuracies in the robotic arm supporting the screwdriver. As a
result, when a voltage is applied, the shaft begins rotating immediately “on air” or on
a flat surface andθ (figure 2(f )) increases monotonically. Some peak torque is reached
while the mass of the screwdriver is accelerated, after which time,T (figure 2(e)) decays
to a (possibly low) steady-state value.

Condition 3 (screw too tight to move):The screwdriver properly engages the head of the
screw, but when a voltage is applied the torque is not sufficient to free the screw. In
this case,T (figure 2(g)) reaches some peak value, where it remains constant andθ

(figure 2(h)) remains 0.

Detecting condition 3 is trivial, since it is the only one of the four conditions under which
θ does not change. Consider conditions 0 and 2, which clearly cannot be distinguished on
the basis ofθ (θ could be identical for each of conditions 0–2). Neither doesT provide
a reliable means of distinguishing between conditions 0 and 2, since the magnitude of
the peak and steady-state torque and the duration of the peak torque depend on many
factors. However, detecting whether condition 2 has occurred can be achieved as follows.
After the screwdriver is moved into position to engage the screw but before applying a
counterclockwise torque to remove the screw, apply a small clockwise torque that is large
enough to overcome friction and rotate the screwdriver but not so large as to overtighten
the screw. If the screwdriver rotates freely in the clockwise direction (which can be easily
determined fromθ ) then it can be concluded that condition 2 has occurred. On the other
hand, if the screwdriver does not rotate in the clockwise direction, then it can be concluded
that one of conditions 0, 1, or 3 will occur. In this event, after subsequently attempting to
remove the screw with a counterclockwise torque, condition 3 can be effectively detected
or eliminated as previously discussed.

To summarize the main points of this section, conditions 2 and 3 can be easily detected,
reducing the problem to that of detecting either condition 0 or condition 1. Consequently,
much of the remainder of the paper focuses on that problem.

Condition 1, although common for hex head bolts and Phillips head screws, would be
less likely to occur for slot head screws. Instead of the screwdriver remaining centered and
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slipping on the head of the screw, it would be more likely that the screwdriver would pop
out of the head of the screw. The algorithm developed in Sections 3 and 4 is designed to
distinguish conditions 0 and 1 and therefore, would, not be applicable to slot head screws.
However, problems with slot head screws still are partially diagnosable, since the procedure
for distinguishing conditions 2 and 3 would apply.

It should be noted that an alternative to unscrewing the screws is to cut them out;
for example, via milling or drilling. However, this is less desirable than removing them
nondestructively, which would allow greater reusability of the components of the product—
one of the goals of disassembly. In addition, cutting the screw could leave burrs that cause
interference when attempting to disassemble the components. This would likely require
more human interaction than if the screws were unscrewed. Consequently, the focus of this
paper is on removing the screws nondestructively.

3. Modeling the torque signal

Figure 3 shows the two torque profiles corresponding to conditions 0 and 1 for two complete
shaft revolutions for a Phillips head screw. A pronounced periodic component of frequency
four times the shaft rotational frequency is evident in the torque profile for condition 1.
Since this component is much less dominant under condition 0, this will serve as the basis
for distinguishing between the two conditions.

The signals shown in figure 3 are in units of volts, rather than torque, and are voltage drops
across the shunt. The signal has been filtered to remove high-frequency components. In
addition, the signal has been resampled (using interpolation) so that the sampling is uniform
with respect to shaft rotation, which is crucial in the subsequent analysis. The reason is
that the original torque signal is sampled uniformly with respect to time. If the rotational

Figure 3. Resampled torque profiles for two shaft revolutions for a Phillips head screw.
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frequency of the shaft were not constant, then the frequency of the periodic component also
would vary. In contrast, if the torque signal were sampled uniformly with respect to shaft
rotation, the frequency of the periodic component (in radians/sample) would be known and
constant.

Letω denote the shaft rotational frequency in radians/sample. Under either condition the
torque signal is approximately periodic with fundamental frequencyω. By Fourier’s theo-
rem it can be represented as a summation of sinusoids with frequencies{0, ω,2ω, 3ω, . . .}.
In practice, the signal can be approximated by a finite number of these sinusoids. Condition
0 represents the screw coming out of the hole. If the screw has a burr on the shaft, this could
result in a significantω frequency component. If the screw and hole are slightly ellipsoidal,
this could cause binding every half revolution of the screw and result in a significant 2ω

frequency component. Higher harmonics also may be present, but their magnitude is not
likely to be as large. Under condition 1 also, the signal may be approximated by a finite
number of sinusoids of frequency{0, ω,2ω, 3ω, . . .}. However, the signal will likely be
dominated by a 4ω periodic component (for a Phillips head screw) that has harmonics of
4ω, 8ω, 12ω, . . . For the case of hex head bolts, the signal will be dominated by a 6ω

periodic component that has harmonics of 6ω, 12ω, 18ω, . . . As evident in figure 3, the
4ω periodic component and its higher harmonics are far more significant under condition 1
than under condition 0. The presence of these frequency components will allow distinction
between conditions 0 and 1.

In general, defineÄ1 to be the collection of all frequencies that may be significant under
either condition 0 or 1. Letp1 denote the number of frequencies in this set, excluding the
0 frequency, and enumerateÄ1 asÄ1 = {0, Ä1,i : i = 1, 2, . . . , p1}. DefineÄ to be the
set of frequencies that are expected to be much more significant under condition 1 than
under condition 0. Letp denote the number of frequencies in this set, and enumerateÄ as
Ä = {Äi : i = 1, 2, . . . , p}. DefineÄ0 to be the set differenceÄ1−Ä; that is, the set of
all frequencies inÄ1 that are not inÄ. Finally, let p0 denote the number of frequencies in
this set, excluding the 0 frequency, and enumerateÄ0 asÄ0 = {0, Ä0,i : i = 1, 2, . . . , p0}.
Note thatÄ1 = Ä0 ∪Ä and thatÄ1 ⊂ {0, ω,2ω, 3ω, 4ω, . . .}.
Ä1 must include all frequencies that may have significant energy under either condition,

andÄmust include at least one frequency that is expected to have significantly more energy
under condition 1 than under condition 0. Other than this, exactly what frequencies to in-
clude in these sets is somewhat arbitrary. Through intuition and experiments, it was found
thatÄ1={0, ω,2ω, 3ω, 4ω, 8ω, 12ω, 16ω, 20ω} andÄ={4ω, 8ω, 12ω, 16ω, 20ω} pro-
vided good results for Phillips head screws. Likewise, for hex head boltsÄ1={0, ω,2ω, 3ω,
4ω, 5ω, 6ω, 12ω, 18ω, 24ω, 36ω} andÄ = {6ω, 12ω, 18ω, 24ω, 30ω} provided good re-
sults. The interpretation is that the 4ω(6ω) component and its higher harmonics are likely
to have much more energy under condition 1 than under condition 0, due to the screwdriver
(wrench) slipping on the head of the screw (bolt). Under either condition, very little signal
energy was found resulting from components with frequency greater than 30ω, due in part
to prefiltering the signal to avoid aliasing.

Suppose that, after resampling the torque signal uniformly inθ , one hasN torque
measurements, which are represented as anN-length column vectorT. From the pre-
ceding paragraphs,T can be approximately represented as a linear combination of sampled
sinusoids with frequencies inÄ1. The difference between the measuredT and the sinusoidal



P1: JVS

The International Journal of Flexible Manufacturing Systems KL591-01-Apley June 17, 1998 16:18

118 DANIEL W. APLEY ET AL.

approximation is assumed to be due to white Gaussian noise, which gives rise to the fol-
lowing mathematical model forT.

T = [S0 S
][α0

α

]
+W

W is an N-length random vector of white Gaussian noise with zero-mean and variance
σ 2, denotedW ∼ N(0, σ 2I). Here,0 is a vector of zeros representing the mean vector of
W, I is the N× N identity matrix, andσ 2I is the covariance matrix ofW. S0 andS are
N× (2p0+ 1) and N× 2p matrices with columns consisting of sampled sine or cosine
functions with frequencies inÄ0 andÄ, respectively. Ifs0,i, j andsi, j denote thei th row,
j th column element ofS0 andS, respectively, then

s0,i,1= 1
s0,i,2 j = sin(iÄ0, j )

s0,i,2 j+1= cos(iÄ0, j )

 i = 1, 2, . . . , N; j = 1, 2, . . . , p0 (1)

si,2 j−1= sin(iÄ j )

si,2 j = cos(iÄ j )

}
i = 1, 2, . . . , N; j = 1, 2, . . . , p (2)

Here,α0 is a(2p0+ 1)-length vector containing the weighting coefficients for each of the
sinusoids with frequency inÄ0; and it determines the extent to which each of these sinusoids
is present in the torque signal. Likewise,α is a 2p-length vector that determines the extent
to which the sinusoids with frequencies inÄ are present in the signal. By definition, the
magnitude ofα is considerably larger under condition 1 than under condition 0.

4. The condition detection algorithm

In this section the diagnostic algorithm is developed and discussed. In Section 4.1, the
algorithm for distinguishing between conditions 0 and 1, which represents the main technical
results of the paper, is developed. Attention is focused on conditions 0 and 1 since, as
explained in Section 2, distinguishing conditions 2 and 3 is trivial. Section 4.2 discusses
the implementation of the algorithm, in particular the computational expense. The overall
diagnostic procedure for distinguishing all four conditions, as well as subsequent action to
take in the event that each condition is detected, is outlined in Section 4.3. The diagnostic
algorithm for distinguishing conditions 0 and 1 applies to either hex head bolts or Phillips
head screws. The only implementation difference is in what frequency components are
used to define theS0 andS matrices.

4.1. Diagnosing conditions 0 and 1

The main idea behind the algorithm is to fit, in a least squares sense, the measured torque
vector to the sinusoidal vectors contained inS0 andS, whereS0 andS are defined by (1)
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and (2). The extra sinusoids present inS are expected to be much more dominant under
condition 1 than under condition 0. Thus, if the torque vector is approximated much more
closely by the sinusoids in bothS0 andS than it is by only those inS0, it will be concluded
that condition 1 occurred.

LetP0 denote the least squares projection operator onto the column space ofS0. Similarly,
defineS1 ≡ [S0 S], and letP1 denote the least squares projection operator onto the column
space ofS1. Standard results from least squares theory give

P0 = S0
(
ST

0 S0
)−1

ST
0 (3)

P1 = S1
(
ST

1 S1
)−1

ST
1 (4)

DefineP⊥1 to be the least squares projection operator onto the orthogonal complement of
the column space ofS1, and defineP≡ P1− P0. It follows from the definitions ofP⊥1 and
P that

P⊥1 = I − P1 (5)

I = P0+ P+ P⊥1 (6)

whereI is the identity matrix of appropriate dimension. The least squares approximation
of the torque vectorT by the sinusoids inS0 and by those inS1 are given, respectively, by

T̂0 ≡ P0T (7)

T̂1 ≡ P1T (8)

Defining the residual error vectors associated with these least squares approximations to
beE0 ≡ T − T̂0 andE1 ≡ T − T̂1, it follows that

E0 = [I − P0]T = [P+ P⊥1
]
T (9)

E1 = [I − P1]T = P⊥1 T (10)

The first equalities in (9) and (10) follow from (7) and (8) and the second equalities from
(5) and (6).

The residual sum of the squares for each of the least squares approximations then can
be defined asJ0 ≡ ET

0 E0 andJ1 ≡ ET
1 E1. J0 andJ1 are measures of how well the torque

signal is approximated by linear combinations of the sinusoids used to constructS0 and
S1, respectively. Intuitively, ifJ0 À J1, then including the extra sinusoids inS into the
model provides a much better approximation of the torque signal. This, in turn, implies
that condition 1 has occurred, since it was assumed that the sinusoids inShave significant
energy under condition 1 and much smaller energy under condition 0. The remainder of
this section is devoted to quantifying this intuitive argument.

Substituting (9) and (10) into the definitions ofJ0 andJ1 gives

J0 = TT
[
P+ P⊥1

]T[
P+ P⊥1

]
T = TTPT + TTP⊥1 T (11)

J1 = TT
[
P⊥1
]T

P⊥1 T = TTP⊥1 T (12)
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The second equalities in (11) and (12) follow by noting thatP⊥1 and P+P⊥1 are both
projection operators. Therefore, they are symmetric and idempotent (a square matrixA
is defined to be idempotent ifA2=A) and the results follow. ThatP⊥1 andP+P⊥1 are
symmetric and idempotent also can be seen directly by substitutingI −P1 for P⊥1 and
I −P0 for P+P⊥1 and then substituting (3) and (4) forP0 andP1. From (11) and (12) it
also follows that

J0− J1 = TTPT (13)

The following statistic now can be defined as a measure of the improvement in the least
squares fit gained by including the sinusoids inS:

F ≡ (J0− J1)/2p

J1/(N− 2p1− 1)
(14)

It follows from (11), (12), (13), and the Fisher-Cochran Theorem (Rao, 1973) thatF follows
a noncentralF-distribution with 2p-numerator degrees of freedom and(N− 2p1− 1)-
denominator degrees of freedom, denotedF ∼ F(2p, N − 2p1− 1, λ). In addition, the
noncentrality parameterλ is given by

λ ≡ [Sα]T [Sα]

σ 2
− [Sα]TP0[Sα]

σ 2

For an integer number of shaft revolutions, the sinusoids inS will be orthogonal to the
sinusoids inS0, and the second term in the expression forλ will vanish. For a noninteger
number of shaft revolutions, although the second term may not be exactly 0,λ still will be
dominated by the first term. Therefore, the noncentrality parameterλ has an interpretation
as a signal-to-noise ratio. The term [Sα]T [Sα] is a measure of the energy in the torque
signal due to the sinusoidal components with frequencies inÄ, andσ 2 is a measure of
the noise power. Since the energy of the sinusoids with frequencies inÄ is assumed to
be much larger under condition 1 than under condition 0, the noncentrality parameter will
be much larger if condition 1 occurs and the distribution ofF will shift significantly to the
right.

This suggests using a noncentralF test to detect the presence of condition 1. Select a
desired probability of false alarmη, and set the test thresholdγ to be the 1− η percentile
of the F(2p, N − 2p1 − 1, λ) distribution. Here,λ is the noncentrality parameter under
condition 0. When a torque measurement is obtained,F is calculated using (14) and
compared toγ . If F > γ , conclude that condition 1 has occurred; and ifF ≤ γ , conclude
condition 0 has occurred. Tables and approximations for the noncentralF distribution are
available in Pearson and Hartley (1972).

Selection ofγ requires that the value ofλ under condition 0 be known. If none of the
sinusoids inS is present under condition 0, thenλ= 0 and a centralF distribution can be
used to selectγ . If, however, the sinusoids inShave some energy under condition 0,λ= 0
cannot be assumed. Since the first moment of anF(ν1, ν2, λ)-distributed random variable
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is [ν2(ν1 + λ)]/[(ν2 − 2)ν1], an average value ofF under condition 0 (denoted̄F) can be
calculated experimentally andλ can be estimated using

λ ∼= ν1

[(
ν2− 2

ν2

)
F̄ − 1

]
(15)

The value ofλ under condition 0 will depend somewhat on the characteristics of the screw
(e.g., screw diameter), the hardware (e.g., internal gearing of the screwdriver), and the
number of measurementsN in the torque vector. Therefore, for a given experimental setup
and class of screw, some training should be used to estimateλ under condition 0 and select
an appropriate threshold.

Selecting the threshold so as to specify only the probability of false alarm has the advan-
tage of not requiring knowledge ofλ under condition 1. For the algorithm to diagnose the
conditions effectively, it is enough to know thatλ under condition 1 will be significantly
larger than under condition 0. If one wished to select the threshold (for example) to min-
imize the Bayesian risk or if one wished to analyze the probability of correctly detecting
condition 1, then knowledge ofλ under condition 1 would be required as well. This is dif-
ficult to do in a generic sense, however, sinceλ under condition 1 will depend on additional
factors, such as how worn the head of the screw is and how much thrust force is applied
when attempting to unscrew it.

4.2. Implementation procedure and computational expense

This section outlines the suggested procedure for implementing the algorithm for distin-
guishing conditions 0 and 1 and discusses the computational expense. Implementation of
the algorithm for distinguishing conditions 2 and 3 is straightforward, as discussed in
Section 2. Computational expense is an important practical concern, since long delays in
detecting the conditions could render the entire procedure inefficient. In addition, if condi-
tion 1 is not promptly detected, the tip of the screwdriver (or wrench) and the head of the
screw (or bolt) quickly could be worn down.

At first glance it appears that implementation of the algorithm requires solving two least
squares problems. However, the entire solution is not needed, since all that is required to
calculateF is the sum of the squares of the residualsJ0 andJ1. These can be very efficiently
calculated usingQR factorization concepts. The idea is, after theS1 matrix is constructed,
to factor it into itsQR form; that is, factor

S1 = QR = [q1 q2 · · · q2p0+2p+1
]
R (16)

whereQ is anN× (2p0+ 2p+ 1)matrix with orthonormal columns andR is a(2p0+ 2p+
1)× (2p0+ 2p+ 1) upper triangular matrix. Here,qi denotes thei th column ofQ. See,
for example, Golub and Van Loan (1990) for a detailed description of theQR factorization
and computationally efficient algorithms for obtaining it.
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Since the columns ofQ are an orthonormal basis for the column space ofS1, the least
squares projection ofT onto the column space ofS1 is given by

T̂1 =
2p0+2p+1∑

i=1

(
qT

i T
)

qi

With the error vectorE1 defined asT− T̂1, it follows that

E1 = T −
2p0+2p+1∑

i=1

(
qT

i T
)

qi

J1 ≡ ET
1 E1 =

[
T −

2p0+ 2p+ 1∑
i=1

(
qT

i T
)

qi

]T [
T −

2p0+ 2p+ 1∑
i=1

(
qT

i T
)

qi

]

= TTT − 2TT
2p0+ 2p+ 1∑

i=1

(
qT

i T
)

qi +
2p0+ 2p+ 1∑

i=1

(
qT

i T
)

qT
i

2p0+ 2p+ 1∑
j=1

(
qT

j T
)

q j

= TTT − 2
2p0+ 2p+ 1∑

i=1

(
qT

i T
)2 + 2p0+ 2p+ 1∑

i=1

(
qT

i T
)2

= TTT −
2p0+ 2p+ 1∑

i=1

(
qT

i T
)2

(17)

where the third term in the second to last line results because the columns ofQ are or-
thonormal. SinceS1 ≡ [S0 S], the Q matrix in theQR factorization ofS0 is exactly the
first 2p0+ 1 columns ofQ. Consequently, following the derivation of (17), it can also be
shown that

J0 = TTT −
2p0+ 1∑

i=1

(
qT

i T
)2

(18)

To recognize the computational advantages of (17) and (18), first expressT and the
columns ofQ in terms of their elementsT = [T1 T2 . . . TN ]T andqi = [q1,i q2,i , . . . ,qN,i ]T .
The columns ofQ can be determined off-line since they depend only onS1. Writing the
individual terms of (17) and (18) as

TTT =
N∑

j=1

T2
j (19)

qT
i T =

N∑
j=1

qj,i Tj (20)

means that they can be updated recursively with only a few multiplications as each new
sample of the torque signal is obtained (see the on-line portion of the algorithm that follows).
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The entire procedure for distinguishing conditions 0 and 1 is divided into an off-line and
on-line portion and summarized as follows.

Off-Line.

1. Based on the type of screw and the desired number of samples per shaft revolution,
determineÄ0 andÄ1.

2. Determine the number (N) of samples that will constitute the torque signal or, equiv-
alently, the number of shaft revolutions for which the torque signal will be measured.
For all experiments conducted by the authors, two revolutions were sufficient. More or
fewer may be suitable depending on the specific problem.

3. Selectγ . This will require some training, via estimation ofλ under condition 0 or under
condition 1 or both.

4. Based onÄ1 andN, constructS1 according to (1) and (2).
5. FactorS1 into its QR form, as in (16). The columns ofQ will be used in the on-line

portion.
6. Initialize the following dummy variables to be used in the on-line portion of the algorithm:

Vi = 0 for i = 1, 2, . . . ,2p0+ 2p+ 1.

On-Line. This assumes that the data acquisition is coordinated so that the torque signal is
sampled uniformly with respect to shaft rotation.

1. At each sampling instantt (t = 1, 2, . . . , N) take a new torque measurementTt and
update:

V0 = V0+ T2
t (for computing (19))

Vi = Vi +qt,i Tt , for i = 1, 2, . . . ,2p0+ 2p+ 1 (for computing (20))

2. After N samples have been taken, calculate

J0 = V0−
2p0+ 1∑

i=1

V2
i (see (18))

J1 = J0−
2p0+ 2p+ 1∑
i=2p0+ 2

V2
i (see (17))

F = (J0− J1)/2p

J1/(N − 2p1− 1)

3. CompareF to the threshold:
If F > γ , conclude condition 1 occurred.
If F ≤ γ , conclude condition 0 occurred.

At each sampling instant, the on-line step 1 must be executed, requiring a total of only(2p0

+ 2p+ 2) multiplications. After theNth sample, on-line step 2 requires(2p0+ 2p+ 3)
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multiplications. Consequently, the algorithm will cause almost no computational delay in
diagnosing the conditions.

4.3. Algorithm flowchart

The implementation procedure of the previous section was for distinguishing between con-
ditions 0 and 1. This section outlines the overall condition detection algorithm, including
appropriate actions to take in the event that each condition is detected. Figure 4 shows a
flowchart for the scheme.CW is used to denote clockwise andCCWdenotes counterclock-
wise. At theBeginbox it is assumed that a screw has been located with the vision system.
The loops in the flowchart represent situations in which the screw does not come out on the
first attempt (condition 1, 2, or 3 occurred) and, after making suitable adjustments, another
attempt is made. The box to the left of loop 3 and the two boxes to the right of loops 1 and
2 represent situations in which the screw will not come out at all. For example, consider
loop 1, which the algorithm enters if condition 1 is detected. Since this condition repre-
sents the screwdriver slipping on the head of the screw it may be desirable to increase the

Figure 4. Flowchart for the condition detection algorithm.
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axial force on the screwdriver and try again. If the axial force already is greater than some
prespecified maximum, then one can conclude that the screw head is too worn to engage
properly with the screwdriver. Some alternative action (for example, milling or drilling
the screw head) must be taken. Likewise, if condition 3 is detected (i.e., the screw is too
tight to be loosened using the current torque) the algorithm enters loop 3. It then may be
desirable to increase the torque and try again. If the torque already is greater than some
prespecified maximum, one can conclude that the screw is too tight to be removed and,
again, mill or drill the screw head. Similarly, if condition 2 is detected repeatedly, one can
conclude that the screw cannot be properly located with the vision system.

The entire flowchart applies to Phillips head screws and hex head bolts. As mentioned
in Section 2, the condition 1 category is not applicable to slot head screws. Consequently,
only the portion of the flowchart distinguishing conditions 2 and 3 should be implemented
when attempting to remove slot head screws.

Cutting the screw out, if it cannot be turned out, is considered acceptable in this research.
However, it is considered a less desirable alternative than removing it nondestructively, as
discussed in Section 2. Consequently, cutting the screw is considered only as a last resort
when the screw cannot be removed nondestructively.

5. Experimental results

The experimental setup is shown in figure 1. As explained in Section 2, detection of con-
ditions 2 and 3 is quite easy to accomplish. Therefore, the results presented in this section
are for detecting condition 0 (screw coming out) or condition 1 (screwdriver slipping on
screw head) for a Phillips head screw. Experimental results for hex head bolts were nearly
identical, except that the fundamental frequency component in the torque signal was 6ω

instead of 4ω.
The parametersÄ0 = {0, ω,2ω, 3ω} andÄ1={0, ω,2ω, 3ω, 4ω, 8ω, 12ω, 16ω, 20ω}

were chosen, resulting inp0= 3, p= 5, andp1= 8. The sampled torque signalT consists
of N= 572 torque measurements over two shaft revolutions. Using (15),λ under condition
0 was estimated experimentally asλ ∼= 95.3. Based on this estimate, a thresholdγ = 16.84
was selected to provide a probability of false alarm 0.5%.

The data under condition 0 is shown in figure 5(a) and under condition 1 in figure 5(b).
In both figures,T is the original torque signal,̂T0 represents the least squares fit ofT using
the sinusoids inS0, andT̂1 represents the least squares fit using the sinusoids inS1 (i.e.,
the sinusoids inS0 plus the extra sinusoids inS). Note the scaling difference of the torque
axes in the two figures. Under condition 0, including in the model the extra sinusoids inS
does not greatly improve the least squares fit so thatT̂1 approximatesT only slightly better
thanT̂0. Consequently, there is only a slight reduction in the residual sum of the squares,
andF = 10.22 lies below the threshold. Under condition 1, including the extra sinusoids
significantly improves the least squares fit, and the resultingF = 307.3 lies far above the
threshold. Thus, condition 1 was easily detected. Table 1 shows experimental results for
four tests under condition 0 and four under condition 1. Since the values ofF are much
larger under condition 1 than under condition 0, the two conditions can be distinguished
readily.
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Table 1. Experimentally calculated values ofF .

ExperimentalF value

Condition 0 8.65 10.22 13.05 2.31

Condition 1 366.4 457.1 307.3 129.2

(a)

(b)

Figure 5. Actual and least squares fitted torque signals when: (a) condition 0 occurred and (b) condition 1
occurred.
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6. Conclusions

Due to growing interest in environmentally friendly manufacturing and recycling, disas-
sembly is a major area of research. Many technical challenges are involved in successfully
designing and implementing a disassembly operation. A critical issue is how to determine
exactly what is happening when one attempts to unscrew and remove a screw; that is, the
screw coming out and, if not, why not? This paper presents an algorithm for diagnosing
the unscrewing process and deciding what to do if the screw is not coming out.

One conclusion of this research is that, by measuring only the unscrewing torque and
shaft rotation, one can accurately diagnose which condition arises during unscrewing. The
majority of the diagnostics reduces to deciding between one of two conditions: Is the
screw coming out or is the screwdriver slipping on the head of the screw? For determining
this, a straightforward, computationally efficient, least-squares-based algorithm has been
developed. The experimental results demonstrate that the algorithm is highly successful in
detecting which of these conditions has occurred.
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