Numerical Nonlinear Optimization Part I

Andreas Wächter

Center for Nonlinear Studies

June 22, 2020

Goal of this Lecture Mini-Series

- Accessible to broad audience.
 - No prior knowledge of optimization required.
 - Assume basic knowledge of multi-dimensional calculus.
- Give overview of practical optimization algorithms for nonlinear constrained optimization.
- Concentrate on intuition of algorithmic ideas.
 - No complicated proofs.
 - Some "cheating" (ignoring some subtleties).
- 90 min reserved, but roughly targeting 60 min.
- I will make slides available after the lectures.

Constrained Nonlinear Optimization Problems

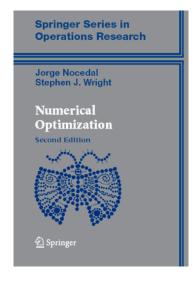
$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $c_E(x) = 0$

$$c_l(x) \le 0$$

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$
 $c_E: \mathbb{R}^n \longrightarrow \mathbb{R}^p$
 $c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^q$

- We assume that all functions are twice continuously differentiable.
- Example applications:
 - Optimal operation of electricity or gas networks.
 - Optimal control of a chemical plant.
 - Transistor sizing in digital circuits.
 - Inverse problems (fit coefficients in PDEs).

Book Recommendation



Part 1 (Today+): Unconstrained Optimization

- Optimality conditions for unconstrained optimization.
- Basic algorithms:
 - Gradient method
 - Newton's method
 - Quasi-Newton methods
- Strategies ensuring convergence:
 - Line-search method
 - Trust-region method
- Will not cover stochastic gradient method (for machine learning) problems with large data sets).

Later: Constrained Optimization

- Optimality conditions for constrained optimization.
- Solving quadratic programs
 - with equality constraints
 - with inequality constraints
- Sequential Quadratic Programming (SQP) methods
- Interior-point methods

Unconstrained Optimization Problems

$$\min_{x\in\mathbb{R}^n} f(x)$$

- We assume that f is (twice) continuously differentiable.
- We deal with continuous variables in finite-dimensional space.

Examples:

- Nonlinear regression
 - Fit model parameters to data.
- Inverse problems
 - Fit PDE coefficients to observations.
 - Determine initial conditions for weather prediction.

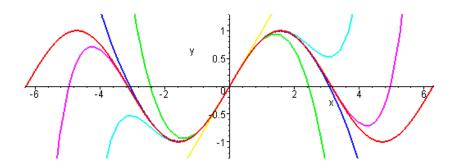
Types of Minimizers

$$\min_{x\in\mathbb{R}^n} f(x)$$

- A point $x^* \in \mathbb{R}^n$ is a global minimizer of f, if $f(x) \ge f(x^*)$ for all $x \in \mathbb{R}^n$.
- A point $x^* \in \mathbb{R}^n$ is a <u>local</u> minimizer of f, if $f(x) \ge f(x^*)$ for all $x \in N_{\epsilon}(x^*) = \{x \in \mathbb{R}^n : ||x x^*|| \le \epsilon\}$ for some $\epsilon > 0$.
- The methods we will discuss try to find local minimizers.

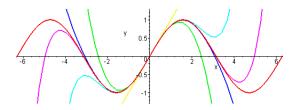
Main Tool: Taylor Expansions

$$f(\bar{x} + d) \approx f(\bar{x}) + f'(\bar{x}) \cdot d + \frac{1}{2}f''(\bar{x}) \cdot d^2 + \frac{1}{3!}f'''(\bar{x}) \cdot d^3 + \dots$$



Example: $f(x) = \sin(x)$ with $\bar{x} = 0$.

Main Tool: Taylor Expansions

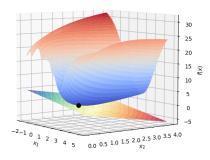


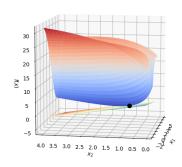
- Provide local models of functions around a reference point.
- Algorithms use them to figure out where to go next.
- Methods only need values and derivatives at specific points \bar{x} .
- Do not need to assume particular representation of objective f.
 - No analytical expression required.
 - Could be result of complicated computational procedure.

First-Order Taylor Expansion in Multiple **Dimensions**

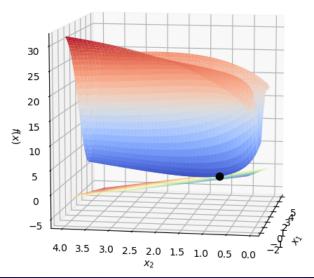
$$f(\bar{x}+d)\approx f(\bar{x})+\nabla f(\bar{x})^T d$$

Gradient:
$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}$$





First-Order Optimality Conditions



First-Order Optimality Conditions

$$f(x^* + d) \approx f(x^*) + \nabla f(x^*)^T d$$

- Suppose x* is a local minimizer of f.
- x^* must be a minimizer along any direction $d \in \mathbb{R}^n$:

$$f(x^* + t \cdot d) \approx g(t) := f(x^*) + \nabla f(x^*)^T d \cdot t$$

- So, t* = 0 must be a local minimizer of g(t).
- From 1-dim calculus:

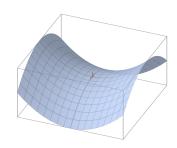
$$0 = g'(t) = \nabla f(x^*)^T d$$

• Since this is true for every $d \in \mathbb{R}^n$, we must have $\nabla f(x^*) = 0$.

First-Order Optimality Conditions

Theorem (First-Order Necessary Condition) Let $f \in C^1$ and $x^* \in \mathbb{R}^n$ be a local minimizer of f. Then

$$\nabla f(x^*)=0.$$



Comments

- We call such a point a stationary point.
- This is not a sufficient condition.
- Also maximizers and saddle points are stationary points.

Second-Order Optimality Conditions (1-dim)

$$\min_{x\in\mathbb{R}} f(x)$$

Theorem (Second Order Necessary Condition) Let $f \in C^2$ and $x^* \in \mathbb{R}$ be a local minimizer. Then

$$f'(x^*) = 0$$
 and $f''(x^*) \ge 0$.

Theorem (Second Order Sufficient Condition) Let $f \in C^2$ and $x^* \in \mathbb{R}$ be such that

$$f'(x^*) = 0$$
 and $f''(x^*) > 0$.

Then x* is a strict local minimizer.

Second-Order Taylor Model in Higher Dimensions

$$f(\bar{x}+d) \approx f(\bar{x}) + \nabla f(\bar{x})^T d + \frac{1}{2} d^T \nabla^2 f(\bar{x}) d$$

Hessian matrix:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

• If $f \in C^2$, then $\nabla^2 f(x)$ is symmetric.

Second-Order Optimality Conditions

$$f(x^* + d) \approx f(x^*) + \nabla f(x^*)^T d + \frac{1}{2} d^T \nabla^2 f(x^*) d$$

• If x^* is a local minimizer of f, then $t^* = 0$ is a local minimizer of

$$f(x^* + t \cdot d) \approx g(t) = f(x^*) + \nabla f(x^*)^T d \cdot t + \frac{1}{2} d^T \nabla^2 f(x^*) d \cdot t^2$$

for any $d \in \mathbb{R}^n$.

This implies that for all d∈ Rⁿ:

$$0 = g'(0) = \nabla f(x^*)^T d$$

$$0 \le g''(0) = \mathbf{d}^T \nabla^2 f(x^*) \mathbf{d}$$

• So, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ must be positive semi-definite.

Second-Order Optimality Conditions (*n***-dim)**

$$\min_{x\in\mathbb{R}^n} f(x)$$

Theorem (Second Order Necessary Condition)

Let $f \in C^2$ and $x^* \in \mathbb{R}^n$ be a local minimizer. Then

 $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite.

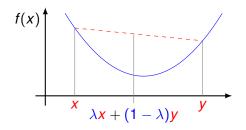
Theorem (Second Order Sufficient Condition)

Let $f \in C^2$ and $x^* \in \mathbb{R}^n$ be such that

 $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite.

Then x* is a strict local minimizer.

Special Case: Convex Functions



Definition (Convex Function)

A function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex if

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

for all points $x, y \in \mathbb{R}^n$ and all $\lambda \in (0, 1)$.

Special Case: Convex Problems

- All stationary points of a convex function are global minimizers!
- f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite everywhere.
- Recall: For symmetric matrix Q

Q is positive semi-definite [definite]

All eigenvalues of Q are > 0 [> 0]

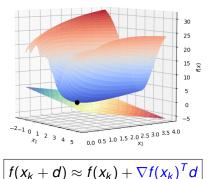
• For convex quadratic function $f(x) = c + g^T x + x^T Q x$:

$$\nabla f(x^*) = q + 2Qx^* = 0 \implies$$

$$x^* = -\frac{1}{2}Q^{-1}g$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite.

First Algorithm: Going Downhill



- To go downhill, choose direction d such that $\nabla f(x_k)^T d < 0$.
- d forms an acute angle with $-\nabla f(x_k)$.
- Steepest descent direction: $d = -\nabla f(x_k)$.

Basic Gradient Method

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose starting point $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- 3: Compute gradient step

$$d_k = -\nabla f(x_k).$$

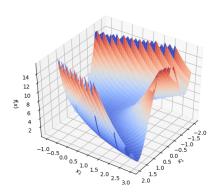
4: Take step

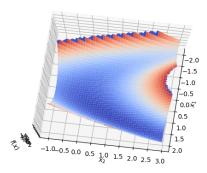
$$x_{k+1} = x_k + d_k.$$

- 5: Increase iteration counter $k \leftarrow k + 1$.
- 6: end while

Example Problem: Rosenbrock Function

$$f(x) = 2 \cdot (x_2 - x_1^2)^2 + (x_1 - 1)^2$$
 $x^* = (1, 1)^T$





Step Size Parameter

Problem:

- $d_k = -\nabla f(x_k)$ gives a direction.
- But its length might be inappropriate to define a step.

Remedy:

Introduce a step size parameter $\alpha > 0$:

$$X_{k+1} = X_k + \alpha \cdot d_k$$
.

Gradient Method with Step Size

- Given:
 - Stopping tolerance $\epsilon > 0$
 - Step size parameter $\alpha > 0$.
 - 1: Choose starting point $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- Compute gradient step 3:

$$d_k = -\nabla f(x_k).$$

Take step 4:

$$x_{k+1} = x_k + \alpha \cdot d_k$$
.

- Increase iteration counter $k \leftarrow k + 1$. 5:
- 6: end while

Convergence of Gradient Descent Method

- Choice of step size parameter α :
 - Gradient method does not converge if α is too large.
 - Can be tricky to tune.
- Converges if $\alpha \in (0, \frac{2}{L})$, where L is Lipschitz constant of $\nabla f(x)$.
- (Slow) linear rate of convergence:

$$f(x_{k+1}) - f(x^*) \leq c \cdot (f(x_k) - f(x^*))$$

for a constant $c \in (0, 1)$.

 Maybe we can do better if we utilize second-order Taylor expansion?

A Second-Order Method

• At an iterate x_k , consider quadratic Taylor model:

$$q_k(x_k+d)=f(x_k)+\nabla f(x_k)^Td+\tfrac{1}{2}d^T\nabla^2 f(x_k)d$$

Given: Stopping tolerance $\epsilon > 0$.

1: Choose starting point $x_0 \in \mathbb{R}^n$ and set $k \leftarrow 0$.

2: while $\|\nabla f(x_k)\| > \epsilon$ do

3: Compute the minimizer d_k of

$$\min_{d\in\mathbb{R}^n} q_k(x_k+d).$$

4: Take step

$$x_{k+1} = x_k + d_k.$$

- 5: Increase iteration counter $k \leftarrow k + 1$.
- 6: end while

Second-Order Steps

$$q(x_k+d)=f(x_k)+\nabla f(x_k)^Td+\tfrac{1}{2}d^T\nabla^2 f(x_k)d$$

- What is the minimizer of $q_k(x_k + d)$?
- Use formula for quadratic functions:

$$d_k = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$

- This assumes that $\nabla^2 f(x_k)$ is positive definite.
- Computationally, **NEVER** compute the inverse!
- Instead solve the linear system

$$\nabla^2 f(x_k) \cdot d = -\nabla f(x_k).$$

Can be done for very large problems if $\nabla^2 f(x_k)$ is structured.

Alternative: Newton's Method

- Recall: First-order optimality condition: $\nabla f(x^*) = 0$.
- This is a nonlinear system of equations:

$$F(x^*)=0$$

$$|F(x^*)=0|$$
 $F:\mathbb{R}^n\longrightarrow\mathbb{R}^n$

Newton's method is very efficient for solving those.

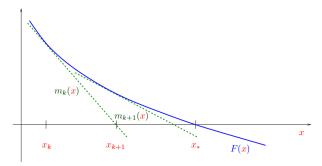
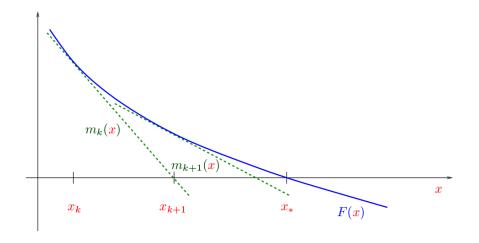


Illustration of Newton's Method



Newton's Method For System of Equations

$$F(x^*)=0$$

First-order Taylor model:

$$F(x_k + d) \approx F(x_k) + \nabla F(x_k)^T d$$

where $\nabla F(x_k)^T$ is Jacobian matrix of F.

Compute step as root of linear model:

$$F(x_k) + \nabla F(x_k)^T \mathbf{d}_k = 0$$

So

$$d_k = -[\nabla F(x_k)^T]^{-1} F(x_k)$$

Newton's Method For Stationary Point

First-order optimality condition:

$$F(x^*) = \nabla f(x^*) = 0$$

• Newton step for $F(x^*) = 0$:

$$d_k = -[\nabla F(x_k)^T]^{-1}F(x_k)$$

Newton step for $\nabla f(x^*) = 0$:

$$d_k = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$

This is the second-order step from earlier!

Two Perspectives

- Root-finding problem:
 - We can use well-established Newton's method and theory.
 - Fast local quadratic convergence rate:

$$||x_{k+1} - x^*|| \le M \cdot ||x_k - x^*||^2$$

for some constant M > 0, starting x_0 close to x^* .

- "Double the number of accurate digits in every iteration"
- Model minimization:

$$\min \ q(x_k + d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$$

- We keep in mind that we are not only looking for stationary points.
- We know we need to be careful if model does not have minimizer.
 - Check if $\nabla^2 f(x_k)$ is positive definite.
 - Change steps to avoid moving towards a non-minimizer.

Generalized Model

Quadratic model:

$$q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \mathbf{B}_k d$$

where B_k is some symmetric positive definite matrix.

Minimizer:

$$d_k = -[B_k]^{-1} \cdot \nabla f(x_k).$$

Variants:

Newton's method: $B_k = \nabla^2 f(x_k)$

Gradient method: $B_k = \frac{1}{2}I$

Other methods: B_k positive definite

Is there a fast method that only uses gradient information?

Secant Method in 1-Dim

$$f'(x^*) = 0 f$$

 $f:\mathbb{R}\longrightarrow\mathbb{R}$

Newton step

$$d_k = -f''(x_k)^{-1}f'(x_k)$$

- Suppose $f''(x_k)$ cannot be evaluated. Can we estimate it?
- Derivative

$$f''(x) = \lim_{y \to x} \frac{f'(x) - f'(y)}{x - y}$$

- Let's suppose we have x_k, x_{k-1}, \ldots and $f'(x_k), f'(x_{k-1}), \ldots$
- In step computation, replace

$$f''(x_k)$$
 with $\frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$.

Secant Method for *n*-Dim

• Secant step for $f'(x^*) = 0$

$$d_k = -B_k^{-1} f'(x_k)$$
 where $f''(x_k) \approx B_k = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$

Note: B_k satisfies the secant condition:

$$B_k(x_k - x_{k-1}) = f'(x_k) - f'(x_{k-1})$$

- What can we do in *n* dimensions?
- Choose a matrix B_k that satisfies the secant condition and compute step

$$d_k = -B_k^{-1} \nabla f(x_k)$$

Secant Condition in Second-Order Method

Quadratic model in algorithm:

$$q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \mathbf{B}_k d$$

- We would like to mimic Newton's method: $B_k \approx \nabla^2 f(x_k)$
- The Hessian approximation should satisfy the secant condition:

$$B_k(x_k - x_{k-1}) = \nabla f(x_k) - \nabla f(x_{k-1})$$

- There are $\frac{n(n+1)}{2}$ independent entries in the symmetric matrix B_k .
- The secant condition has only n equations.
- For n > 1, B_k is not uniquely defined.

Quasi-Newton Methods

$$q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \mathbf{B}_k d$$

• Idea: Generate a sequence B_0, B_1, \ldots of Hessian approximations satisfying secant condition.

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose x_0 and B_0 , and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- 3: Compute the minimizer d_k of $q_k(x_k + d)$.
- 4: Take step $x_{k+1} = x_k + d_k$.
- 5: Compute B_{k+1} from some update formula.
- 6: Increase iteration counter $k \leftarrow k + 1$.
- 7: end while

Quasi-Newton Update Formula

Want B_{k+1} to satisfy secant condition:

$$B_{k+1} \cdot s_k = y_k$$
 where $s_k = x_{k+1} - x_k$ and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$.

- Suppose we believe that B_k is a good approximation of Hessian.
- Idea: Choose symmetric matrix B that is closest to B_k and has desired properties

$$\min_{B \in \mathbb{R}^{n \times n}} \|B - B_k\|$$
s.t. $B \cdot s_k = y_k$, $B = B^T$

A variation of this leads to the BFGS formula.

BFGS Formula

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

Named after Broyden, Fletcher, Goldfarb, and Shanno.

Properties:

- B_{k+1} satisfies secant condition.
- If B_k is symmetric, then B_{k+1} is symmetric.
- If B_k is pos. def. and $S_k^T y_k > 0$, then B_{k+1} is pos. def.
- In practice, use version that approximates $H_k \approx [\nabla^2 f(x_k)]^{-1}$.
 - Then no need to solve linear system, just compute $d_k = -H_k \nabla f(x_k)$.

BFGS Formula

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

- Most-used guasi-Newton update.
- Requires same amount of derivative evaluations as gradient method.
- Converges typically much faster than gradient method.
 - Can prove local superlinear convergence under (strong) assumptions.

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

- B_k is a dense matrix, not suitable for large n.
- There is a "limited-memory" version (L-BFGS) for large *n*.

Our Algorithm So Far

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose x_0 and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- Compute or update B_k .
- 4: Compute step $d_k = -B_k^{-1} \nabla f(x_k)$.
- 5: Take step $x_{k+1} = x_k + \alpha_k \cdot d_k$.
- Increase iteration counter $k \leftarrow k + 1$.
- 7: end while

Concerns:

- Sometimes, this basic algorithm fails to converge.
- The iterates might cycle or diverge.