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Abstract

In this paper we study the application of the Black-Litterman model to an

active fixed-income portfolio management. We present a rigorous derivation

of the model in a general setting and then move on to apply it to active

management. We derive the characteristics of the fixed-income portfolio we

wish to manage, comprising government bonds, inflation-linked bonds and

currencies and present results derived from the application of the Black-

Litterman model. We also introduce and use some risk management tools

to assess the benefits of using the Black-Litterman model. Finally, we discuss

a way to calculate a sound covariance matrix to be used in the optimization

process.
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Introduction

Portfolio optimization is a vastly discussed topic. How to best allocate

one’s resources among different available assets is a crucial aspect in many

investment banks and has become as much a science as an art. Markowitz

[Mar52] published a seminal paper in 1952 which highlighted the importance

of the diversification of risk. Since then, his mean-variance optimization

problem has become a standard although highly criticized. One of the most

successful models to improve a portfolio manager’s investment methods is

the Black-Litterman model presented in 1991 by Fischer Black and Robert

Litterman [BL91] while working at Goldman Sachs.

In Black and Litterman’s original paper, the asset universe to be opti-

mized was constituted of equity. However, it can be extended to a wider

class of assets and we will focus on a fixed-income portfolio. The type of

assets we will deal with are government bonds, inflation-linked bonds and

currencies. Moreover, we are interested in an active management problem,

which is to maximize the return of a portfolio with respect to a benchmark.

The structure of the paper is the following:

The first chapter of this paper will introduce the Black-Litterman model

and present a rigorous derivation thereof, along with an enlightening analogy

with the Kalman filter. The assumptions and notations of the model will

be used throughout the paper.

Since the goal of this paper is to apply the Black-Litterman model in

an active management setting, we will present in chapter 2 the changes to

be made in order to do so. We will also introduce useful risk analysis tools

which will help us assess the benefits of the model.

In chapter 3 we will tackle the portfolio we are interested in, that is a

fixed-income portfolio comprising government bonds, inflation-linked bonds

and currencies. Once properly modeled, we will be able to apply the theory

built over the first two chapters and will present and comment the results
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obtained.

Finally, we will discuss in chapter 4 one of the crucial points of the Black-

Litterman model or any portfolio optimization problem for that matter: the

covariance matrix. We will present a state-dependent model to try to more

accurately capture the expected covariance matrix.
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Chapter 1

The Black-Litterman Model

1.1 Introduction

1.1.1 Overview

In order to overcome the pitfalls inherent to the Mean-Variance optimiza-

tion problem, Black and Litterman developed in 1991 a new framework in

order to construct optimal portfolios ([BL91], [BL92]). Their model, known

as the Black-Litterman model (BL hereafter), combines several advantages

that have given it a large success among practitioners. Compared to the

mean-variance optimized (MV) portfolio presented by Markowitz [Mar52],

it provides much greater stability to changes in the inputs. Indeed, one of

the main criticism received by the MV portfolio is its great sensitivity to

small changes in the expected returns of the assets, as well as the extreme

positions it holds in some assets (Michaud [Mic89]). This forces the use

of severe constraints in the optimization process in order to prevent such

problems.

Furthermore, the classical mean-variance optimization problem is very

demanding for it requires the forecasting of absolute returns for all the avail-

able assets. The BL model on the other hand also enables investors to plug

in their own views on the market into the optimizer; but these views need

not be on all the assets, nor absolute. They may be absolute or relative

views on the performance of a specific assets or much larger portfolios (e.g.

a sector of industry portfolio versus another). This provides with a more

flexible forecasting requirement which enables both top-down and bottom-

up approaches. The optimizer then blends these views with an equilibrium

portfolio (the notion of equilibrium portfolio will be discussed in the next
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The Black-Litterman Model Introduction

section) to output a new optimized portfolio. Taking into account an equi-

librium portfolio which serves as origin for the optimization is what gives its

robustness to the model. It will counterbalance too strong or little confident

opinions, and makes great sense in particular in the case of active manage-

ment with respect to a benchmark for if the investor has no views on the

market, they should hold the benchmark.

In summary, the Black-Litterman model is a portfolio optimization model

which smoothly incorporates the expression of particular views on the mar-

ket.

We can summarize the procedure in a few steps as is presented by Bevan

and Winkelmann [BW98]:

Step Action Purpose

1 Calculate equilibrium returns Set neutral reference point

2 Determine weightings for

views

Dampen impact of aggressive

views

3 Set target tracking error Control risk relative to bench-

mark

4 Set target Market Exposure Control directional effects

5 Determine optimal portfolio

weights

Find allocations that maxi-

mize performance

6 Examine risk distribution Determine whether risk is di-

versified

1.1.2 Universe

In the following we consider a discrete time portfolio optimization problem,

that is, the investor at time t aims at constructing a portfolio which will

yield the maximum utility at time t+ 1. Typically, this utility function is a

quadratic function maximizing the expected returns of the portfolio with a

penalty for risk, measured as the variance of the portfolio.

The portfolio can be constructed by investing in n different available

assets. We further assume the existence of a “risk-free” rate rf . When

referring to the excess return of an asset, we mean its return over the risk

free rate. Hence, if ri is the return of the i-th asset, its excess return will be

(ri − rf ).

4



The Black-Litterman Model Introduction

1.1.3 Assumptions and Objective

Before we embark on calculations, we should write down the assumptions

made by the model and state the objective we wish to achieve.

Assumptions

Information The model assumes that there exist two sources of informa-

tion: public and private. All actors on the market share a same set of

public information at time t, noted It. This information is reflected

by the market. In addition to this public information, an investor

may have some private information or views on the market at time

t, which we note Gt. Therefore, the total information Ft held by an

investor at time t is generated by the union of the public and the pri-

vate information: Ft = σ{It,Gt}. Of course, information is neither

lost nor forgotten, so the sets of information are increasing and are

thus filtrations.

An important assumption in the model is that public and private in-

formation, It and Gt respectively, are independent.

Since we consider a one-period optimization problem, we may drop

the time subscript and we will use I for It, G for Gt and F for Ft.

Distribution of expected returns Let r be the vector of excess returns.

We assume that the excess returns are normally distributed with mean

µ and variance Σ, where µ is a random variable and Σ is the covariance

matrix of the assets’ returns:

r ∼ N (µ,Σ) (1.1)

The fact that µ is a random variable and not a constant accounts for

the fact that the expected excess returns cannot be determined with

certainty. This is the variable we want to estimate. For instance, in

the absence of any views, that is, given only I the public information

available today, the best estimation of µ we can give is the expected

excess returns predicted by the market equilibrium: π. This value in

turn is only an estimation and not a known value, which is why we

model µ by a random variable.

The assumption on µ is the following: we assume µ to be normally

distributed with mean E [µ] and variance Σµ:

µ ∼ N (E [µ] ,Σµ) (1.2)
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The Black-Litterman Model Equilibrium Approach

Going back to the case where we only have access to the public infor-

mation I, we can narrow down our estimation of µ. As we mentioned

E [µ|I] has mean π and its variance is set to be proportional to Σ:

E [µ|I] ∼ N (π, τΣ) (1.3)

τ can be understood as a scaler of the confidence in the estimation of

the market expected excess returns. If we are certain of our estimation

of the market expected excess returns, then τ = 0 and E [µ|I] becomes

deterministic: E [µ|I] = π. Further discussion on the meaning and

value of τ will be given later.

We further assume that Σ and Σµ are uncorrelated and we can thus

rewrite the distribution of r as:

r ∼ N
(
E [µ] ,Σ + Σµ

)
(1.4)

Objective

Let us write F the information available to the investor. F is generated by

two sets of information: the set I containing the public information, and

G the set of private information known to the investor. In a mathematical

form, the σ-algebra F is generated by I and G: F = σ{I,G}. As mentioned

earlier, it is assumed that public and private information are independent.

Given their additional private information G, the excess returns expected

by the investor, E [µ|G], are most likely going to be different from E [µ|I]

predicted by the equilibrium portfolio. Using this additional information G,

the investor may express some opinions about the returns of several assets,

and the question then becomes: how to blend the views of the investor with

the equilibrium portfolio? Differently put: how do the investor’s views up-

date the equilibrium expected excess returns?

We should stress once again that E [µ|I] and E [µ|G] are random vari-

ables and that we are looking at their distribution.

1.2 Equilibrium Approach

1.2.1 Why Equilibrium?

As briefly mentioned in the introduction, a key notion in the BL model is

the so-called equilibrium portfolio. This equilibrium portfolio plays a central
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The Black-Litterman Model Equilibrium Approach

role in the optimization process and serves as a “ center of gravity”. Indeed,

in the BL model, a starting portfolio is needed, and the views expressed by

the portfolio manager are going to modify the positions held in their original

portfolio.

This reference portfolio has been chosen by Black and Litterman to be

the market capitalization weighted portfolio, i.e. the portfolio obeying the

Capital Asset Pricing Model (CAPM). The choice of this particular port-

folio is explained by Litterman in the first chapter of his book, “Modern

Investment Management: An Equilibrium Approach” [LG03]:

There are many approaches to investing. Ours at Goldman

Sachs is an equilibrium approach. In any dynamic system, equi-

librium is an idealized point where forces are perfectly balanced.

In economics, equilibrium refers to a state of the world where

supply equals demand. But it should be obvious even to the

most casual observer that equilibrium never really exists in ac-

tual financial markets. Investors, speculators, and traders are

constantly buying and selling. Prices are constantly adjusting.

Thus, although markets are not assumed to be in equilibrium, Litterman

argues that similarly to a dynamical system, there are underlying forces

pushing towards this state, which makes it the best possible starting point.

The meaning of this portfolio is that if an investor has no view about

the market, then this is the portfolio they should hold.

1.2.2 Equilibrium Returns

In this section we will derive the excess returns implied by the the equilib-

rium portfolio, under the CAPM. This is done using reverse optimization

as presented by Sharpe [Sha74]. Contrarily to the usual optimization pro-

cess, where given the expected excess returns and covariance matrix of the

portfolio we deduce the optimal weights; we are here given the market capi-

talization weights and look for the vector of excess returns that would have

provided with this result.

We are going to use the following notation:
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The Black-Litterman Model Investor’s Views

w Vector of weights invested in each asset

wm Vector of market capitalization weights

r Vector of excess returns of the assets

π Vector of excess equilibrium returns

Σ Covariance matrix of the assets

δ Risk aversion parameter

We will try to stick to similar notations throughout the paper, using bold

letters to identify matrix notations, with small letters indicating vectors and

capital letters matrices.

Markowitz’ optimization problem writes:

arg max
w

Ur(w) = wTr − δ

2
wTΣw

U is a utility function and thus concave and has a single global maximum.

We know that wm solves the problem when U = Uπ. This observation

implies:

∂Uπ
∂w

(wm) = 0 = π − δΣwm

π = δΣwm (1.5)

Conversely, we can retrieve the equilibrium weights if we are given the

expected excess returns:

wm =
1

δ
Σ−1π

Now, multiplying equation (1.5) by wT
m will give a scalar relation, and

noting that wT
mπ = E[rm], the expected excess return of the market portfo-

lio, and wT
mΣwm = σ2

m, the variance of the market portfolio, we find:

δ =
E[rm]

σ2
m

=
SRm

σm

where SRm is the Sharpe ratio of the market portfolio.

1.3 Investor’s Views

1.3.1 What are views?

An investor might have information or beliefs about the evolution of the

market that might differ from what is provided by the equilibrium portfolio.

One of the attractions of the BL model is the possibility to take into account

these views. They may come in any combination of two criteria:
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The Black-Litterman Model Investor’s Views

Absolute or Relative: Let us consider two traded assets A and B. An

absolute view on asset A would be expressed as the absolute expected

excess return of A, for instance “the excess return of A is going to be

3%”. A relative view on the other hand involves several assets and how

they are going to perform with respect to one another, regardless of

their absolute performance. This could be “A is going to outperform

B by 5%”.

Asset specific or Global: Let us now consider four assets A, B, C and

D. In the previous paragraph we have expressed views between single

assets only. This could be the view of an analyst who expresses views

about specific products they have evaluated. A strategist would for

instance express views on a group of assets, which can be realized in

the BL framework. This could be: “a portfolio consisting of A and B

will outperform a portfolio consisting of C and D”.

Furthermore, predictions on the market are rarely made with a hundred

percent certainty and this has to be taken into account in the model. The

more confidence in a prediction, the more it should affect the model, so

when expressing a view, a degree of confidence must be attached to it. For

example: ”A will outperform B with a 25% certainty”.

1.3.2 Expressing views in the model

Once we have stated a number of views, we would like to incorporate them

in the model.

Expressing views is essentially giving information about E [µ|G], the ex-

pected excess returns given investor’s information. In BL, the views are

expressed as linear combinations of the expected excess returns. We assume

that these views are normally distributed. Mathematically, this is written

as:

PE [µ|G] = q + ε, where ε ∼ N (0,Ω)

PE [µ|G] ∼ N (q,Ω) (1.6)

where P is a K-row “pick” matrix, K being the number of expressed views,

q a K-vector quantifying the expected excess return of each view and Ω a

covariance matrix quantifying the uncertainty thereof.

9



The Black-Litterman Model Investor’s Views

Example 1. Let us consider a 3 asset market, where we can invest in assets

A, B and C. We have two views:

• A will have an excess return of 4% with 15% confidence.

• A and C will outperform B by 2% with 20% confidence.

We point out that the first view is absolute with respect to a single asset

whereas the second one is relative to portfolios.

Here, applying the model we would write:

P =

(
1 0 0

0.5 −1 0.5

)
and q =

(
4%

2%

)
.

We will discuss Ω later.

In the above example, when dealing with the second view which con-

sisted in the out-performance of a portfolio over another, we have weighted

its components equally. Another option would have been to weight each

component in the outperforming portfolio with its capitalization weight in

that portfolio. Both choices can be found in the literature, for instance

Satchell and Scowcroft [SS00] use the former and Idzorek [Idz04] uses the

latter.

Another way of looking at (1.6) is to regard q not as a deterministic

vector, but rather as a random variable. Using this interpretation, we rewrite

(1.6) as:

q = Pµ− ε

where ε is G-measurable and ε ∼ N (0,Ω)

Conditioned on a realization of µ, the conditional distribution of q is

thus:

E [q|µ] ∼ N (Pµ,Ω) (1.7)

If we further make the assumption that Σµ and Ω are independent,

which means that the errors in the estimation of µ and q are uncorrelated,

we retrieve the unconditional distribution of q:

q ∼ N
(
PE[µ],PΣµP

T + Ω
)

(1.8)

Note that the independence assumption was already made in the case where

µ is estimated thanks to the public information I for then Σµ = τΣ which

is I-measurable whilst Ω is G-measurable and I and G are independent.
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The Black-Litterman Model Combining Views

In particular, we find the conditional distribution of q given the man-

ager’s private information:

E [q|G] = PE [µ|G]− ε
E [q|G] ∼ N (PE [E[µ|G]] ,Ω)

One major problem that needs to be tackled is how to set Ω. This is,

along with τ , one of the most discussed issues of the BL model. Let us not

make any assumption for now as to what Ω should be; and proceed with

the construction of the model.

1.4 Combining Views

We have heretofore built the necessary bases to the solution of the problem

we wish to solve. Let us recall that our problem is to retrieve the distribution

of the expected excess returns given the views we have expressed. In other

words, we would like to know how the views we have expressed thanks to our

private information G “update” the excess returns expected by the market

given only the public information I. In a more mathematical notation,

we are looking to derive an expression for the distribution function of the

random variable:

E [E [µ|I] |q] (1.9)

In their original article from 1992 [BL92, p.35], Black and Litterman

suggest two methods for deriving the solution to the problem. The first is

based on a sampling theory approach and the second on Bayesian theory:

We can think of a view as representing a fixed number of

observations drawn from the distribution of future returns. In

this case we follow the “mixed estimation” strategy described

in Theil (1971). Alternatively we can think of the view as di-

rectly reflecting a subjective distribution for the expected excess

returns.

Of course, both methods lead to the same result, but having several

means to reach the same solution provides with a better insight into a some-

times little intuitive problem.

The more common derivation in the literature is probably the Bayesian

approach to the problem. Such derivations can be found in [Chr02], [SS00],

[Meu08] or [Che09] among many. Theil’s mixed estimation approach is not
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The Black-Litterman Model Combining Views

short of derivations either, we refer to [FKPF07], [BF03], [Wal09] or [TS09].

Finally, although explicitely mentioned in Black and Litterman’s paper, it

seems that the only derivation of the model using a strict sampling theory

approach can be found in [Man06].

We will now present a Bayesian derivation and one based on a comparison

of the problem with the Kalman filter. Indeed, although there is scarce

mention of it in the literature, the BL problem can be interpreted as a

particular filtering problem which nicely fits in the Kalman filter, as was

suggested to me by Pr. Mark Davis. The only reference I have found

linking the BL model to the Kalman filter is [Wei07]1.

1.4.1 Bayesian Theory Approach

We are going to use Bayes’ rule to first derive the distribution function of

E [µ|q] and then use it in the case where we use E [µ|I] for µ.

For any random variable X, we will write fX its distribution function, and

we recall that when applied to the distribution functions of two random

variables X and Y , Bayes’ rule reads:

fE[Y |X](y) =
fX,Y (x, y)

fX(x)
(1.10)

Substituting Y with µ and X with q, we get:

fE[µ|q](µ) =
fq,µ(q,µ)

fq(q)
(1.11)

We first derive an expression for fq,µ using the fact that it can be

rewritten as:

fq,µ(q,µ) = fµ(µ)fE[q|µ](q)

and that according to (1.3):

fµ(µ) =
|Σµ|−

1
2

(2π)
n
2

exp

(
−1

2
(µ− E[µ])T (Σµ)−1 (µ− E[µ])

)
and according to (1.7):

fE[q|µ](q) =
|Ω|−

1
2

(2π)
K
2

exp

(
−1

2
(q − Pµ)TΩ−1(q − Pµ)

)
1In an email exchange, Dr. Weinberger wrote me that he was not aware of any other

reference either.
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These observations yield:

fq,µ(q,µ) ∝

exp

[
−1

2

(
(µ− E[µ])T (Σµ)−1 (µ− E[µ]) + (q − Pµ)TΩ−1(q − Pµ)

)]
We have got rid of the constant for simplicity and will study it towards

the end of the calculation.

Turning back to equation (1.11), we would like to express fq,µ as the

product of a function of q only - which will be fq the distribution function of

q - and a function of µ and q which will be the desired distribution function

fE[µ|q].

Aiming at achieving this, we reshuffle the terms in the exponential above

to make the decomposition apparent:

(µ− E[µ])T (Σµ)−1 (µ− E[µ]) + (q − Pµ)TΩ−1(q − Pµ)

= µT (Σµ)−1µ− 2µT (Σµ)−1 E[µ] + E[µ]T (Σµ)−1 E[µ]

+qTΩ−1q − 2µTP TΩ−1q + µTP TΩ−1Pµ

= µT
(

(Σµ)−1 + P TΩ−1P
)
µ− 2µT

(
(Σµ)−1 E[µ] + P TΩ−1q

)
+E[µ]T (Σµ)−1 E[µ] + qTΩ−1q (1.12)

We have used the fact that Ω and Σµ are covariance matrices and are thus

symmetric so ΩT = Ω and ΣT
µ = Σµ. Similarly, we may use the fact that

the transpose of a scalar is itself.

We write:

K = (Σµ)−1 + P TΩ−1P

m = (Σµ)−1 E[µ] + P TΩ−1q

a = E[µ]T (Σµ)−1 E[µ] + qTΩ−1q

Using these notations in (1.12) yields:

(µ− E[µ])T (Σµ)−1 (µ− E[µ]) + (q − Pµ)TΩ−1(q − Pµ)

= µTKµ− 2mTµ+ a

= µTKTKK−1µ− 2mTKK−1µ+ a

= (Kµ−m)T K−1 (Kµ−m)−mTK−1m+ a

=
(
µ−K−1m

)T
K
(
µ−K−1m

)
−mTK−1m+ a

13



The Black-Litterman Model Combining Views

Plugging this result into the exponential gives:

fq,µ(q,µ) ∝ exp

[
−1

2

(
(Kµ−m)T K−1 (Kµ−m)−mTK−1m+ a

)]
∝ exp

[
−1

2

(
a−mTK−1m

)]
exp

[
−1

2

((
µ−K−1m

)T
K
(
µ−K−1m

))]
Provided correct transformation of the constant, we would like to iden-

tify the first part of the expression above with the distribution function of

q which would allow us to state that the second part corresponds to the

distribution function of E[µ|q].

According to (1.8), q abides by the following distribution:

q ∼ N
(
PE[µ],PΣµP

T + Ω
)

Therefore, we would like to identify (q − PE[µ])T
(
PΣµP

T + Ω
)−1

(q −
PE[µ]) with (a−mTK−1m), which would lead us to conclude that:

E[µ|q] ∼ N (K−1m,K−1)

The tedious transformation of (a −mTK−1m) as well as that of the con-

stant are relegated to appendix A.1.

Thanks to these calculations, we may assert that E[µ|q] follows a normal

distribution with mean K−1m and variance K−1, i.e.:

E[µ|q] ∼ N (K−1m,K−1) (1.13)

E [E[µ|q]] =
(

(Σµ)−1 + P TΩ−1P
)−1 (

(Σµ)−1E[µ] + P TΩ−1q
)

Var [E[µ|q]] =
(

(Σµ)−1 + P TΩ−1P
)−1

Finally, we deduce the desired result from these last expressions. Our

initial wish was to derive the distribution of E [E[µ|I]|q], the “updated”

value of the mean of the equilibrium expected excess returns given the ex-

pressed views. This is a particular case of the above results, it suffices to

change µ into E[µ|I], which also implies according to (1.3) that E[µ] = π

and Σµ = τΣ. Substituting these values into (1.13) provides with the result:

14



The Black-Litterman Model Combining Views

E [E[µ|I]|q] ∼ N (µBL,Σ
µ
BL) (1.14)

µBL =
(

(τΣ)−1 + P TΩ−1P
)−1 (

(τΣ)−1 π + P TΩ−1q
)

Σµ
BL =

(
(τΣ)−1 + P TΩ−1P

)−1

1.4.2 Kalman Filter Approach

In 1960, Rudolph Kalman published a seminal paper describing the solution

to a discrete linear filtering problem [Kal60]. He tackled the problem of

trying to estimate the unobservable state of a discrete time process thanks to

the knowledge of a particular measurement of the system. The applications

of the Kalman filter cover an extremely wide range of engineering areas. We

refer to [WB06] for an introduction to the filter.

The Kalman Filter

In its common presentation, the Kalman filter addresses the problem of

estimating the state µ of a discrete-time process given only q, a measurement

of the system.

The discrete time linear system is given by:

µt+1 = Atµt +Btπt + σt (1.15)

where µ and π are n-vectors and σ ∼ N (0,Σµt). σ represents the noise of

the process.

The matrix A relates the state of the system at time t+ 1 to its state at

time t, and π represents the inputs of the system. We should mention that

these inputs were not included in the original presentation of the filter, but

it is straightforward to include them.

The measurement is given by the linear relation:

qt+1 = P t+1µt+1 + εt+1 (1.16)

where q is a K-vector and εt+1 ∼ N (0,Ωt+1). ε is the measurement noise.

It is assumed that the process and measurement noises σ and ε are

independent.
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The Black-Litterman Model Combining Views

We write Ht the total information observed up to and including t:

Ht = σ {q0, q1, . . . , qt}. If we assume that the distribution function of

E [µt|Ht] is normal, and the previous assumptions hold, then the distri-

bution function of E
[
µt+1|Ht+1

]
will also be normal.

A graphical representation of this system can be seen below in Figure 1.1.

πt Bt

σt

At Time

µt+1 P t+1

εt+1

qt+1

µt

Figure 1.1: Kalman system

A derivation of the results can be found in [BH97], we will only present

here the main ideas of the problem.

The algorithm of the Kalman filter comprises two main phases: predict

and update the estimate of the next state of the system. We therefore distin-

guish two estimates, the prior estimate e−t+1, and the posterior or updated

estimate e+
t+1.

Predict The prior estimate e−t+1 of µt+1 is a raw estimate using only the

linear equation (1.15) relating successive states of the system. Assum-

ing we know the initial state of the system µ0, we can define a sequence

of unbiased estimates of the state of the system at each time:

e−t+1 = Ate
−
t +Btπt (1.17)

e−0 = µ0

From (1.17) we deduce the prior residual of the estimate e−t+1:

r−t+1 = e−t+1 − µt+1

= At

(
e−t − µt

)
− σt

= Atr
−
t − σt
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The Black-Litterman Model Combining Views

Since (e−t ) is a sequence of unbiased estimates, r− has mean zero and

thus its covariance matrix (C−t ) propagates according to:

C−t+1 = E
[
(r−t+1)(r−t+1)T

]
= AtE

[
(r−t )(r−t )T

]
AT
t + E

[
σtσ

T
t

]
= AtC

−
t A

T
t + Σµt

The predictive step hence provides with the following information:

e−t+1 = Ate
−
t +Btπt

r−t+1 = Atr
−
t + σt

C−t+1 = AtC
−
t A

T
t + Σµt

Update In the predictive step, we have only used part of the information

we have for we have not made use of the measurement information.

The goal of the updating step is to improve that raw estimate thanks

to the additional information on µ brought by q.

Similarly to the previous phase, we define a posterior estimate e+
t+1 of

µt+1, which is the estimate found after incorporating the information

contained in qt. We associate to this estimate its residual error r+
t+1

and the covariance thereofC+
t+1. The Kalman filter aims at minimizing

the error in the posterior estimate, which becomes a minimum mean-

square error estimator. It yields the following results:

E
[
µt+1|Ht+1

]
∼ N (e+

t+1,C
+
t+1)

e+
t+1 = e−t+1 +Kt+1

(
qt+1 − P tπt

)
r+
t+1 = (I −Kt+1P t+1) r−t+1 − εt+1

C+
t+1 = (I −Kt+1P t+1)C−t+1

where Kt+1 is defined as the Kalman Filter gain and writes:

Kt+1 = C−t+1P t+1

(
Ωt+1 + P t+1C

−
t+1P

T
t+1

)−1
(1.18)

Connection with the Black-Litterman model

We have presented the main results of the Kalman filter and we are now

going to show that the Black Litterman model can be regarded as a one

step Kalman filter.
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Indeed, the problem the portfolio manager faces is to estimate at period

t the excess returns of the assets, µ, over the next period, period t+ 1. At

time t, we may give a raw estimate of µ which is simply E [µ|I] ∼ N (π, τΣ).

This would correspond to the predictive step of the Kalman filter. Next, we

may consider that the private information the manager holds, and which

allows them to formulate their views, is simply a measurement of the state

of the market at time t+1. Taking all these observations into consideration,

we see that with the following equivalences, the BL model perfectly fits in

the Kalman filter:

Kalman filter Black Litterman

µt+1 ←→ µ

At ←→ 0

Bt ←→ I

πt ←→ π

Σµt ←→ τΣ

qt+1 ←→ q

P t+1 ←→ P

εt+1 ←→ ε

Ωt+1 ←→ Ω

With these substitutions, we then have:

µ = π + σ, σ ∼ N (0, τΣ)

q = Pµ+ ε, ε ∼ N (0,Ω)

which leads to:

e− = π

C− = τΣ

and:

e+ = π +K (q − Pπ)

C+ = (τΣ−KP τΣ)

where the Kalman filter gain K is now:

K = π + τΣP T
(
P τΣP T + Ω

)−1

So writing µBL and Σ
µ
BL the mean and variance of the posterior estimate,

we find:
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The Black-Litterman Model The Black-Litterman Formula

E [µ|q] ∼ N (µBL,Σ
µ
BL)

µBL = π + τΣP T
(
P τΣP T + Ω

)−1
(q − Pπ)

Σ
µ
BL = τΣ− τΣP T

(
P τΣP T + Ω

)−1
P τΣ

We will see in the next section that these results are equivalent to those

found in (1.4.1).

1.5 The Black-Litterman Formula

Whichever the selected approach, we find the same final results.

First of all, we find the distribution of the optimized expected excess

returns given the vector of views q:

E [E[µ|I]|q] ∼ N
(
µBL,Σ

µ
BL

)
(1.19)

where

µBL =
(

(τΣ)−1 + P TΩ−1P
)−1 (

(τΣ)−1 π + P TΩ−1q
)

(1.20)

Σ
µ
BL =

(
(τΣ)−1 + P TΩ−1P

)−1
(1.21)

Using formula (1.4), we retrieve the optimized expected excess returns know-

ing the views:

E [E[r|I]|q] ∼ N (µBL,ΣBL) (1.22)

where

ΣBL = Σ + Σ
µ
BL (1.23)

We show in appendix (A.2) that equivalent ways to write µBL and Σ
µ
BL are:

µBL = π + ΣP T

(
PΣP T +

Ω

τ

)−1

(q − Pπ) (1.24)

Σ
µ
BL = τΣ− τ2ΣP T

(
τPΣP T + Ω

)−1
PΣ (1.25)

Via these transformations we have proved that the results from the

Bayesian approach (1.4.1) and the Kalman filter approach (1.4.2) are in-

deed equivalent.
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The Black-Litterman Model Discussions of tau and Omega

Equation (1.24) is interesting because written in this form, the role of

π as “center of gravity” appears clearly. The new vector of expected excess

returns is the sum of the equilibrium excess returns plus an additional term

reflecting the views of the investor. How much weight is put on the views de-

pends on Ω and τ which are unfortunately not straightforward parameters;

we discuss their meaning and how to set them in the next section. Nonethe-

less, all other things the same, we see that the greater τ or the smaller Ω,

the more the views are going to be taken into account, and inversely the

smaller τ or the bigger Ω, the less the views will matter and the more the

weights are going to shift towards the equilibrium weights.

1.6 Discussions of tau and Omega

1.6.1 tau

There is little while very diverse information in the literature as to how

to set τ . τ can be interpreted as a scalar weighting the confidence in the

equilibrium expected excess returns estimation. Therefore, some authors

including Black and Litterman [BL92] consider that since “the uncertainty

in the mean is much smaller than the uncertainty in the return itself ”, it

should set close to zero. In this case, τ generally takes values between 0.01

and 0.05.

Other authors such as Satchell and Scowcroft [SS00] state that τ can be

set to 1 or not set at all in the case of He and Litterman [HL99]. This can

find its explanation in the fact that in the BL formula (1.24), τ only appears

as a factor of Ω and could thus be inserted into Ω, delegating the estimation

of τ to an estimation of Ω
τ .

Finally, another approach by Bevan and Winkelman [BW98] in the case

of active management is to set τ such that the information ratio (a perfor-

mance measure) does not exceed 2.0. This leads in practice to values of τ

between 0.5 and 0.7.

In any case, it must be remembered that setting τ very close to 0 will

yield the equilibrium portfolio and conversely, a very high value of τ will

shift all the weight towards the investor’s views. A sound procedure would

be to check for the sensitivity of the model with respect to τ .
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1.6.2 Omega

Let us recall that according to (1.2), E [µ|G] ∼ N
(
E [E [µ|G]] ,ΣE[µ|G]

)
.

Then, since PE [µ|G] ∼ N (q,Ω) (cf. (1.6)), a direct calculation yields:

Ω = PΣE[µ|G]P
T

However, ΣE[µ|G] is the covariance matrix of the excess returns expected

by the investor and is unknown, which prevents us from deriving an expres-

sion for Ω. It is therefore necessary to make further assumptions and guess

an approximative structure for Ω.

Several approaches can be found in the literature:

• The first approach is to assume that the views are mutually inde-

pendent. This assumption is very simplifying for in this case Ω will

become a diagonal matrix:

Ω =


ω2

1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 ω2
k


However, the terms on the diagonal ωi still need to be evaluated. There

is no definite answer as to how to handle this problem. A common

solution is to interpret ωi as an interval around the estimated value

qi of the corresponding view. We have assumed that the expected

returns given the private information are normal, so using the normal

distribution properties, we know that there is a 66% chance that the

value will lie between the mean minus the standard deviation and the

mean plus the standard deviation. Therefore, we can identify ωi to

play the role of the standard deviation of the view. For instance if

we believe that asset A is going to have an excess return of between

100bp and 200bp with a 95% confidence, we can express that view

as believing that A is going to have an excess return of 150bp with

a standard deviation of 25bp for 95% of the normal distribution lies

within ±2 standard deviations.

• Another approach proposed by Meucci [Meu05, ch.9] is to make an

assumption on ΣE[µ|G] similar to the one made on ΣE[µ|I]. Recall that
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in (1.3) we assumed that ΣE[µ|I] was proportional to Σ. Meucci makes

the same assumption on ΣE[µ|G] with a proportionality coefficient of(
1
c − 1

)
, where c takes values in (0, 1].He consequently writes:

Ω ≡
(

1

c
− 1

)
PΣP T

The scalar c varies according to the absolute confidence in the in-

vestor’s skills. c ≡ 1 neutralizes the volatility of the views and hence

confers complete confidence to the investor’s skills, whereas a c close

to 0 produces an infinitely disperse distribution of the views, denying

the investor any skill. An in between value of c ≡ 1
2 corresponds to an

equal confidence in the investor and in the market.

• He and Litterman [HL99] propose a method which can be perceived

as a mix of the previous two. They suggest that Ω should be diagonal,

implying that the views are not correlated like in the first method; and

with terms on the diagonal proportional to the prior distribution, like

in Meucci’s method. In fact, the terms on the diagonal of Ω should

be those on the diagonal of PτΣP T , so that:

Ω ≡ diag(PτΣP T )

This choice for Ω is rather convenient, for when substituted in the BL

formula (1.24), it cancels out τ and leaves:

µBL = π + ΣP T
(
PΣP T + Ω

)−1
(q − Pπ) (1.26)

Where Ω is now diag(PΣP T ), thus making the model independent of

τ .

• Other approaches can be found. For instance Idzorek [Idz04] provides

with a mean for the investor to specify their confidence in the views

as a percentage. Pezier [Pez07] introduces a Black-Litterman Singular

model which derives from He and Litterman’s approach.

1.7 Summary

Assumptions and inputs :

• There are two sources of information: public I and private G.
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• wm, vector of market capitalization weights.

• Σ, covariance matrix of the assets.

• r, vector of excess returns:

r ∼ N (µ,Σ)

where µ ∼ N (E [µ] ,Σµ)

• knowledge on the distribution of µ:

Public: I Private: G
E [µ|I] ∼ N (π, τΣ) PE [µ|G] ∼ N (q,Ω)

Procedure :

Equilibrium Returns Compute the vector of equilibrium returns π:

π = δΣwm

Express views

PE [µ|G] = q + ε, where ε ∼ N (0,Ω)

PE [µ|G] ∼ N (q,Ω)

Optimized Expected Returns Compute the optimized expected returns

and its variance using the BL formulae:

µBL = π + ΣP T

(
PΣP T +

Ω

τ

)−1

(q − Pπ)

ΣBL = (1 + τ) Σ− τ2ΣP T
(
τPΣP T + Ω

)−1
PΣ

Solve problem Solve the optimization problem using the optimized ex-

pected returns:

arg max
w

wTµBL −
δ

2
wTΣBLw (1.27)

s.t. wT1 = 1

other constraints
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One important point that should be brought to attention regards the

covariance matrix of the returns. In the framework developed thus far,

the expected covariance matrix of the returns is a byproduct of the model.

However, most author’s and practitioners do not use the covariance matrix

produced by the model and use their own prior covariance matrix instead.

The Black-Litterman model is therefore only used to derive the vector of

expected returns, maintaining the two main issues in portfolio optimization

separated: expected returns on the one side and covariance matrix on the

other. The problem of calculating the covariance matrix of the returns is

thus left as an entire other issue.

As a consequence, the optimization problem (1.27) should be rewritten

as:

arg max
w

wTµBL −
δ

2
wTΣw

s.t. wT1 = 1

other constraints

where Σ is the prior covariance matrix.
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Chapter 2

BL and Active Management

2.1 Introduction

The BL framework used so far focused on maximizing the classical mean/var-

iance problem, i.e. maximizing the Sharpe Ratio of the portfolio. Many

investors do not manage their portfolio with that objective in mind, but

rather have a benchmark target they wish to outperform. In this context, it

does not make sense to use the equilibrium portfolio as a starting point any

more, for it would be much more relevant to have the benchmark portfolio

take this role instead. This is legitimized when we think at the case where

we have no particular information other than the public information. In this

case, the best we can do is simply match the performance of the benchmark,

which is achieved by holding the benchmark portfolio.

This section partly uses from Roll’s 1992 paper [Rol92], which under-

lined the discrepancy between minimizing the volatility of tracking error

and maximizing the mean/variance efficiency of a portfolio; and from S. da

Silva, Lee and Pornrojnangkool [SdSLP09] and Herold [Her03] who have

looked at BL under an active management perspective.

2.2 Formulation of the new problem

We will use the following notations:
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wb vector of benchmark weights

wa vector of active weights

w vector of portfolio weights (= wa +wb)

wGMV vector of the Global Minimum Variance portfolio weights

µ vector of expected excess returns

µGMV expected excess returns of the GMV portfolio (= µTwGMV )

λ active risk aversion parameter

δ absolute risk aversion parameter

The notations above mention the Global Minimum Variance Portfolio

(GMV). It is the efficient portfolio which has minimum variance, i.e.:

wGMV = arg minww
TΣw

s.t. wT1 = 1

}
wGMV =

1TΣ−1

1TΣ−11

In the previous section, the goal was to express the expected excess

returns of assets in order to use them in the following problem:

arg max
w

wTµ− δ

2
wTΣw (2.1)

s.t. wT1 = 1

other constraints

In the active management setting in the presence of a benchmark, we no

longer wish to solve this problem but rather to maximize the active returns

with a penalty on the square of active risk:

arg max
w

wT
aµ−

λ

2
wT
aΣwa (2.2)

s.t. constraints

We can see a first difference between the two problems. The former

problem aims at maximizing the expected excess returns (over the risk-free

rate) of the portfolio with a penalty for its volatility, which comes down

to maximizing its Sharpe Ratio; while the latter aims at maximizing the

expected excess returns over the benchmark with a penalty for the tracking

error variance, which comes down to maximizing the Information Ratio.

This difference in the objectives has some consequences, as [SdSLP09] show.

2.3 Particular case

In order to get a sense of what can differ in this new problem setting, let us

solve (2.2) in the particular case where we have the constraintwT
a 1 = 0. This
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BL and Active Management Change of referential

is a self-financing condition, it corresponds to the case where the investor

simply readjusts their portfolio positions, without investing nor withdrawing

any value.

The Lagrangian of the problem is:

L(wa, ν) = wT
aµ−

λ

2
wT
aΣwa − νwa

The first derivative of the Langrangian with respect to wa must be set to 0:

∂L

∂wa
(wa, ν) = µ− λΣwa − ν1

wa =
1

λ
Σ−1 (µ− ν1) (2.3)

The budget constraint yields:

1

λ

(
µTΣ−11− ν1TΣ−11

)
= 0

ν =
1TΣ−1

1TΣ−11
µ = wT

GMV µ = µGMV

Substituting in (2.3) finally gives:

wa =
1

λ
Σ−1

(
I − 1wT

GMV

)
µ (2.4)

This solution is intriguing. It makes pairwise comparisons between the

expected excess returns and the GMV portfolio expected excess return, and

if they are different (and they are very likely to be) it will induce non-null

active positions. This is true even if no view has been expressed, when we

would have expected nothing to happen. This unfortunate consequence is

tackled in the next section.

2.4 Change of referential

We recall the formula (1.24) for the expected excess returns obtained in the

first section:

µBL = π + τΣP T
(
τPΣP T + Ω

)−1
(q − Pπ)

A naive approach to implementing BL in an active management setting

would be to use directly this formula in (2.4). However, this would not be

the right way to proceed.

As we have seen in the previous section, and as S. da Silva, Lee and Porn-

rojnangkool [SdSLP09] show, doing this would imply unintended trades,
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even in the case where one does not have any views, if the equilibrium port-

folio is not chosen to be the GMV portfolio. They claim that the root of this

inconsistency lies in the mismatch between the objectives in the optimiza-

tion problems (2.1) and (2.2) which are a to maximize the Sharpe Ratio in

the former and the Information Ratio in the latter.

When justifying the choice of the equilibrium portfolio as a reference

for the optimization (c.f. section 1.2.1), Litterman made an analogy with

a dynamic system. I believe this analogy can be carried on in the active

management setting. Here, we are assumed to hold a benchmark. This

benchmark moves, its expected returns are continuously changing and we

are studying the returns of some movements relative to this moving refer-

ential. This is similar to studying dynamics in a non Galilean referential, a

change of referential is necessary. Indeed, in the previous setting, we were

looking at expected excess returns over the risk-free rate whereas we are now

interested in the expected excess returns over the benchmark. That means

that the origin of the previous study was the risk-free rate and it must now

be set to the benchmark; and in this new referential, the equilibrium vector

must be null. The meaning of this is that when we do not have any view

on the market, and thus we do not hold any active position, our expected

excess return over the benchmark will be the equilibrium vector, which is

zero. But in absolute, the expected excess returns over the risk-free rate will

be the same as the benchmark.

The consequence of this is that when applying BL, we must set π = 0

in the Black-Litterman formula:

µaBL =
(

(τΣ)−1 + P TΩ−1P
)−1 (

P TΩ−1q
)

This is how Winkelmann [LG03, ch.13], Herold [Her03] and Rachev,

Hsu, Bagasheva and Fabozzi [RHBF08, ch.8] treat the problem. Indeed,

we may directly consider the alphas instead of the excess returns over the

benchmark, which is equivalent since we are starting from a portfolio equal

to the benchmark and which thus has a beta equal to one. We can therefore

rewrite the above formula as:

αBL =
(

(τΣ)−1 + P TΩ−1P
)−1 (

P TΩ−1q
)

(2.5)

αBL = ΣP T

(
PΣP t +

Ω

τ

)−1

q (2.6)

We stress out that the vector q now contains predictions on the alphas.
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2.5 Implementation

2.5.1 General Case

Once predictions have been made and we have a new vector of expected

alphas according to (2.6), we consider the corresponding active management

problem:

arg max
wa

wT
aαBL −

λ

2
wT
aΣwa (2.7)

s.t. constraints

We may imagine different sort of constraints. For instance we could

bound the total active weights by absolute bounds, or by bounds propor-

tional to the benchmark portfolio weight; we could also consider bounding

some or all of the particular weights on some assets. Those are some among

many possibilities.

We also point out that the above problem could be substituted by a

maximization of the expected alpha subject to a risk budget constraint, i.e.

a constraint on the tracking error.

The views and information of a portfolio manager may come in two

distinct ways, quantitative and qualitative. When expressed quantitatively,

the views enable a direct application of the above formulae. Another case is

that of qualitative approach, in which a manager only expresses preferences

about some assets with respect to one or several others. A typical example

is the expression of a ranking of the assets in the portfolio, ranging from a

strong sell opinion to a strong buy opinion, with possibly a stratification of

the assets along different groups. The BL model is flexible enough to enable

such a case.

2.5.2 Qualitative views

In this section we will investigate how the BL model can treat the case where

we only express qualitative views.

A qualitative view can be stated as going long one portfolio and going

short another: going long the bearish portfolio and going short the bullish

one. The resulting long/short portfolio induces a tracking error that can be

located on the diagonal of the matrix PΣP T . The manager then expresses

their degree of confidence in that view. This information is captured by

the Information Coefficient (IC), which is a number between 0 and 1 and

that can be understood as the probability of that particular view to happen.
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When referring to a manager, the information coefficient gives an informa-

tion as to how often their predictions have been correct and thus gives an

indication of their skill. A high IC denotes a high confidence and inversely

for a small IC.

Grinold and Kahn [GK00] present their forecasting rule of thumb for

active management:

IR ≈ IC.
√

BR

where:
IR Information Ratio

IC Information Coefficient

BR Strategy’s Breadth

The Breadth is defined as the number of independent forecasts of excep-

tional return made per year for a strategy ([GK00, ch.6]).

We recall that the Information Ratio is defined as the ratio of active

return to active risk, i.e. alpha divided by the tracking error:

IR =
α

σa

where: α = αTwa

σa =
√
wT
aΣwa

It follows that we can express the investor’s expected alphas, q, as the

product of their IR times the tracking error:

qi = σai.ICi.
√

BRi (2.8)

where σai =

√
diag(PΣP T )i

σai is the tracking error of the i-th view, ICi and BRi its respective

Information Coefficient and Breadth.

Equation (2.8) shows that in order to state a view on a strategy, it suffices

to provide a corresponding information coefficient. As we mentioned, the

tracking error σai is located on the diagonal of the matrix PΣP T , and the

breadth is already known.

It remains to set the values of τ and Ω. In the previous section, we

discussed several options regarding how to do this, and a convenient way in

the present setting is to use He and Litterman’s method and set Ω to be a

diagonal matrix with diagonal terms equal to diag(PτΣP T ), thus cancelling

out τ .
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The role of Ω is to curb the risk. Indeed, the terms on its diagonal are the

volatility of the tracking error of each view. Thus, the higher the volatility

of one view and hence the riskier, the more it is going to be dampened by

Ω. This is going to ensure that the risks undertaken by each view will be

spread more evenly amongst them, and that most of the risk is not borne

by only one or only a few.

We may consider the case where Ω is null; this is the case of perfect

foresight, or complete certainty in each of the views. In this case, it suffices

to assume an Information Ratio for each asset and compute the expected

returns that fit them perfectly. Here, equation (2.6) would simply become

Pα = q. This is approach is treated in the literature and also used in prac-

tice, it can be found for instance in Lee and Lam (Credit Suisse) [LL01], or in

the Optimal Risk Budgeting with Skill (ORBS) approach of Dynkin, Gould,

Hyman, Konstantinovsky and Phelps (Lehman Brothers) [DGH+06, ch.24].

We will present some examples in order to compare both methodologies and

evaluate the importance of forecast uncertainty.

We summarize the procedure for qualitative forecasts:

E[α|I] ∼ N (0, τΣ)

PE[α|G] ∼ N (q,Ω)

where qi = σai.ICi.
√

BRi

Ω ≡ diag(PΣP T )

Given this information, BL yields the following expression for the ex-

pected alphas:

αBL = ΣP T
(
PΣP T + Ω

)−1
q

(note that we have here cancelled out τ and that Ω ≡ diag(PΣP T ) )

With this alphas in hand, we may then turn to the optimization problem:

arg max
wa

wT
aαBL −

λ

2
wT
aΣwa

s.t. constraints
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2.6 Risk Analysis

An important part of the optimization process lies in the ability to assess

and correct the risks undertaken as a consequence of the new positions. This

is achieved in two steps: first by analysing the coherence of the expressed

views used as inputs in the problem, and second by analysing the importance

of each view in the total undertaken risk (active risk).

2.6.1 Views Consistency

One of the priorities in the optimization process is to analyse the coherence

and consistency of the views. Views may be expressed by many different

experts and in many different ways, so it can be sometimes hard to embrace

all of them at one single glance and be able to detect suspicious ones. There

are two ways in which views can be assessed: individually and globally. In-

deed, we must check whether the views actually reflect our opinion and that

we have not unintentionally expressed contradictory views. That is done

by making pairwise analysis of the views thanks to their covariance matrix.

However, after this first step is successfully taken and we have checked in-

dividual views, it does not mean that the overall view they amount to is

acceptable. Each individual view could be perfectly possible but their com-

bination might be very unlikely because too far from the consensus expected

behaviour of the market.

Individual assessment :

The covariance of the assets are given by the matrix Σ. Since we express

the views as a linear combinations of these assets via the “pick” matrix

P , the variance-covariance matrix of the views is given by PΣP T . As we

mentioned, the diagonal terms of PΣP T are the volatilities of the tracking

error for each view, and the non-diagonal terms are the covariance between

the views. It is then easy to deduce the correlation matrix of the views given

their variance-covariance matrix.

Analysing the coherence of the views is achieved by looking at their

correlation matrix. A high positive correlation indicates that the views

are consistent with historical data of the market. It means that we have

expressed the same “ideas” as to how the market is going to behave. If most

of the views are positively correlated, then it means that there is little room

for diversification for their implied alphas should move in the same way, all

up or all down.
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On the other hand, strongly negatively correlated views indicate that

we are somehow betting against market historical data, and that portfolios

which used to move accordingly will now drift apart, which accounts for the

manager going long one portfolio and short the other.

Finally, little correlated views present diversification opportunities since

movements in one of the views portfolio are unlikely to affect the other.

Global assessment :

The second step in assessing the views is to check for their overall consis-

tency. Fusai and Meucci [FM03] introduced a way to achieve this using the

Mahalanobis distance. We adapt their method to the case of active man-

agement. The principle is to measure how far from the consensus expected

returns we have landed. In the case of active management, the consensus

expected returns are the alphas of the benchmark portfolio, which are null.

The Mahalanobis distance M(q) of the optimized alphas provided by the

BL model αBL(q) is given by:

M(q)2 = αBL(q)TΣ−1αBL(q) (2.9)

According to Mahalanobis’ law, M(q)2 approximately follows a chi-

square distribution with N degrees of freedom where N is the number of

assets. So we can assign a probability to the vector or forecasts q such that:

P(q) = 1− Fχ2

(
M(q)2, N

)
(2.10)

where Fχ2( , N) is the cumulative probability of the chi-square distribution

with N degrees of freedom.

The manager sets a probability threshold under which they reject the

current vector of forecasts q for being too extreme. For instance, they could

decide that q must be revised if P(q) falls under, say, 0.95.

In the case where the threshold is not overcome, the manager must

readjust their forecasts. The next question is which forecast to modify, and

to what extent? The answer to this question is given by analyzing the

sensibility of the probability P(q) to q. Computing the derivative of P(q)

with respect to q will yield the more influential forecasts on P(q). Applying

the chain rule, we get:

∂P(q)

∂q
=

∂P(q)

∂M(q)2

∂M(q)2

∂αBL(q)

∂αBL(q)

∂q
(2.11)

= −2fχ2

(
M(q)2, N

) (
PΣP T + Ω

)−1
PαBL(q)
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where fχ2( , N) is the probability density function of the chi-square distri-

bution with N degrees of freedom.

Once this derivative has been computed, the manager needs to find the

entry with the highest absolute value, and hence the one with the most

influence on P(q). If that entry is positive (resp. negative), then the forecast

for that view must be decreased (resp. increased).

The procedure must then be repeated to check whether the tuning of

the forecasts has been sufficient. Repeating this operation as many times as

necessary will guarantee to reach the required threshold.

This procedure provides with a means to assess post-optimization re-

turns. However, we know that the BL model can be seen as a method

minimizing the distance between the manager’s expected returns and the

market expected expected returns. Now, consider a negligent manager who

expresses equally strong opinions but in opposite directions to linked as-

sets. We might think for instance of the US dollar and the HK dollar whose

correlation is almost 1 since the HK dollar is indexed on the US dollar. Ex-

pressing opposite opinions on these two currencies would be careless, but

our manager accidentally does so, thinking that the US dollar will provide

an alpha of −αv and the HK dollar an alpha of +αv. In minimizing the

distance between these views and the benchmark expected alphas - which

are null -, the BL model will somehow annihilate them and yield alphas

close to zero for both of them. If we then applied the above method, the

optimized alphas might satisfy the threshold condition, and we would not

necessarily realize how poor a prediction we have made.

Therefore, it might be a sound procedure to apply the same methodology

to the vector of raw forecasts q in order to assess the overall consistency of

the prior forecasts.

In this case we would calculate:

M ′(q)2 = qT
(
PΣP T

)−1
q (2.12)

and the corresponding probability:

P′(q) = 1− Fχ2

(
M ′(q)2,K

)
(2.13)

where K is the number of expressed views.
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2.6.2 Risk Contributions

Once the views have been checked and fed to the optimizer, the manager will

be provided with the active positions wa recommended by the optimizer.

This new positions will induce some risk, but some in more extent than

the others. Intuitively and logically, the manager will be willing to take

more risk in the assets and portfolios upon which they have a stronger view.

However, they will probably not want to take more risk in a portfolio if they

do not have any particular preference for it. Therefore, if the manager were

to have an equally strong feeling about all of their view portfolios, then they

would want the risk to be approximately evenly spread among them.

The tools used to assess the risks inherent to active positions on the as-

sets - wa - and on the view portfolios - wva - are the Marginal Contribution

to Tracking Error (MCTE) and Percentage Contribution to Tracking Er-

ror (PCTE) also called Absolute Marginal Contribution to Tracking Error

(ACTE) and Relative Marginal Contribution to Tracking Error (RCTE) re-

spectively. We derive the formulae for the assets, it is then straightforward

to deduce them for the views.

The MCTE of an asset is the amount by which the tracking error will

increase when the asset’s weight is increased by a small amount. In other

words, the MCTE of an asset is the sensibility of the tracking error to its

active weight, hence the derivative of the tracking error with respect to its

active weight. The vector of MCTEs is thus:

MCTE =
∂σa
∂wa

(2.14)

=
∂
√
wT
aΣwa

∂wa

MCTE =
Σwa

σa
(2.15)

We recall that wT
aΣwa = σ2

a, so multiplying (2.15) by wT
a yields:

wT
aMCTE =

wT
aΣwa

σa
= σa

i.e.
∑
i

waiMCTEi = σa (2.16)

where we use the subscript i to denote the values corresponding to the i-th

asset.

We see in (2.16) that the tracking error can be written as a weighted

sum of the assets’ MCTEs where the weights are the respective assets’ active
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weights. We rewrite (2.16) as:∑
i

waiMCTEi

σa
= 1 (2.17)

Under this formulation, the relative contribution of each asset to the

total tracking error appears clearly as
waiMCTEi

σa
which we define to be

the PCTE of the i-th asset:

PCTEi =
waiMCTEi

σa
(2.18)

We may give an other interpretation to the PCTEs rewriting them as:

PCTEi =
∂σa/σa
∂wai/wai

(2.19)

The PCTEs can thus be seen as the relative change in tracking error

given a relative change in active weights.

We have derived the expressions of the MCTEs and PCTEs relative to

the assets, but a manager would find more relevant to compute these values

relative to the views for these are the inputs they used in the optimization

process. Knowing how much a view affects their risk is of utmost importance.

We write wva the views’ active weights and use the subscript j to denote

the values relative to the j-th view. We recall that the tracking error can

also be computed as:

σa = (wT
aΣwa)

1
2 = (wT

vaPΣP Twva)
1
2 (2.20)

Therefore, it is straightforward to write:

MCTEv =
PΣP Twva

σa
(2.21)

Similarly, we find:

PCTEvj =
wvaj

MCTEvj

σa
(2.22)

2.7 Worked Examples

In this section we will present some examples to illustrate how the BL model

applies in active management with qualitative forecasts. We will use the di-

agnostic tools introduced earlier to evaluate how risk is handled, in particular

with respect to the case of perfect foresight.
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We consider an investor who may invest in 6 different countries: Aus-

tralia, Canada, France, Germany, Japan and the United Kingdom. They

use a benchmark whose weights in each country are shown in Table 2.1 1.

Country Weight (in %)

Australia 7.14

Canada 8.63

France 12.80

Germany 9.52

Japan 29.46

UK 32.44

Table 2.1: Benchmark Weights

View 1 AU vs (FR & JP) bullish

View 2 CA vs GE bearish

View 3 FR vs JP bullish

View 4 CA vs FR bearish

Table 2.2: Investor Views

The investor has several views expressed in Table 2.2. The corresponding

4× 5 view matrix P in the BL model is the following:

AU CA FR GE JP UK

P =


1 0 −0.3028 0 −0.6972 0

0 −1 0 1 0 0

0 0 1 0 −1 0

0 −1 1 0 0 0


The rows correspond to the views and the columns to the weights of

each asset in that view. Note that the weights of each portfolio sum up to

0 and that in the first view, where more than two assets are involved, we

have used benchmark-weighted weights.

It might be interesting to look at the correlation matrix of the views to

apply the analysis we mentioned earlier. The views’ correlation matrix is

presented in Table 2.3. We first observe that no two views are negatively

correlated, meaning that the investor is not betting against historical move-

ments and correlations. Secondly, it is noticeable that views 2 and 4 are

1The origin of the data and the covariance matrix can be found in appendix B.1
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strongly correlated. Finally, view 1 is virtually uncorrelated to views 2 and

4 and little correlated to view 3, which allows for risk diversification; we

therefore expect a stronger active allocation to that view than to the others

which present stronger correlations.

View 1 View 2 View 3 View 4

View 1 1 0.03602 0.2895 0.0509

View 2 1 0.2069 0.9150

View 3 1 0.2694

View 4 1

Table 2.3: Views’ Correlations

2.7.1 First Case: Equal Preferences

The first case we consider is one where the investor has equal confidence in

each one of their views and therefore gives them a same level of Information

Coefficient which we set to 0.2. In order to compute the investor’s expected

returns, we further assume a Breadth of 1. As discussed earlier, we choose

to set Ω ≡ diagPΣP T for convenience.

They wish to optimize active risk allocation subject to an active risk

constraint on the tracking error of, for example, 100bp. The results obtained

after optimization are showed in Table 2.4. We see that the risk is very

well spread across the different views, with almost equal contributions. As

predicted, view 1 received a greater allocation and bears a little more risk

than the others for it is less correlated to them.

Ω ≡ diagPΣP T Ω ≡ 0

View IC wva PCTEv wva PCTEv

1 0.2 2.00% 26.76% 2.04% 32.43%

2 0.2 1.35% 24.51% 1.45% 24.49%

3 0.2 1.14% 25.85% 1.32% 35.24%

4 0.2 1.24% 22.88% 0.47% 7.84%

Table 2.4: Optimized Portfolio (IC= 0.2 for all views)

Let us now investigate the model where the confidence in the views is

not accounted for. In this case, Ω is set to 0 and the expected alphas are
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now calculated as:

αΩ=0 = ΣP T
(
PΣP T

)−1
q

The corresponding results are presented in Table 2.4. They present some

important differences with respect to the previous case. Views 1 and 3 carry

almost 70% of the total risk while the fourth view only accounts for under

8%. Overall, the positions are sharper than when the confidence in the

views was taken into account. This underlines the importance of using the

confidence in the views in order to obtain a more balanced and less risky

portfolio.

Figure 2.1: Risk distribution across views

2.7.2 Second Case: One Expressed Preference

In the first case, we worked with equal ICs for all the views. We are now

going to look at the consequences of giving more preference to one view,

which translates into an increase in its Information Coefficient.

Assume that the investor has a preference for the first view. They think

it is going to provide with a better performance than the other and are hence

willing to allocate more risk to it. We may for instance consider that they

will give an IC of 0.3 to that view and maintain the other ICs at 0.2.

We then move on to the optimization, keeping the 100bp constraint on

the tracking error. The results for both the Ω ≡ diagPΣP T case and the

Ω ≡ 0 case are showed in Table 2.5.

The conclusions drawn from these results are quite similar to those of the

previous example. Here, given the expressed preference for the first view,

more risk was allocated to it. In the case where confidence is taken into

account, the increase in that view seems adequate and the remaining risk
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Ω ≡ diagPΣP T Ω ≡ 0

View IC wva PCTEv wva PCTEv

1 0.3 2.77% 46.41% 3.26% 60.79%

2 0.2 1.16% 18.15% 1.49% 20.69%

3 0.2 0.89% 18.35% 0.68% 12.77%

4 0.2 1.07% 17.09% 0.42% 5.75%

Table 2.5: Optimized Portfolio with a Preference

Figure 2.2: Risk distribution across views

is evenly spread across the three other views. On the contrary, in the case

of perfect foresight (Ω ≡ 0), a disproportionately large amount (60%) of

the risk was allocated to the first view alone, and the remaining risk is not

evenly spread.

2.7.3 Third Case: Ranking

A possible case scenario is one where the investor ranks the assets along

a ranking. This ranking may take different forms, we could for instance

imagine a simple case where the investor places the assets into three view

categories: bearish, neutral and bullish. From this simple case we could

elaborate into “very bearish, bearish, neutral, bullish or very bullish” and so

forth, making the categories more and more precise. Whichever the choice,

since each view is associated to a single asset, the pick matrix P is going to

contain as many rows as there are assets, and only one term per row, either 1

or −1 depending on the view (1 for a bullish view and −1 for a bearish view).

Let us go back to our investor. Given their information, they have man-
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aged to give either a bearish or bullish opinion to each asset. The assets

in the “bearish basket” are Australia, Canada and Japan, and the assets in

the “bullish basket” are France, Germany and the UK. Unfortunately they

could not be more precise than that, so the best they can do is assign an

equal IC of 0.15 to each asset.

The pick matrix in this case is:

AU CA FR GE JP UK

P =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


The results with a tracking error constraint of 100bp are showed in Table

2.6. We see here again that using a non null Ω helps dealing with the

risk. There are less extreme positions in the assets and the risk is better

diversified.

Ω ≡ diagPΣP T Ω ≡ 0

Country View IC wa PCTE wa PCTE

Australia bearish 0.15 -1.75% 16.28% -2.33% 23.89%

Canada bearish 0.15 -2.33% 10.15% -3.05% 28.95%

Japan bearish 0.15 -1.36% 18.20% -0.11% 0.92%

France bullish 0.15 1.57% 18.53% 1.02% 9.19%

Germany bullish 0.15 1.55% 18.62% 1.23% 10.89%

UK bullish 0.15 1.72% 18.22% 2.96% 26.16%

Table 2.6: Optimized Portfolio for a simple ranking

We now assume the investor has received some more information and is

able to produce a more detailed ranking of the assets. They have ranked the

assets in each category and allocated the ICs accordingly. The modification

in the results are showed in Table 2.7.

The results are not as easy to interpret in the case where Ω ≡ 0 for

some of the PCTEs are negative; but we can still say a few things. Here

the different assets have been given different ICs depending on how much

the investor thinks they are going to over- or under-perform. We therefore

expect to allocate more risk to those assets with a higher IC and less to
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Ω ≡ diagPΣP T Ω ≡ 0

Country View IC wa PCTE wa PCTE

Australia bearish 0.15 -2.76% 32.83% -3.08% 33.92%

Canada bearish 0.1 -2.27% 10.24% -2.35% 15.93%

Japan bearish 0.05 -0.21% 2.17% 1.14% -3.35%

Germany bullish 0.05 0.32% 3.23% -2.07% -6.59%

France bullish 0.1 1.65% 17.54% 1.05% 6.86%

UK bullish 0.15 3.16% 33.99% 5.61% 53.23%

Table 2.7: Optimized Portfolio for a detailed ranking

the ones with low IC. Furthermore, these allocation should present some

homogeneity in their distribution, that is to say if two assets have been

given a similar IC, we expect them to bear a similar portion of risk. All these

requests are very well handled in the case where Ω is taken into account as

we can see on Figure 2.3; although this cannot be said to be entirely true in

the case where Ω ≡ 0, which shows much larger active positions.

Figure 2.3: Risk distribution across views in a ranking case

2.8 Testing Views’ Independence

In the theoretical construction of the Black-Litterman model, we have as-

sumed a diagonal structure for the covariance matrix of the views Ω, hence
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implying that they were independent.

Ω =


ω2

1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 ω2
k


It would be a sound exercise to verify on a numerical example whether

this assumption is tolerable or whether it must abandoned.

Let us test this on an over-simplified example wherein all the views

share a common correlation ρ. This would be a model where all the views

are affected by a single factor:

q = PE[α|G] + ω

ω =


ω1

...

ωK


ωi = ωi

(√
1− ρ2Zi + ρZ

)
where Z,Z1, . . . , ZK are independent standard normal random variables and

ωi is the variance of the corresponding view, i.e. diag(PΣP T )i, to be con-

sistent with the previous model.

We will test this model on the data used in section 2.7 by fixing a set of

views and analyzing how much the correlation factor ρ affects the values of

the expected alphas and active weights.

Let us set the following views:

Country View IC

Australia bullish 0.15

Canada bullish 0.15

Japan bullish 0.15

Germany bearish 0.15

France bearish 0.15

UK bearish 0.15

Table 2.8: Views used for testing the influence of the views’correlation

We then solve the problem for values of ρ ranging from 0 - independent

views - to 1 - fully correlated views. For each value of ρ we find a vector
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of expected alphas αρ and active weights wρ, and in order to measure how

distant this new vectors are from the initial ones obtained with independent

views, we calculate their Mahalanobis distance with respect to the original

vectors:

dα =
√

(αρ −α0)TΣ−1(αρ −α0)

dw =
√

(wρ −w0)TΣ−1(wρ −w0)

2.8.1 Influence on expected alphas

Country 0 0.2 0.4 0.6 0.8 1

Australia 1.61% 1.63% 1.73% 1.93% 2.32% 3.21%

Canada 0.76% 0.79% 0.92% 1.20% 1.75% 2.97%

France -2.05% -2.47% -2.95% -3.55% -4.40% -6.00%

Germany -2.08% -2.49% -2.96% -3.54% -4.33% -5.32%

Japan 2.32% 2.43% 2.59% 2.80% 3.02% 3.11%

UK -1.84% -2.22% -2.66% -3.21% -3.97% -5.31%

dα 0 0.02365 0.05465 0.09833 0.16663 0.30335

Table 2.9: Alphas αρ in each country and Mahalanobis distance dα

Figure 2.4: αρ against ρ
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2.8.2 Influence on active weights

ρ

Country 0 0.2 0.4 0.6 0.8 1

Australia 1.76% 1.76% 1.77% 1.81% 1.96% 2.19%

Canada 2.34% 2.37% 2.41% 2.52% 2.73% 2.88%

France -1.59% -1.61% -1.63% -1.68% -1.90% -3.24%

Germany -1.54% -1.56% -1.57% -1.57% -1.38% -0.16%

Japan 1.36% 1.28% 1.19% 1.01% 0.63% 0.13%

UK -1.72% -1.75% -1.79% -1.84% -1.98% -1.87%

dw 0 0.00491 0.01115 0.02399 0.06769 0.33144

Table 2.10: Active weights wρ in each country and dw against ρ

Figure 2.5: wρ against ρ

Figure 2.6: dw against ρ

2.8.3 Analysis

We observe on the results for the expected alphas that the effect of an

increasing correlation is to sharpen the results, positive alphas are more

positive and negative alphas are more negative. The results seem to depart

the initial vector of expected alphas quite quickly.
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However, it is interesting to notice that the effects on the active weights

are not that severe. Indeed, for relatively small values of ρ (ρ ≤ 0.4), we

can consider the independence of the views’ errors as a relatively good and

convenient approximation.

We should point out that this conclusion is only based on a particular

case and that it might not apply to any application of the model. It seems

nonetheless that I have found similar results on all the examples I have tried.

2.9 Influence of tau

Similarly to the study realized in the previous section, we may want to

investigate the impact of “canceling out” τ by using He and Litterman’s

estimation of Ω. Using the same views as in Table 2.8, we plot the resulting

active weights against τ .

Figure 2.7: w against τ

These results show that the influence of τ is not insignificant, even for

small changes around the value we have used so far (τ = 1). There might

thus be some work to be done in order to fine-tune this value.
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Chapter 3

Fixed-Income Portfolio

Optimization

3.1 Introduction

We have introduced in the previous chapters the Black-Litterman model

and its application in an active management context. The purpose of this

chapter is to apply the framework and tools we have presented thus far to

a Fixed-Income Portfolio which may consist of various instruments such as

bonds, futures, currency forwards or swaps to name but a few.

In this new context, we will consider a portfolio manager whose universe

is constituted of bonds from different countries or monetary zones and their

currencies, as well as inflation-linked bonds. They manage their portfolios

with respect to a given benchmark and aim at maximizing their expected

alpha with a tracking error constraint.

The active positions they might take in any asset are motivated by views

or opinions on how the currencies, yield curves and inflation are going to

behave in the future. Furthermore, this manager might handle portfolios

for different clients with different base currencies. When switching from one

base currency to another, the risks - measured by the assets’ variances and

covariances - might change, thus modifying the positions to be taken, which

we will have to investigate.

We will proceed as follows: in the first sections we will tackle the model-

ing of the portfolio and its returns, raising some practical issues as we come

across them; and then apply it to some concrete examples.
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3.2 Yield curve

Let P (t, T ) be the discount factor observed at time t for maturity T . In the

following t shall refer to the present time and T to a future time, often the

maturity of a bond. In order to keep notations as simple as possible, we will

write T̃ := t+ T .

- time
t

6

P (t, t) = 1

6

T̃1

P (t, T̃1)

6

T̃2

P (t, T̃2)

6

T̃3

P (t, T̃3)

Given P (t, T ), we may define the associated zero-coupon continuously

compounded rate z(t, T ):

P (t, T̃ ) = e−z(t,T̃ )T

⇒ z(t, T̃ ) = − 1

T
lnP (t, T̃ ).

By Principal Component Analysis (PCA), z is broken down into a linear

combination of n factors (zi(T ))1≤i≤n with respective loadings (κi(t))1≤i≤n:

z(t, T̃ ) ≈
n∑
i=1

κi(t)zi(T ). (3.1)

These loadings are time dependent as is underlined by the notation.

They are continuously re-evaluated in order to best fit the yield curve.

Let us stress that the functions P and z are functions of two vari-

ables: present time t and maturity T̃ ; but that the functions (κi)1≤i≤n

and (zi)1≤i≤n are univariate; (κi)1≤i≤n being functions solely of the present

time t, and (zi)1≤i≤n being functions only of the maturity date T̃ .

Furthermore, we may choose n specific terms (T̃i)1≤i≤n and express the

loadings (κi(t))1≤i≤n as a linear combination of the values (z(t, T̃i))1≤i≤n of

z for these n particular terms. The interest in doing this is that the effect

of the change in the yield curve around one of these terms can then easily

be assessed. A common choice for these term dates would be treasury bills,

notes and bonds’ maturity dates.
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Letting (T̃i)1≤i≤n be the chosen n different terms, for each term T̃i, we

have:

z(t, T̃i) =
n∑
j=1

κj(t)zj(Ti).

In matrix form, this can be written as:

z(t, T1, . . . , Tn) = A(T1, . . . , Tn)κ(t) (3.2)

Where:

z(t, T1, . . . , Tn) =


z(t, T̃1)

...

z(t, T̃n)

 , A(T1, . . . , Tn) =


z1(T1) . . . zn(T1)

...
...

z1(Tn) . . . zn(Tn)



and κ(t) =


κ1(t)

...

κn(t)

.

Inverting the above matrix equation (3.2), the values of the loadings

(κi(t))1≤i≤n can then be expressed as linear combinations of the
(
z(t, T̃i)

)
1≤i≤n

:

κ(t) = A−1(T1, . . . , Tn)z(t, T1, . . . , Tn),

letting A−1(T1, . . . , Tn) = (αij(T1, . . . , Tn))1≤i,j≤n.

Consequently:

κi(t) =
n∑
j=1

αij(T1, . . . , Tn)z(t, T̃j) (3.3)

Substituting (3.3) into (3.1) we may thus write any term rate as a linear

combination of the n specific terms rates:

z(t, T̃ ) =
n∑
i=1

βi(T, T1, . . . , Tn)z(t, T̃i). (3.4)

3.3 Sensitivity to yield curve changes

We want to investigate the consequences of changes in the yield curve on the

value of a bond portfolio in one particular monetary zone. We look at the

change in the value of the portfolio between times t and t+ dt, where dt is

a positive time. We assume a self-financing condition between t and t+ dt,

that is, no money is inserted in or taken out of the portfolio and the changes
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in the value of the portfolio are solely due to fluctuations of the portfolio’s

assets.

For any function of time g(t), we will write ∆g(t) := g(t+ dt)− g(t).

The value of a bond portfolio is a function of the yield curve and conse-

quently a function of z.

• Writing V (z(t, .)) the value of the portfolio at time t, we may then

write:

V (z(t, .)) = V (κ1(t), . . . , κn(t)).

Changes in the yield curve are represented by changes in the values

of the loadings. Therefore we may investigate the sensitivity of the

portfolio to changes in the yield curve thanks to a first order Taylor

approximation:

∆V (κ1(t), . . . , κn(t)) ≈
n∑
i=1

∂V

∂κi
∆κi(t)

• However, the above expression is not fully satisfactory. Indeed, we

would like to express the variation of the portfolio not as depending

on the changes in the loadings (κi(t))1≤i≤n, but rather depending on

the log-returns of the yield curve at the chosen terms. We aim at

expressing the change in the value of the portfolio in terms of the

(ln z(t, Ti))1≤i≤n which we know is possible thanks to equation (3.4).

We would like an expression of the form:

∆V (z(t, .)) ≈
n∑
i=1

ci(t)∆ ln z(t, T̃i)

According to (3.4), the yield curve can be expressed as a function of a

selected number of term rates, so in particular:

V (z(t, .)) = V
(

ln z(t, T̃1), . . . , ln z(t, T̃n)
)

which leads to the following first order Taylor expansion:

∆V
(

ln z(t, T̃1), . . . , ln z(t, T̃n)
)
≈

n∑
i=1

∂V

∂ ln z(t, T̃i)
∆ ln z(t, T̃i) (3.5)

Unfortunately, this expression cannot be readily used for we do not have

immediate access to the partial derivatives with respect to the logarithms

of z(t, T̃i). We must thus transform these expressions further, using that:

∂V

∂ ln z(t, T̃i)
=

∂V

∂z(t, T̃i)
z(t, T̃i) (3.6)
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In the above equality, the term ∂V
∂z(t,T̃i)

represents the exposure of the

portfolio to the yield curve at T̃i. It is the opposite of the dollar duration

d$,i(t) at time t of the portfolio with respect to the corresponding rate.

We write:

d$(t) = −


∂V

∂z(t,T̃1)
...
∂V

∂z(t,T̃n)

 (3.7)

Inserting (3.7) into (3.6) gives:

∂V

∂ ln z(t, T̃i)
= −d$i(t)z(t, T̃i) (3.8)

In turn, inserting (3.8) into equation (3.5) finally yields:

∆V = −
n∑
i=1

d$i(t)z(t, T̃i)∆ ln z(t, T̃i) (3.9)

Equation (3.9) gives a first order approximation of the variations of the

value of a bond portfolio in terms of the rates’ log-returns of a chosen number

of terms. It is then straightforward to compute the return of the portfolio:

R =
∆V

V (t)
= −

n∑
i=1

d$i(t)

V (t)
z(t, T̃i)∆ ln z(t, T̃i)

R = −
n∑
i=1

di(t)z(t, T̃i)∆ ln z(t, T̃i) (3.10)

where di(t) =
d$i

(t)

V (t) = − 1
V

∂V
∂z(t,T̃i)

are the durations in each term.

3.4 Going global

In the previous section we considered a bond portfolio in one country and

in its domestic currency. This was a very simplistic example, in most cases

a bond investor will hold a portfolio of bonds from different countries and

consequently might also invest in currencies, or simply hedge its currency

exposure. Therefore, the accessible universe of the portfolio manager has

extended from one country bonds to bonds from several countries and their

currencies.

In order to take these new opportunities into account, let us consider K

countries or monetary zones in which the portfolio manager may invest. We

will use the subscript j to refer to the j-th country (1 ≤ j ≤ K).
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Let Vj(t) be the value of the portion of the portfolio invested in the j-th

country. Vj(t) is the sum of the amount invested in country j’s bonds Vzj (t)

and the amount invested in country j’s currency cj , Vcj (t).

Vj(t) = Vzj (t) + Vcj (t) (3.11)

The previous section applies to any country’s yield curve, so for each

country in the investor’s universe we have that the change in the value of the

fraction of the portfolio invested in that country, expressed in its domestic

currency cj , is (according to (3.9) ):

∆V
cj
zj = −

nj∑
ij=1

dj$ij
(t)zj(t, T̃ij )∆ ln zj(t, T̃ij ) (3.12)

Remark that we have here used the notations ij and nj to take into

account the possibility that the number of terms and their values might

not be a constant across the different countries. For instance, we might

have Tij1 = {1m, 3m, 6m, 1y, 2y, 5y, 10y, 20y} in country j1 and Tij2 =

{3m, 6m, 1y, 3y, 7y, 10y, 30y} in country j2.

3.4.1 Conversion into the base currency

We would like to sum up the contributions of all countries to the entire

portfolio to form the expression of the variation thereof. In order for the

sums to make sense, all the values must be expressed in the same unit, that

is, we must choose a base currency in which all the values will be converted.

Let b be the chosen base currency and cj be the currency in country j.

We consider f
cj1/cj2
t the exchange rate at time t to convert one unit of cj2

into cj1. For instance, f
$/£
t is the value of one pound in dollars at time t.

It is also obvious that for any j and any t f
cj/cj
t = 1, and that in order to

satisfy no-arbitrage conditions the following cyclic condition is satisfied at

all times:

f
cj1/cj2
t f

cj2/cj3
t = f

cj1/cj3
t (3.13)

i.e. ln f
cj1/cj2
t + ln f

cj2/cj3
t = ln f

cj1/cj3
t .

For any country j (1 ≤ j ≤ K), there are two factors that contribute to

the value of the portfolio: the amount invested in country j’s bonds and the

amount invested in its currency cj . We must therefore investigate how each

factor affects the value of the portfolio.
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Figure 3.1: FX cyclic relation

Bonds Equation (3.12) expresses the change in the value of the amount

invested in country j’s bonds in its domestic currency cj . Converting this

into the base currency is straightforward, it suffices to multiply it by the

exchange rate:

∆V b
zj = −

nj∑
ij=1

f
b/cj
t dj$ij

(t)zj(t, T̃ij )∆ ln zj(t, T̃ij )

= −
nj∑
ij=1

db$ij
(t)zj(t, T̃ij )∆ ln zj(t, T̃ij ) (3.14)

where db$ij
(t) = dj$ij

(t)f
b/cj
t are now dollar durations with respect to the

base currency.

Currencies At time t, the portfolio manager invests V b
cj (t) units of b in

currency cj , thus acquiring V
cj
cj = f

cj/b
t V b

cj(t) units of currency cj . Here V
cj
cj

is written as independent of time because the number of units of currency cj

is independent of time, and so the value of the amount invested in currency

cj in units of cj is independent of time.

The value at time t+ dt of the amount invested in currency cj at time t

is then in units of the base currency:

V b
cj (t+ dt) = f

b/cj
t+dtV

cj
cj

The change in value between t and t + dt is given as before by a first
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order Taylor approximation:

∆V b
cj =

∂V b
cj

∂ ln f
b/cj
t

(t)∆ ln f
b/cj
t

=
∂V b

cj

∂f
b/cj
t

(t)f
b/cj
t ∆ ln f

b/cj
t

=
∂(f

b/cj
t V

cj
cj )

∂f
b/cj
t

f
b/cj
t ∆ ln f

b/cj
t

= V
cj
cj f

b/cj
t ∆ ln f

b/cj
t

∆V b
cj = V b

cj(t)∆ ln f
b/cj
t (3.15)

3.4.2 Adding up the contributions

We have derived the expression for the change in value of the amount in-

vested in each country j (j = 1, . . . ,K) of the investor’s universe, expressed

in the base currency:

∆V b
j = ∆V b

cj(t) + ∆V b
zj(t)

= V b
cj(t)∆ ln f

b/cj
t −

nj∑
ij=1

db$ij
(t)zj(t, T̃ij )∆ ln zj(t, T̃ij ) (3.16)

Since all these contributions are expressed in units of the base currency,

we may add them up to find the change in the value of the total portfolio:

∆V b =
K∑
j=1

∆V b
j (3.17)

3.4.3 Returns

Once we have obtained the expression for the change in the value of the

portfolio, it is easy to retrieve the returns of this portfolio in the base cur-

rency. Here again we will separate returns due to bond investment and to

currency investment.

The return perceived in the base currency for the currency investments

is:

Rbc =
1

V (t)

K∑
j=1

∆V b
cj

=

K∑
j=1

wj(t)∆ ln f
b/cj
t (3.18)
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where wj(t) is the fraction of wealth invested in currency cj at time t:

wj(t) =
V bcj (t)

V b(t)
.

Similarly, we find the return perceived in the base currency for the bonds

investments:

Rbz = −
K∑
j=1

nj∑
ij=1

dij (t)zj(t, T̃ij )∆ ln zj(t, T̃ij ) (3.19)

where (dij (t)) 1≤j≤K
1≤ij≤nj

are durations.

The total return perceived in the base currency is then:

Rb = Rbc +Rbz (3.20)

3.4.4 Practicalities

In order to apply the previous relations in practice, a few transformations

must often be made.

Calculate the equivalent zero-coupon continuously compounded

rates In all our calculations, we have used z(t, T̃ ), the zero-coupon bond

continuously compounded rate. However, in practice, quoted bonds like

treasury bonds or gilt are not zero-coupons and are not continuously com-

pounded but annualized. For instance US treasury bonds have coupon pay-

ments twice a year every six months. In order to apply our results, we

must convert all rates into equivalent zero-coupon continuously compounded

rates.

Consider at time t the discount factor for maturity at T̃ . We considered

the corresponding zero-coupon continuously compounded rate z(t, T̃ ):

P (t, T̃ ) = e−z(t,T̃ )T

Using its quoted rate r and frequency h, its value is given by:

P (t, T̃ ) =
(

1 +
r

h

)−Th
Combining these two expressions yields:

z(t, T̃ ) = h ln
(

1 +
r

h

)
(3.21)
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Converting to the base currency Practitioners often do not store ex-

change rates between all possible K currencies, for it would require storing
K(K−1)

2 time series of data when in fact, thanks to the cyclic relation (3.13),

it is only necessary to store (K−1) time series, that is, all the exchange rates

with respect to a given currency. (The K-th relation is just the exchange

rate between the reference currency and itself, which is 1 at all times)

The reference currency for storing exchange rates might not be the same

as the base currency for the portfolio. Let us assume that the reference

currency is the US dollar. The exchange rate between currencies cj1 and cj2
can be deduced from to the cyclic relation:

f
cj1/cj2
t = f

cj1/$
t f

$/cj2
t

3.4.5 Covariance matrix and change of numeraire

Motivations

This section finds its motivations on the same grounds as the previous para-

graph. For portfolio optimization processes and many other daily opera-

tions, it is necessary to calculate the covariance matrix of the assets’ log-

returns in the manager’s universe. This task requires time and is numerically

expensive since it requires extracting the time series of each of the assets

and calculating pairwise covariances. Furthermore, the portfolio manager

might handle accounts in different base currencies, so for each account, they

would have to calculate that covariance matrix in the corresponding base

currencies.

A sound question is then to ask whether it is possible to avoid too many

tedious calculations, and given the covariance matrix in one specific refer-

ence currency, recover the covariance matrix in any other base currency via

a simple transformation. This would enable the manager to calculate the

covariance matrix only once every day and spare some computational time.

We will first derive a method in the case where the only assets are foreign

currencies which will be easily extended in order to include foreign bonds.

Starting Point

As we mentioned, the reference currency used to quote exchange rates is

often the US Dollar. We will assume this in our case for illustration purposes.

Under this assumption, the exchange rates are quoted as the amount of USD
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that can be purchased with 1 unit of foreign currency. Thus, if we consider

K countries in which we may invest (including the USA for simplicity), we

are given (K − 1) time series:
(
f

$/cj
t

)
1≤j≤K−1

.

Our starting point is the covariance matrix of the log-returns of these

exchange rates:



∆ ln f$/c1 ∆ ln f$/c2 . . . ∆ ln f$/cK−1

∆ ln f$/c1 C1,1 C1,2 . . . C1,K−1

∆ ln f$/c2 C2,1 C2,2 . . . C2,K−1
...

...
...

. . .
...

∆ ln f$/cK−1 CK−1,1 . . . . . . CK−1,K−1

 = C

Where we have written Ci,j = cov(f$/ci , f$/cj ), (i, j = 1, . . . ,K − 1).

Of course, we have that Ci,i = cov(f$/ci , f$/ci) = var(f$/ci) and that

Ci,j = Cj,i.

Algebraic structure

Let us consider E the R-vector space span by the log-returns of all the

possible exchange rates:

E = vect
{

∆ ln f ci/cj , i, j = 1, . . . ,K
}

We know that given a base currency b, any vector ∆ ln f ci/cj can be

written as a linear combination of the K − 1 vectors
(
∆ ln f b/cj

)
1≤j≤K−1

:

∆ ln(f ci/cj ) = ∆ ln(f ci/bf b/cj )

= ∆ ln(f b/cj )−∆ ln(f b/ci)

This shows that dimE ≤ K − 1. In fact it is easy to see that dimE =

K − 1. So any free family of K − 1 log-returns of exchange rates forms a

base of E. There are some bases worth being noticed, these are the bases

constructed from the log-returns of all the exchange rates relative to one

particular currency. For instance we associate to any currency b the base of

E, Bb, given by:

Bb =
{

∆ ln(f b/ci), i = 1, . . . ,K and ci 6= b
}

(3.22)

Now, given any two vectors u and v belonging to E, we may consider

the form φ that returns their covariance:

φ : E × E −→ R
u, v 7−→ φ(u, v) = cov(u, v)
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Furthermore, using the properties of the covariance, we have that:

• ∀(u, v) ∈ E2, φ(u, v) = φ(v, u)

• ∀(u, v, w) ∈ E3, φ(u+ w, v) = φ(u, v) + φ(w, v)

• ∀(u, v) ∈ E2,∀λ ∈ R, φ(λu, v) = λφ(u, v)

• ∀u ∈ E, φ(u, u) = var(u) ≥ 0

These properties show that φ is in fact a bilinear symmetric positive form

on E - the associated quadratic form being the variance. Given a base of

E, B = {ei, i = 1, . . . ,K − 1}, we may look at the matrix representation

of φ:

V B = (φ(ei, ej))1≤i≤K−1
1≤j≤K−1

.

Moreover, given another base of E, B′, and the transition matrix from

B to B′, P , the matrix representation of φ in B′ is:

V B
′

= P tV BP (3.23)

When B = Bb, we will write V B
b

= V b for simplicity.

Solution to the problem

We may now return to our problem and realize that in fact our original

matrix C turns out to be V $, and that our problem is to transform V $ into

V b, where b is our desired base currency. According to equation (3.23) this

problem comes down to finding the transition matrix from B$ to Bb.

In order to find the transition matrix from B$ to Bb, all we need to do

is write down the vectors of Bb as linear combinations of the vectors of B$,

for a transition matrix contains the coordinates of the new base in the old

base.

The old base is:

B$ =
{

∆ ln f$/c1 ,∆ ln f$/c2 , . . . ,∆ ln f$/b, . . . ,∆ ln f$/cK−1

}
whereas the new base is:

Bb =
{

∆ ln f b/c1 ,∆ ln f b/c2 , . . . ,∆ ln f b/$, . . . ,∆ ln f b/cK−1

}
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Figure 3.2: Covariance matrix’ change of base

For any currency ci, i = 1, . . . ,K − 1, we have:

∆ ln f b/ci = ∆ ln(f b/$f$/ci)

= ∆ ln f$/ci −∆ ln f$/b

We easily deduce the transition matrix from these relations:



∆ ln f b/c1 ∆ ln f b/c2 . . . ∆ ln f b/$ . . . ∆ ln f b/cK−1

∆ ln f$/c1 1

∆ ln f$/c2 1
... 1

∆ ln f$/b −1 −1 −1 −1 −1 −1
... 1

∆ ln f$/cK−1 1


= P

Therefore, the covariance matrix of the log-returns of the exchange rates

in the base currency b is simply:

V b = P TV $P

= P TCP

Extension

The result we have derived above is only valid in the case where the assets

only consist of foreign currencies, but our framework also includes foreign

bonds. The formulae we have found in sections (3.4.2) and (3.4.3) show

that we need to calculate covariances between the log-returns of the foreign

exchange rates and of the bond yield rates. Thankfully, the latter do not

depend on foreign exchange rates so incorporating them is quite simple.
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The original covariance matrix we deal with has the form:

Σ$ =

(
C F

F T G

)

where C is as above the covariance matrix of the log-returns of the foreign

exchange rates and G is the covariance matrix of the log-returns of the

bonds’ yield rates.

Here we consider the R-vector space E′ which is span by E and the log-

returns of the bond yield rates. Since the log-returns of the bonds’ yield

rates are independent of the exchange rates, the transition matrix Q from

the “dollar base” of E′ to the new base currency base is just:

Q =

(
P 0

0 I

)

where P is as above and I is the identity matrix.

The covariance matrix in the base currency b is then:

Σb = QTΣ$Q (3.24)

3.5 Inflation-linked Bonds

We now throw in our manager’s universe inflation-linked bonds. Inflation-

linked bonds bear great similarities with conventional bonds in that they

pay interest at fixed intervals and return the principal at maturity. However,

unlike those bonds, the principal is adjusted each time on the general price

inflation.

If we write N the principal, α the interest rate payed by the bond,

(T̃1, . . . , T̃n) the fixed term dates, i(t, T̃j) the continuously compounded in-

flation rate between t and T̃j ; the present value of such a bond is:

V =

n∑
j=1

α
(
Nei(t,T̃j)Tj

)
e−z(t,T̃j)Tj +

(
Nei(t,T̃n)Tn

)
e−z(t,T̃n)Tn

Let us now consider a simple zero-coupon inflation-linked bond maturing

at T̃ . Its present value is simply:

V = ei(t,T̃ )T e−z(t,T̃ )T
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Assuming the nominal rate z(t, T̃ ) remains constant, we find the duration

of this bond with respect to the inflation rate:

− 1

V

∂V

∂i
= −i(t, T̃ )T

d = −i(t, T̃ )T ≤ 0

We see here that while most conventional bonds have a positive dura-

tion (with respect to nominal interest rates), inflation-linked bonds on the

contrary have a negative duration (with respect to inflation rates). This is

understandable for when nominal interest rates go up, the value of a conven-

tional bond goes down; but inversely, when the value of inflation rates go up

(while maintaining a constant nominal rate), the value of an inflation-linked

bond goes up as well.

Applying the exact same reasoning to the inflation curves as the one

applied to the yield curves, we find that the return in the base currency b

from investing in L countries’ inflation curves is:

Rbi = +
L∑
j=1

mj∑
lj=1

dlj (t)ij(t, T̃lj )∆ ln ij(t, T̃lj ) (3.25)

Note that we have stressed the difference with the return from a conven-

tional bond portfolio by explicitly writing the “+” sign.

3.6 Optimization Objective

Let us consider the problem of optimizing a portfolio formed of currencies,

conventional bonds and inflation-linked bonds over a one period interval.

We consider a manager who aims at maximizing the return of their portfolio

with respect to a benchmark, over the period spanning from t to t+ 1. We

drop the time index in our notations for clarity and simplicity since they

can be inferred.

Optimization function Using the previous notations, the return of the

portfolio in the base currency is:

Rb = Rbc +Rbz +Rbi

where Rbc is the return from investing in currencies, Rbz the return from

investing in the yield curves and Rbi the return from investing in the inflation

curves.
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According to equations (3.18), (3.19) and (3.25), the manager must max-

imize the following function:

Rb =
K∑
i=1

wa
j∆ ln f b/cj −

∑
1≤j≤K
1≤ij≤nj

daijzj(T̃ij )∆ ln zj(T̃ij ) (3.26)

+
∑

1≤j≤L
1≤lj≤mj

dalj ij(T̃lj )∆ ln ij(T̃lj )

where da and wa are active durations and active weights respectively.

The problem faced by the manager can therefore be written as:

arg max
wa,da

Rb(wa,da) (3.27)

s.t. constraints

Constraints One constraint of particular interest in an active manage-

ment setting will be a tracking error constraint defined as:

(wada)K$

(
wa

da

)
≤ α2

where we have “stacked” the vectors of active weights and active durations.

K$is the covariance matrix as defined in (3.4.5) and α the imposed tracking

error upper bound.

Another constraint we may consider is bounding the active duration of

the portfolio, so that:

l ≤ 1Tda ≤ u

where l and u are lower and upper bounds respectively and 1 is a vector of

1s.

Inputs The inputs in the optimization problem are the manager’s views

on the movements of the exchange rates, yield and inflation curves. These

views will be translated into expected alphas for each investment strategy

through the Black-Litterman model developed in the first chapters.

Results As shown in (3.27), the outputs of the optimization procedure are

active weights in the foreign currencies and active durations in the interest

rate and inflation-linked bonds.

62



Fixed-Income Portfolio Optimization Views and Strategies

3.7 Views and Strategies

In order to actively manage their portfolio, the manager must state views

on currencies, yield curves and inflation curves.

Currencies The views on the currencies are rather simple, they are ex-

pressed in a Bullish/Bearish form. We allow more precise opinions such

as “very bearish” or “lightly bullish”. Depending on the strength of the

opinion, a higher or lower Information Coefficient will be given to it.

Yield Curves We have modeled the yield curves as a function of a few

selected term rates. The manager’s views must thus be expressed as linear

combinations of these term rates. We select three particular terms’ rates

which we will use in order to state the views: 2 years, 10 years and 30 years.

Using these terms, we will allow three different strategies as detailed below.

Duration The manager may express an opinion on a duration strategy.

This corresponds to expressing an opinion on the level of the yield curve.

For instance, if the manager believes the level of the yield curve is going

to rise, then they will want to short duration, and hence express a bearish

opinion on the duration.
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Figure 3.3: Bearish view on duration

2s-10s A view on the 2s-10s is a view on the slope of the yield curve be-

tween the 2 year and 10 year terms. It is expressed in a Steepening/Flattening

form. If the manager expects the slope of the yield curve to steepen between

the 2 year and 10 year terms, then the strategy is to buy the 2 year bond
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and sell the 10 year bond. Consequently, duration in the 2 year bond will

increase whereas duration in the 10 year bond will decrease, which should

lead to an overall increase of the duration of the portfolio.
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Figure 3.4: Steepening view on the 2s-10s

10s-30s Similarly to the 2s-10s, a view on the 10s-30s is a view on

the slope of the yield curve between the 10 year and 30 year terms. It is

expressed in a Steepening/Flattening form. If the manager expects the slope

of the yield curve to flatten between the 10 year and 30 year terms, then

the strategy is to buy the 30 year bond and sell the 10 year bond.
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Figure 3.5: Flattening view on the 10s-30s

Inflation We only consider the 10 year inflation-linked bond which we

assume to account for changes in the level of the inflation curve. The man-

ager expresses their views in a Higher/Lower form. For instance if they
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believe that the inflation is going to rise, then they will want to long the

inflation-linked bond, and hence increase duration in the bond.

3.8 Worked Examples

3.8.1 Universe and Methodology

We are going to apply the established framework to a fixed-income port-

folio constituted of currencies, bonds and inflation-linked bonds from the

following countries:

Monetary Zone Currency 2y Bond 10y Bond 30y Bond Inflation

Australia AUD × × ×
Canada CAD × × ×

Switzerland CHF × × ×
Denmark DKK × × ×
Eurozone EUR × × × ×

UK GBP × × × ×
Hong Kong HKD × × ×

Japan JPY × × ×
Norway NOK × × ×

New Zealand NZD × × ×
Sweden SEK × × ×

USA USD × × × ×

Table 3.1: Benchmark Universe

The portfolio manager expresses their views on the different strategies

outlined in the previous section. These views are independent of any base

currency and stated with respect to the benchmark, so that we are able to

use them for any portfolio. The procedure is then to calculate the covari-

ance matrix of the log-returns of the managed assets and apply the active

framework developed in Chapter 2 and summarized in section 2.5.2.

3.8.2 Views

We consider the more simple way of expressing views which only allows two

states: bearish or bullish, steepening or flattening and higher or lower. The

manager has the following views:
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Monetary Zone Duration 2s10s 10s30s Inflation Currency

Australia Bearish Bullish

Canada Bearish Steepening

Switzerland Steepening

Denmark

Eurozone Bullish Flattening Flattening Higher Bullish

UK Bearish Steepening Higher Bearish

Hong Kong Flattening

Japan Bearish

Norway Steepening Bullish

New Zealand

Sweden Bullish Flattening

USA Bearish Lower

Table 3.2: Manager’s views

When no view is stated, it means that the manager has a neutral view

on that strategy.

3.8.3 Results

Parameters We assume a breadth of 1 and since all views are equally

strong, they are all given an Information Coefficient of 0.2. We also use a

historical covariance matrix.

Constraint We impose a risk budget constraint by setting a limit ex-ante

tracking error not to be overcome. In the example case we set it to 100 bps.

We also impose a self-financing constraint, which means the changes made

to the cash positions in the different currencies must sum up to 0.

Results We present the results in a more practical way. We give the active

weights to be taken in the currencies, the durations in the 2s10s, 10s30s and

inflation strategies, and the total duration in each monetary zone (excluding

inflation). We recall that the active weights are dimensionless whereas the

durations have the dimension of time (expressed in years).

The results1 for a USD-based investor are presented in Table 3.3

1calculated on 11 September 2009
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Monetary Zone Total Duration 2s10s 10s30s Inflation Currency

Australia -0.180 1.49%

Canada -0.496 0.139

Switzerland 0.053 0.053

Denmark

Eurozone 0.200 -0.667 -0.136 0.326 2.60%

UK -0.623 0.080 0.285 -3.56%

Hong Kong -0.589 -0.589

Japan -1.94%

Norway 0.141 0.141 1.41%

New Zealand

Sweden 0.580 -0.128

USA -0.358 -0.301

Table 3.3: Results USD-based

We also present the Percentage Contribution to Tracking Error of each

strategy in Figure 3.6, in the USD-based scenario. We see that the risk is

fairly evenly distributed, which is what we expected since we gave the same

Information Coefficient to all strategies.

Figure 3.6: PCTEs of the results (USD-based)

We may investigate a case where we want to invest more in currencies

than in bonds and hence take more risk in the former. A simple way to do

this is to yield a greater IC to currency strategies. In Figure 3.7 we present

the results obtained giving an IC of 0.3 to currency strategies and leaving

0.2 to the others. In that case we do observe a greater risk in currencies

while still well spread.
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Figure 3.7: PCTEs of the results with different ICs (USD-based)

3.8.4 Refining the views

Methodology

The results in the previous section were derived using a simple expression

of the views where they all had the same strength. This is obviously very

simplistic, a manager’s views will probably not be equally strong, they will

prefer some assets more than others and will thus be willing to take more

risk in the former.

View Strength Scaler IC

Strong 1.5 0.3

Moderate 1 0.2

Light 0.5 0.1

Neutral 0 0

Table 3.4: IC per View

To that end, we allow the manager to express their views along a more

detailed ladder such as: very bearish, moderately bearish, lightly bearish,

neutral, lightly bullish, moderately bullish and very bullish. Depending on

the strength of their opinion, we will yield a more or less important IC to

the corresponding strategy.

A simple way to achieve this is to use a scaling scheme: the moderate

views will serve as neutral points, with a scaling factor of 1, the strong views

will have a scaling factor of 1.5, the light views a scaling factor of 0.5 and

finally the neutral views will have a scaling factor of 0. Consistently with the

previous section, we yield an Information Coefficient of 0.2 to the moderate

views. Consequently, the strong views will have an IC of 0.3, the light views
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an IC of 0.1 and the neutral views an IC of 0.

Results

The manager then refines the views expressed in Table 3.2 according to

Table 3.5.

Monetary Zone Duration 2s10s 10s30s Inflation Currency

Australia Very Bearish Lightly Bullish

Canada Lightly Bearish Moderately Steepening

Switzerland Moderately Steepening

Denmark

Eurozone Very Bullish Very Flattening Lightly Flattening Moderately Higher Very Bullish

UK Very Bearish Very Steepening Moderately Higher Very Bearish

Hong Kong Moderately Flattening

Japan Moderately Bearish

Norway Very Steepening Moderately Bullish

New Zealand

Sweden Moderately Bullish Lightly Flattening

USA Lightly Bearish Much Lower

Table 3.5: Manager’s refined views

We have now used all the possible strength for the views. We could con-

tinue on refining the views and allowing more and more precise specifications

of their strength but since the views are expressed only in a qualitative way

and given the relatively small number of possible strategies, we believe this

is sufficient.

We present the results in Figure 3.8 along with those obtained in sec-

tion 3.8.3 to see how they have been affected. We observe that the positions

have moved according to our refining of the views, stronger positions where

we have expressed stronger views and lighter positions where we have ex-

pressed lighter views.

We can check on Figure 3.9 which presents the PCTEs of each strategy in

this new scenario that the level of risk undertaken in each strategy is indeed

proportional to the strength of the corresponding views. Furthermore, we

see that strategies with the same level of strength contribute to the overall

risk at a similar amount, which ensures a good repartition of risk. This well-

balanced distribution of risk is one of the strengths of the Black-Litterman
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Figure 3.8: Refined views’ active positions
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model.

Figure 3.9: Refined views’ PCTEs (USD-based)

However, a closer look at Figure 3.9 reveals that some of the strategies

seem to have experienced a “downgrade” in the strength of the corresponding

views, namely the EUR duration and GBP duration strategies. The answer

to this observation lies in the use of the analysis of the views as presented

in section 2.6.1. Indeed, looking at the correlation of the EUR and GBP

duration strategies, we see that they exhibit a strong correlation of 0.75.

In spite of their high correlation we have stated contradictory views, very

bullish in EUR duration and very bearish in GBP duration. The Black-

Litterman takes into account this inconsistency and tries to correct it for

we know that the Black-Litterman model can be interpreted as a distance

minimizer. As a consequence the opportunities perceived in each strategy

(their alphas), are going to be dampened to reflect this inconsistency, which

explains our observation.

3.8.5 Independence of the allocations relatively to the base

currency

All the results we have presented in the previous section were results calcu-

lated for a USD-based portfolio. Naturally, we may ask ourselves whether

the allocations we have derived are going to be modified if the base currency

is changed.
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In this section we will show that under a self-financing constraint, the

optimal active allocations of the portfolio are independent of the chosen

base-currency, which will enable us to derive the results in a convenient

currency and avoid some troublesome transformations.

Universe We recall that the universe we deal with is constituted of cur-

rencies and bonds. We thus consider:

• n currencies + USD

• m bonds (rates (zj)1≤j≤m)

Covariance matrix We keep similar notations to section 3.4.5 with a few

additional changes. We consider the covariance matrix of the log-returns of

the FX rates relative to the USD and the log-returns of the bond’s rates:

Σ$ =

(
C F

F T G

)

where

• C is an (n+ 1)× (n+ 1) matrix (covariance matrix of the log-returns

of the FX rates):



$/$ $/c1 . . . $/cn

$/$ 0 0 . . . 0

$/c1 0 σ11 . . . σ1n
... 0

...
...

...

$/cn 0 σ1n . . . σnn


• G is an m × m matrix (covariance matrix of the log-returns of the

bond rates):



z1 z2 . . . zm

z1 g11 g12 . . . g1n

z2 g12 g22 . . . g2n
...

...
...

...
...

zm g1n g2n . . . gnn


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• F is an (n + 1) × m matrix (covariance matrix of the log-returns of

the FX rates vs log-returns of the bonds rates):



z1 z2 . . . zm

$/$ 0 0 . . . 0

$/c1 f11 f12 . . . f1n
...

...
...

...
...

$/cn f1n f2n . . . fnn


Transition matrix We find the transition matrix from the dollar-based

universe to the ci-based universe in the same fashion as in section 3.4.5:

Q$→ci =

(
P i 0

0 Im

)

where

P i =



$ ci

$ 0 0 . . . 0 0 0 . . . 0

0 1 0 0 0 . . . 0
...

. . .
...

...
...

...

0 . . . . . . 1 0 0 . . . 0

ci −1 −1 . . . −1 0 −1 . . . −1

0 . . . 0 0 1 0
...

...
. . .

...

0 . . . 0 . . . . . . 1


and Im is the m×m identity matrix.

Expected alphas Let α$ be the vector of expected alphas dollar-based.

When switching to a ci-based universe, the expected alphas resulting from

investments in the bonds remain unchanged, whereas the alphas resulting

from investments in the currencies experience a translation of −αi, where

−αi is the expected alpha of currency ci for a USD-based investor.
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α$ =



$ 0

c1 α1
...

...

ci αi
...

...

cn αn

z1 αz1
...

...

zm αzm


ci-based, the expected alphas become:

αci =



$ −αi
c1 α1 − αi
...

...

ci 0
...

...

cn αn − αi
z1 αz1
...

...

zm αzm


= α$ −



αi

αi
...

αi
...

αi

0
...

0


Optimization problem Our objective is to maximize the expected al-

pha of the portfolio with a tracking error constraint and a self-financing

constraint. The optimization problem dollar-based writes:

arg max
w

wTα$

s.t. wTΣ$w ≤ κ2

n∑
i=0

wi = 0

ci-based, it becomes:

arg max
w

wTαci

s.t. wTΣciw ≤ κ2

n∑
i=0

wi = 0
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Equivalence of the problems We now show that both problems are

in fact equivalent. In order to achieve that, we prove that the function to

maximize as well as the constraints are equivalent.

•

wTαci = wTα$ − αi
n∑
i=0

wi

= wTα$

So the functions to be maximized are the same in both cases.

• Furthermore:

wTΣciw = wT (QTΣ$Q)w

= (Qw)TΣ$(Qw)

and

Qw =



0

w1

...

wi−1

−
∑n

j=0
j 6=i

wj

wi+1

...

wn+m


= w −



w0

0

...

...

0


:= w −w0

where we have used that −
∑n

j=0
j 6=i

wj = wi by the self-financing condi-

tion. Since Σ$w0 = 0n+1, we find that

wTΣciw = wTΣ$w − 2wTΣ$w0 +wT
0 Σ$w0 = wTΣ$w

So the constraint conditions are equivalent as well.

Conclusion We have showed in this section that under a self-financing

constraint, the optimal allocations for a given vector of expected alphas in

a reference currency are independent of the portfolio base currency. This

enables to optimize the portfolio allocations in any convenient base currency

(in particular USD).
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3.8.6 Changes in the risk contributions

In the previous section we have showed that under a self-financing constraint,

the optimal allocations are independent of the base currency. However,

the risk contributions of each strategy may change, in particular the risk

undertaken in any base currency is null. The purpose of this section is

to investigate the redistribution of the PCTEs when switching from one

currency to another.

Let us assume that we have solved the optimization problem for a USD-

based investor. According to section 2.6.2, we may derive the MCTEs and

PCTEs using equations 2.15 and 2.18:

MCTE$ =
Σ$wa

σa

PCTE$
j =

wajMCTE$
j

σa

Since the optimal allocations are independent of the base currency, the

optimal allocations for a currency ci-based investor are wa as well. The

corresponding MCTEs and PCTEs are:

MCTEci =
Σciwa

σa

PCTEci
j =

wajMCTEci
j

σa

But Σciwa = QTΣ$Qwa, and we have seen in the previous section that

Σ$Qwa = Σ$wa. Consequently:

MCTEci =
QTΣ$wa

σa

= QTMCTE$
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Next,

MCTEci = QTMCTE$ =



$ −MCTE$
i

c1 MCTE$
1 −MCTE$

i
...

...

ci 0
...

...

cn MCTE$
n −MCTE$

i

z1 MCTE$
z1

...
...

zm MCTE$
zm


We then deduce the PCTEs:

PCTEci =
wajMCTEci

j

σa
=



$ −wa0MCTE$
i

σa

c1 PCTE$
1 −

wa1MCTE$
i

σa
...

...

ci 0
...

...

cn PCTE$
n −−

wanMCTE$
i

σa

z1 PCTE$
z1

...
...

zm PCTE$
zm



(3.28)

Conclusion We see in equation 3.28 that the PCTEs of the bond invest-

ments remain unchanged when switching the base currency, whereas there

is a redistribution of the risk within the currencies.

This was to be expected: if we have a neutral view on the USD and are

lightly bearish GBP and lightly bullish EUR, from a GBP perspective we

become moderately bullish EUR, and the perceived undertaken risk should

hence be greater.

Example We use the same set of views as in section 2.7. Figure 3.10

recalls the PCTEs we found for a USD-based investor.

Figure 3.11 on the other hand shows how these values change when we

choose the Japanese Yen as our base currency.
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Figure 3.10: PCTEs (USD-based)

Figure 3.11: PCTEs (Yen-based)

78



Fixed-Income Portfolio Optimization Worked Examples

We see that the risks undertaken in EUR, AUD and NOK are perceived

as more important for a Yen-based investor. This comes from the fact that

we expressed a moderately bearish view on the Yen and a moderately bullish

view on the EUR, AUD and NOK; so from a Yen-based point of view, these

views are actually strong. Similarly, the view on the GBP is equal to that

on the Yen, which enables for diversification. Those two currencies are used

to invest in the bullish currencies; stating that the GBP will have a similar

performance to the Yen allows to diversify the risk in the short positions,

which explains the negative PCTE of the GBP.

3.8.7 Discussion of the results

Now that we have constructed an optimization framework that produces

seemingly good results, we may want to conduct an ex-post analysis thereof

and check their consistency.

At first glance, it seems that although the size of the currency positions

are sensible, the duration positions are higher - in absolute terms - than

what would be expected.
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Figure 3.12: 2 year and 30 year EUR rates
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We believe an explanation for this phenomenon lies in the fact that

due to the historically low interest rates we deal with, the log-normality

assumption of the interest rates can no longer be trusted. This highlights

one of the limitations of the Black-Litterman model which is the necessity

of making assumptions on the distribution of the returns.

Since we make a log-normal assumption on the returns of the interest

rates, we must divide by the current interest rates to retrieve the duration

positions (see formula 3.19), and given their current extremely low values,

the resulting durations shoot up.

In order to circumvent this undesired problem, we suggest to transform

the lower rates which are the ones most affected during crises. Indeed,

during difficult times, shorter term rates tend to be lowered while long-term

rates remain more steady (Figure 3.12). We therefore want to pass the rates

through a “filter” which would pull up lower rates and leave unchanged

higher rates.

This method is almost purely empirical and the way we choose to conduct

it is to apply a function that would resemble an exponential in the lower

rates and which would then continuously and smoothly reconnect with the

y(x) = x function. We choose the value of this function to be 2% at 0 and

the connection to be made at 3.5%. The function is thus of the form:

y(x) =

{
AeBx + C if 0 ≤ x < 3.5%

x if x ≥ 3.5%
(3.29)

where A, B and C are constants calculated in appendix C.1. This trans-

forming function is plotted in Figure 3.13.

Figure 3.13: Transforming function

Equipped with new values for the current rates obtained passing the

rates through the transforming functions, we retrieve new active duration
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positions - the currency positions remain unchanged. The new positions are

represented in Figure 3.14 along with the former positions from our main

example (Table 3.2).

Figure 3.14: Duration positions after modification of the rates

We observe that using the transforming function achieves its objective,

that is reducing the active duration positions. Given its empirical nature,

the use of this method must therefore be conducted after careful analysis

of the original outputs. Some important fine-tuning might be necessary in

order for this method to be fully satisfactory.
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Chapter 4

Covariance Matrix: a state

dependent model

4.1 Introduction

As we have already stressed it, the covariance matrix holds a key role in

the portfolio optimization process, and in the Black-Litterman model in

particular. In the traditional mean-variance problem, risk is associated to

the volatility of the assets which is captured, along with their correlations,

by the covariance matrix of their log-returns. Estimating it is thus of utmost

importance. Typically, it will be computed using data covering a wide range

of time in order to provide with consistent data. This procedure gives an

equal weight to all the sample observations of the returns, which might be

satisfactory in a long term horizon or in times of great stability, but in times

of turbulence or financial crisis it might not be representative of the market

behaviour anymore and lead to wrongful investments. Consequently, many

authors have discussed the appropriate ways to calculate the covariance

matrix, we cite Litterman and Winkelmann in [LW98] in particular who

discuss several ways of calculating the covariance matrix, presenting a range

of possibilities.

4.2 State Model

In an attempt to remedy the problem, Chow, Jacquier, Kritzman and Lowry

[CJKL99] and in a subsequent paper Kritzman, Lowry and Van Royen

[KLVR01] suggested a new method to estimate the covariance matrix. It is

based on a state model of the market, which is characterized as either in a
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normal or perturbed state. Using this assumption as a starting point, the

estimation of a covariance matrix ΣQ during quiet or unperturbed times

and a covariance matrix ΣP during troubled or perturbed times yields an

expression for the actual covariance matrix at time t:

Σt = γtΣP + (1− γt)ΣQ (4.1)

where γt is at time t the probability of falling in the perturbed state.

In order to apply this method, we must therefore specify the unknown

parameters of the model: ΣP , ΣQ and the probability of falling into the

perturbed state γt. Given all these parameters, we will be able to calculate

Σt.

The problem then breaks down into two subordinate problems. The first

is to find a way to estimate and separate the two states in order to calculate

ΣP and ΣQ, and the second is to evaluate γt, the probability of falling into

the perturbed state.

We fill focus on the first problem and present a method to separate states

and some results as to how they affect the active allocations of the portfolio.

4.3 Characterizing states

4.3.1 Principle

We assumed the existence of a quiet and a perturbed state but we have not

given a proper sense to what these terms refer to. While it is sometimes

obvious from market observations whether we find ourselves in one or the

other state, we need to establish a way to link the data to a corresponding

state. We need to ask ourselves what characterizes and differentiates market

states.

Perturbed times are characterized by great changes in returns of the

assets as well as in their variance and covariances, which is the very reason

why they make portfolio optimization problems more complicated since we

cannot rely on previous covariance matrices.

We would like to find a value that would incorporate precisely these

changes and would quantify how far away from quiet times we find our-

selves at a particular time. Such a variable can be found in the Mahalanobis

distance.
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We consider over the discrete time horizon t0, t1, . . . , tn a time dependent

n × 1 vector yt containing the log-returns at time t of n different assets or

indices. Let ȳ be the mean of yt over this period and Σ be its covariance

matrix. The Mahalanobis distance dt at time t associated to yt is defined

as:

d2
t = (yt − ȳ)T Σ−1 (yt − ȳ) (4.2)

For multivariate variables, the square of the Mahalanobis distance ap-

proximately follows a chi-square distribution with n degrees of freedoms.

Since we assume log-normality of the returns, yt is indeed multivariate.

Therefore, we may assign a probability to each value dt thanks to the cu-

mulative probability function of the chi-square function:

P(dt) = 1− Fχ2(d2
t , n) (4.3)

where Fχ2(, n) is the cumulative probability function of the chi-square func-

tion with n degrees of freedom. Thus we may fix a probability threshold

and find the corresponding distance d0. Then all the dates with dt > d0 will

be classified as perturbed market dates and the dates such that dt ≤ d0 will

be classified as quiet market dates. The frontier drawn by all the possible

vectors with a Mahalanobis distance equal to d0 will represent the limit be-

tween both states.

Let us consider an over-simplified example where yext is a 2× 1 vector of

normal random variables with covariance matrix Σex and mean ȳex.

Σex =

(
σ1 σ1,2

σ1,2 σ2

)
ȳex =

(
ȳ1

ȳ2

)
We simulate 50 realizations of yex and plot them along with the frontier

corresponding to a probability of P(d) = 0.8 in Figure 4.11.

The points outside the ellipse representing the probability threshold

are considered to be outliers and would correspond to the perturbed state

whereas the points inside the ellipse would correspond to the quiet state.

In this simple example, the frontier is drawn with an ellipse, with more

variables and hence more dimensions it would be an ellipsoid.

All this previous discussion has equipped us with a means of character-

izing quiet and perturbed states with respect to a certain threshold. The

question is now to know where to set this threshold.

1σ1 = 1, σ2 = 5, σ1,2 = 1.2 ȳ1 = 2, ȳ2 = 3
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Figure 4.1: P(d) = 0.8 frontier

4.3.2 Methodology

We here present a methodology to apply the tool we found in the Ma-

halanobis distance in order to characterize the state of the market. This

methodology is as much based on theoretical results as on empirical ones.

The financial market is driven by a lot of factors. In order to characterize

its state, we must thus use a set of assets and indices which best describes the

overall activity of the market. We select a handful of time series which we

believe will reflect market drivers and provide with good indicators. These

indices are chosen to be:

FX Volatility Index We design an index in order to reflect the bigger

movements of the FX market. It is a weighted index of volatility

indices of the most important FX crosses: AUD/USD, CHF/USD,

EUR/USD, GBP/USD, JPY/USD.

VIX The CBOE Volatility Index (VIX) is a key measure of market ex-

pectations of near-term volatility conveyed by S&P 500 stock index

option prices. Since its introduction in 1993, VIX has been considered

by many to be the world’s premier barometer of investor sentiment

and market volatility.2

EMBI+ The JP Morgan Emerging Markets Bond Index Plus (EMBI+)

2Source: http://www.cboe.com/micro/vix/introduction.aspx
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tracks returns for actively traded external debt instruments in emerg-

ing market3.

CORPB Spread of BBB-rated American industries.

USSP10 US 10 year semi-annual Swap Spread. The swap spread reflects

the risk premium that is involved in a swap transaction instead of

holding risk-free government bonds.

MOVE The Merrill Option Volatility Expectations Index (MOVE) reflects

a market estimate of future Treasury bond yield volatility.

Once we have pulled out the data series for those indices, we compute

their log-returns yt and their mean vector ȳ and covariance matrix Σ in

order to compute the Mahalanobis distances between yt and ȳ according to

relation 4.2:

d2
t = (yt − ȳ)T Σ−1 (yt − ȳ)

We have applied this methodology to time series of the indices spanning

over almost 11 years, from September 1998 to August 2009. We plot dt

in Figure 4.2 and signal out the values overcoming a certain threshold. We

observe that the signal is extremely noisy. This was to be expected since even

in quiet periods, some out-of-the-ordinary trading days may occasionally

occur and inversely, quiet days may occur in perturbed times.

Figure 4.2: Raw Mahalanobis distance

In order to overcome this problem, we filter out the noise by smoothing

the data through a 30 day moving averaging. The result obtained after this

3Source: http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/

research/EMBI
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operation is a great improvement over the first attempt and we present it in

Figure 4.3.

Figure 4.3: Smoothed Mahalanobis distance

We observe in this new figure that the studied time interval is well split

in ranges of time of either high or low values of dt, with very little residual

noise. This arises from the moving averaging which yields to any date t

some of the properties of its neighbour dates. Thus, if a date t has a low

value of dt but many of its surrounding dates exhibit crisis values of their

Mahalanobis distance, the former date will probably be recast as a crisis

date. The inverse also holds.

We must though investigate whether in spite of the apparently good re-

sults we have obtained, these are indeed meaningful. To achieve that, we

try to link the perturbed states brought out by the analysis to known finan-

cial crises or periods of high activity; and conversely check whether most

important crises are picked up.

We present in Figure 4.4 a brief identification of potentially perturbed

states to known events in the financial markets. It does seem like we are

able to link financial crises and major events to the periods we have brought

out by our analysis since we are able to identify the bigger incidents which

affected the market during the last decade: Russian default and Long-Term

Capital Management (LTCM) collapse in 1998, the burst of the internet and

new technologies bubble in 2000, 9/11 and the accounting scandals of Enron

and WorldCom among others in 2001 and 2002 or the more recent subprime

and credit-crunch crises to name a few.
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Figure 4.4: Identification of crisis times

4.4 Examples

We are now able to separate perturbed periods from quiet periods and we

may therefore compute the corresponding covariance matrices ΣP and ΣQ.

Given γt, the probability of being in a perturbed state during the next

period, we retrieve a new covariance matrix Σt to be used in the optimization

process. In this section, we will present some results to investigate how this

method affects the results found in section 3.8.3.

In order to do this, we keep the same views on the market as in Table 3.2

and the same parameters (i.e. an IC of 0.2 for all strategies and a breadth

of 1).

We then solve the optimization problem for different values of γt and

present the results in Figure 4.5. We observe that in general, the active

positions exhibit a larger sensitivity to γt for low values of γt, between 0

and 0.3/0.4. For larger values of γt, there is a certain stability in the active

positions. It is also interesting to see that the positions found with the whole

historical matrix as in section 3.8.3, which are roughly found using γt ≈ 0.32

(the ratio of the number of crisis dates over the total of observed dates), are

approximately half-way between the most extreme positions corresponding

to γt = 0 and γt = 1.

Finally, we may find the results somewhat intuitive. Indeed, we see that

as γt grows, so the more weight we give to the perturbed state, the smaller
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the active positions are. This is what we would expect since in times of crisis

the assets tend to be much more volatile and hence have a larger variance.

Because the tracking error constraint remains unchanged, in order to stay

beneath that limit, we must restrain the positions, which is what we observe.

Figure 4.5: Influence of γt on the active positions
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Conclusion

We have studied how to actively manage a multi-currency fixed-income

portfolio comprising bonds, inflation-linked bonds and currencies using the

Black-Litterman model. The Black-Litterman model represents a great tool

in allocating the portfolio’s weights and is a great improvement over the

classical mean-variance optimization process developed by Markowitz more

than 50 years ago. In particular it does a great job allocating risk according

to the manager’s confidence in their views and offers a greater flexibility in

the way in which they can be expressed.

However, in spite of its many qualities and advantages over other allocat-

ing methods, the Black-Litterman model still suffers from some constraints.

The assumptions on the distribution of the returns, the parameters τ and

Ω and the imposed linearity of the expression of the views are all factors

which hinder its optimal use.

A possible way to improve some of these constraints would be to explore

further the analogy with the Kalman filter that we presented in chapter 1.

Using the advances in filtering and solutions to non-linear filtering problems

(Extended Kalman Filter, Unscented Kalman filter and Particle Filtering),

we might find ways to use the Black-Litterman model without making any

assumption regarding the distribution of the returns and relax the linear

condition on the views to allow for non-linear views. This would for instance

enable us to overcome the problem faced in section 3.8.7 where we were

handicapped by the failure of the log-normal assumption of the interest

rates.

Finally, in our discussion of the covariance matrix, we focused on how to

distinguish perturbed states from quiet states but it still remains to study

how to determine the probability of falling into a perturbed state to make the

method complete. An idea might be to look for autoregressive properties of

the Mahalanobis distance, or using Hidden Markov Chains to predict what

this value might be.
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Appendix A

Appendix to Chapter 1

A.1 Transformations in the proof of the Bayesian

approach

In section (1.4.1), we derive the Black-Litterman formula using a Bayesian

approach. There are two tedious tasks that need to be carried out:

1. Prove that (a−mtK−1m) is in fact equal to (q−PE[µ])t
(
PΣµP

t + Ω
)−1

(q−
PE[µ]), where:

K = (Σµ)−1 + P tΩ−1P

m = (Σµ)−1 E[µ] + P tΩ−1q

a = E[µ]t (Σµ)−1 E[µ] + qtΩ−1q

2. Prove that the constant we got rid of along the way does indeed trans-

form as we wish, i.e.:

|Σµ|
−1
2 |Ω|−

1
2

(2π)
n+K

2

=
|PΣµP

t + Ω|−
1
2 |P tΩ−1P + Σ−1

µ |
1
2

(2π)
n+K

2

|Ω + PΣµP
t| = |Σµ||Ω||Σ−1

µ + P tΩ−1P |

Let us prove these two points:

Proof. 1.

mtK−1m

=
(
Σ−1
µ E[µ] + P tΩ−1q

)t
K−1

(
Σ−1
µ E[µ] + P tΩ−1q

)
= E[µ]tΣ−1

µ K
−1Σ−1

µ E[µ] + qtΩ−1PK−1P tΩ−1q

+2E[µ]tΣ−1
µ K

−1P tΩ−1q
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This yields:

a−mtK−1m

= E[µ]t
(
Σ−1
µ −Σ−1

µ K
−1Σ−1

µ

)
E[µ] + qt

(
Ω−1PK−1P tΩ−1

)
q

−2E[µ]tΣ−1
µ K

−1P tΩ−1q (A.1)

We will now rearrange the terms using the Sherman-Morrison-Woodburry

formula:

Theorem A.1 (Sherman-Morrison-Woodburry formula).

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

where A, U , C and V all denote matrices of the correct size and

invertible when required in the formula.

We also write:

G = Ω + PΣµP
t

Applying the Sherman-Morrison-Woodburry formula, we find:

K−1 = Σµ −ΣµP
tG−1PΣµ

G−1 = Ω−1 −Ω−1PK−1P tΩ−1

Substituting these two equalities into (A.1):

a−mtK−1m

= (PE[µ])tG−1 (PE[µ]) + qtG−1q − 2E[µ]tΣ−1
µ K

−1P tΩ−1q

This last equality shows that the final step in the proof is establishing

that E[µ]tΣ−1
µ K

−1P tΩ−1q = (PE[µ])tG−1q, for then we will be able

to conclude that indeed:

(a−mtK−1m) = (q − PE[µ])tG−1(q − PE[µ])

We have:

Σ−1
µ K

−1P tΩ−1

=
(
I − P tG−1PΣµ

)
P tΩ−1

= P t
(
I −G−1PΣµP

t
)
Ω−1 (A.2)
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But the Sherman-Morrison-Woodburry formula applied to G−1 when

identifying UC to the identity matrix gives:

G−1 = Ω−1 −Ω−1
(
I + ΣµPΣ−1

µ P
tΩ−1

)−1
PΣµP

tΩ−1

= Ω−1 −
(
Ω + ΣµPΣ−1

µ P
t
)−1

PΣµP
tΩ−1

=
(
I −G−1PΣµP

t
)
Ω−1

which inserted into (A.2) yields:

Σ−1
µ K

−1P tΩ−1 = P tG−1

This concludes the proof.

2.

|Σµ||Ω||Σ−1
µ + P tΩ−1P | = |Ω||Σµ

(
Σ−1
µ + P tΩ−1P

)
|

= |Ω||I + (ΣµP
t)(Ω−1P )|

Sylvester’s determinant theorem states that:

Theorem A.2 (Sylvester’s determinant theorem). Let A, B be ma-

trices of size p× n and n× p respectively, then

|Ip +AB| = |In +BA|

where Ia is the identity matrix of order a.

So |In + (ΣµP
t)(Ω−1P )| = |IK + (Ω−1P )(ΣµP

t)| and:

|Σµ||Ω||Σ−1
µ + P tΩ−1P | = |Ω

(
IK + (Ω−1P )(ΣµP

t)
)
|

= |Ω + PΣµP
t|

which is the desired result.
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A.2 Rearranging of the BL formulae

We make use of the Sherman-Morrison-Woodburry formula (A.1) to reshuffle

the BL formulae. We can write (1.20) as:

µBL =
(

(τΣ)−1 + P tΩ−1P
)−1 (

(τΣ)−1 π + P tΩ−1q
)

=
(

(τΣ)− (τΣ)P t
(
P (τΣ)P t + Ω

)−1
P (τΣ)

)
(

(τΣ)−1 π + P tΩ−1q
)

= π + (τΣ)P t
(
Ω−1 −

(
P (τΣ)P t + Ω

)−1
P (τΣ)P tΩ−1

)
q

−(τΣ)P t
(
P (τΣ)P t + Ω

)−1
Pπ

it follows from the Sherman-Morrison-Woodburry formula that:(
Ω−1 −

(
P (τΣ)P t + Ω

)−1
P (τΣ)P tΩ−1

)
=
(
P (τΣ)P t + Ω

)−1

which inserted in the previous equality yields:

µBL = π + ΣP t

(
PΣP t +

Ω

τ

)−1

(q − Pπ)

Similarly, applying the Sherman-Morrison-Woodburry formula to (1.23)

gives:

Σ
µ
BL = Σ +

(
(τΣ)−1 + P tΩ−1P

)−1

= (1 + τ) Σ− τ2ΣP t
(
τPΣP t + Ω

)−1
PΣ
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Appendix to Chapter 2

B.1 Worked Example Data

The data for the worked example in section 2.7 consists of 4 years of daily

values for each of the six countries’ (Australia, Canada, France, Germany,

Japan and the United Kingdom) MSCI Barra Standard Core Index. These

values correspond to the index values (in USD) from the 27th June 2005 to

the 26th June 2009 and was downloaded from MSCI Barra website1.

The daily returns of each country and their variance/covariance matrix

were calculated in order to be used in the example. The correlation matrix

and annualized variance follow:

Country AU CA FR GE JP UK

AU 1 0.4654 0.6217 0.5889 0.6037 0.6273

CA 1 0.6673 0.6451 0.2231 0.6780

FR 1 0.9377 0.2772 0.9331

GE 1 0.2570 0.8738

JP 1 0.2704

UK 1

Variance 0.1117 0.0958 0.0866 0.0839 0.0714 0.0835

Table B.1: Data correlation matrix and annualized variance

1http://www.mscibarra.com/products/indices/stdindex/performance.html
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Appendix to Chapter 3

C.1 Constants of the transforming function

We want to find the constants A, B, C of the function y(x) = AeBx + C

subject to the conditions:

y(0) = 2%

y(3.5%) = 3.5% (continuity condition)

y′(3.5%) = 1 (smoothness condition)

i.e.:

A+ C = 2% (C.1)

Ae3.5%B + C = 3.5% continuity condition (C.2)

ABe3.5%B = 1 smoothness condition (C.3)

From C.3 we get:

A =
1

B
e−3.5%B (C.4)

Using C.2 we then retrieve:

C = 2− 1

B
e−3.5%B (C.5)

And inserting C.4 into C.1 we find the relation:

1− e−3.5%B = 1.5%B (C.6)

Numerically we find:

B ≈ 57.9 (C.7)

We then derive A and C using this value in C.4 and C.5.
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