A Superiority-Equivalence Approach to One-Sided Tests on Multiple Endpoints

in Clinical Trials

Ajit C. Tamhane and Brent R. Logan

Department of Statistics Division of Biostatistics
Northwestern University Medical College of Wisconsin
2006 Sheridan Road 8701 Watertown Plank Rd.
Evanston, IL 60208, USA Milwaukee, WI 53226, USA
E-mail: ajit@iems.northwestern.edu E-mail: blogan@mcw.edu

SuMmMARY. This paper gives a new formulation of the one-sided multivariate testing
problem. This formulation (i) is practically relevant in the context of comparing a new
treatment with a control on multiple endpoints, (ii) avoids the anomalies associated with the
likelihood ratio test that uses the traditional null hypothesis formulation, and (iii) requires
very little multiplicity adjustment. The hypotheses are formulated with the goal of showing
that the treatment is equivalent (not inferior) on all endpoints and superior on at least
one endpoint compared to the control, where thresholds for equivalence and superiority
are specified for each endpoint. The union-intersection (Roy 1953) and intersection-union
(Berger 1982) principles are employed to derive the basic test. It is shown that the critical
constants required by this test can be sharpened by a careful analysis of its size. The test is
illustrated by an example. Some extensions of the test are mentioned.
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1. Introduction

Many clinical trials are conducted to compare a treatment group with a control group



on multiple endpoints. Often, the treatment is expected to have a positive effect on all end-
points. If @ = (0y,6,,...,0,,) denotes the vector of mean differences between the treatment
group and the control group on m > 2 endpoints then the hypotheses are usually formulated
as

Hy:0=0vs. H :0 €O, (1.1)

where 0 is the null vector and O = {0]6, > 0 for 1 < k < m, 6 # 0} is the positive orthant.
Kudo6 (1963) derived an exact likelihood ratio (LR) test for this testing problem assuming
multivariate normality of the data and a common, known covariance matrix. Perlman (1969)
extended this test to the unknown covariance matrix case.

Silvapulle (1997) showed, by means of an example, that the rejection region of the LR
test is nonmonotone in that the outcomes that lie deeper in the complement of the alter-
native hypothesis region can produce more significant test statistics. Figure 1 shows the
rejection region of an LR test for two endpoints with correlation 0.9. Note that the rejection
region contains points in the negative quadrant. Perlman and Wu (2002) showed that these
undesirable properties are the result of the use of a point null hypothesis that the mean
vector is a null vector; if the complete complement of the positive orthant is used as the
null hypothesis, then the rejection region of the LR test does not have the abovementioned
undesirable properties. In particular, the rejection region is completely contained in the
alternative hypothesis region.

Cohen and Sackrowitz (1998) proposed the so-called cone-ordered monotone (COM) tests
to overcome the anomalies of the classical LR tests. The rejection region of a COM test is
shown in Figure 2. As can be seen, this rejection region also includes points that have large
negative coordinates. Therefore the COM test also will not be acceptable in practice.

In this paper we propose an alternative approach, which we believe will be appealing to
clinical researchers. When comparing a treatment group with a control group, a researcher

desires to show that the treatment is equivalent (not inferior) to the control on all end-



points and is superior on at least one endpoint, where the equivalency and superiority for
each endpoint is specified in terms of nonnegative threshold values. We formulate this ap-
proach and analyze the test procedure obtained by applying the union-intersection (UI) and
intersection-union (IU) principles of test construction due to Roy (1953) and Berger (1982),
respectively.

This approach has at least three benefits: (i) It gives the researcher a more straightforward
formulation of the decision rule for the one-sided multiple endpoint testing situation. (ii)
It avoids the anomalies associated with the likelihood ratio test that uses the traditional
null hypothesis formulation. (iii) It results in little to no multiplicity adjustment in many

practical situations.

2. Preliminaries and Notation

Consider a treatment group (group 1) and a control group (group 2) with n; and n,
patients. Suppose that on each patient m > 2 endpoints are measured. Denote the random
data vectors from group i by X,;; = (X1, Xijo, .-, Xijm), ¢ =1,2;5 =1,2,...,n;.. We
assume that the X;; are independent and identically distributed (i.i.d.) random vectors from
an m-variate normal distribution with mean vector p; = (i1, ftizs - - - » fim) and a common
covariance matrix ¥ = {0y} with og, = 07 = Var(X;x) and og = Cov(X;jk, Xjje) for
k # €. Denote the correlation matrix by R with off-diagonal entries py, = Corr(X, i, Xije) =
oke/oroe. Let @ = (04,...,0r) = py — py be the vector of mean differences between the
treatment and the control group.

For the kth endpoint, let 0, > 0 be a specified threshold for superiority and let ¢, > 0
be a specified threshold for equivalency (non-inferiority), i.e., the treatment is regarded as
superior to the control on the kth endpoint if 8, > §; and equivalent (non-inferior) to the

control if 6 > —e,. The hypotheses for showing the superiority and equivalency of the



treatment on the kth endpoint are as follows:
HY 0, <6, vs. HY 10, >0, (1<k<m)

and

HékE) : Hk S —€g VS. Hl(kE) : Gk > —€ (1 S k S m)

Let

Cs

HY =N Y, HY = B, B = | HY and B = | HYY.
k=1 k=1 k=1

k=1

Suppose the treatment is regarded as more effective than the control if it is superior on

at least one endpoint and equivalent on all others. Then the hypotheses to be tested are:
Hy=HP'\JH vs. Hy = HO N\ H". (2.1)

It is desired to test Hy at a preassigned level a. For m = 2, the regions of the parameter
space corresponding to Hy and H; are shown in Figure 3. A similar formulation was also
recently proposed by Bloch, Lai and Tubert-Bitter (2000), who used ¢, = 0 and ¢, > 0 in
line with common practice.

Note that (2.1) is a combination of union-intersection (UI) and intersection-union (IU)
testing problems. If §; = ¢, = 0 for all k then HY) = H\F) = Hy, (say) and HY) = HP) =
Hyj, (say). Thus the above hypothesis testing problem reduces to an intersection-union (IU)
testing problem: Test

HO = U Hgk VS. Hl == kﬂ Hlk-
=1

k=1

3. Simultaneous Confidence Intervals Approach

Let X, and X, be the sample means for the kth endpoint for group 1 and group 2,
respectively. Further let S?,S2,...,S2 be the pooled sample variances based on v = n; +

ny — 2 degrees of freedom (d.f.). We follow the usual convention of upper case letters for



random variables (r.v.’s) and the corresponding lower case letters for the observed values of
those random variables.

The pivotal r.v. for 6 is

1<k <m). (3.1)

Each T} is marginally ¢-distributed with v d.f. The joint distribution of (73,75, ..., T,,) is
the multivariate generalization of a bivariate ¢-distribution considered by Siddiqui (1967).
Since the joint distribution of (77, 75, ..., T,,) depends on the unknown correlation matrix
R, the exact critical constant is not available to compute simultaneous 100(1—a)% confidence
intervals on the 6. Using the Bonferroni method, conservative lower one-sided confidence

intervals are given by

1 1
0, > Ly =71 — Top — tv,a/mSk\| — + — (1 <k< m), (32)
1y Ty

where ?,q/m is the upper a/m critical point of Student’s ¢-distribution with » d.f. If all
pre > 0, which is common for multiple endpoints, then, based on Sid4k’s (1968) inequality,

1/m in the above formula.

one could use the critical point t, 4+, where a* =1 — (1 — «)
This gives a slightly sharper critical constant, but the difference is not large and we will
not distinguish between the two constants. We reject Hj if all L, > —¢; and at least one

Ly > §;. Defining the t-statistics for testing the superiority and equivalence of the treatment

on the kth endpoint by

(S) _ Tik — To.k — Oy and £ — T1.k — To.p + €k

b ko= (1 <k<m), (3.3)
sk@/l/nl—l—l/nz skq/l/nl—l—l/ng
we see that the above test is equivalent to
. (E) (S)
1g}fgnmtk > ty.a/m and max. t > tua/m- (3.4)

In fact, since all inferences follow from a single set of simultaneous confidence bounds (3.2),

one can classify all the endpoints with regard to the equivalence/superiority of the treatment



as follows: on the kth endpoint the treatment is not equivalent (inferior) if Ly < —¢p, is
equivalent but not superior if —e;, < Lj < d;, and is superior if L, > 0, for 1 < k < m, while
strongly controlling the type I familywise error rate (Hochberg and Tamhane 1987) for the
family {(Héf),HékE)) L k=1,.. .,m)}.

In the next section we show that the test (3.4) can be sharpened by applying the UT and

IU principles of test construction.

4. A Test Based on Union-Intersection (UI) and Intersection-Union

(IU) Principles

4.1 UI-IU Test

An a-level test of (2.1) derived by applying the UI and IU principles is as follows: Test
Hés) = Nig, Héf) and HéE) = Uiy, HékE) separately at level o, and reject Hj if both are
rejected. The UI test (Roy 1953) of HSS) rejects at level a using the Bonferroni approxi-
mation if max;<x<, t,(f) > tya/m- The IU test (Berger 1982) of HSE) rejects at level « if
minj<x<m t,(cE) > t,.. Notice the smaller critical constant for the equivalency test compared
to that used by the simultaneous confidence interval test (3.4).

This UI-IU test is somewhat conservative because it requires that the type I error prob-
ability be separately controlled for HSE) and Hés), which assumes the least favorable config-
uration (LFC) that one of the two hypotheses is true and the other is infinitely false. It is
possible to have HSE) true and Hés) infinitely false, e.g., we can have 0, = —¢; and 6, — oo
for ¢ # k. In fact, this is the LFC for the IU test, which requires that each equivalency
hypothesis, HékE), be tested separately at level a. However, we cannot have Hés) true and

HSE) infinitely false because if 8, < J for all £ then it cannot be simultaneously true that

) — oo for some k. This suggests that although the critical constant ¢, , for the IU test



of H(SE) cannot be reduced, it may be possible to reduce the critical constant ¢, o/, for the
UI test of Hés). From now on, we will use a general notation, ¢ and d (with d > ¢), for the
critical constants in place of ¢, , and ?, ,/,,, respectively. In the next section we investigate

how to find the smallest possible values of ¢ and d.
4.2 Sharpened Critical Constants for the UI-IU Test

4.2.1 The Type I Error Probability of the UI-IU Test and Its Supremum

Note that

o
15 = (P _ kG (1<k<m).

skr/1/ny + 1/ng

Using this relationship, the above UI-IU test can be written as

§
min tés) + kT > cand max tés) > d. (4.1)
1<k<m sgy/1/m1+1/ng I<k<m

*

For m = 2 and known oy, this rejection region is shown in Figure 4, where 9, and ¢} are
defined in (4.2).

To analytically determine the smallest possible values of ¢ and d, we first obtain an
expression for the type I error probability of the UI-IU test (4.1) in Lemma 1. Next we find
its LFC in Lemma 2.

Lemma 1: Define

Xip—Xop—0 S 2
Zyp =M 22T TR L N(0,1) and Uy = 25~y X2 (1 <k < m),
awl/n1+1/n2 Ok v
so that Z = (Zy,..., Zy) has an m-variate standard normal distribution with correlation

matrix R independently of U = (Uy,...,Uy,). Denote the p.d.f.’s of Z and U by ¢,,(z|R)

and h, ,(u|R), respectively. For 1 <k < m, let

O €k . O

e = 9 = (4.2)
O'k\/l/nl + 1/n2 g

S =

Yk
akwl/nl—l—l/ng awl/n1+1/n2



akZHZ—FEz and kaHZ—(SZ,

and 0° = (0%,....0%).

Then the type I error probability of the UI-IU test (4.1) can be written as

0= / / (0" [w) ., (u| R)du (4.3)

where

V(6" |u) :/:o /°° ¢m(z|R)dz—/d“1_bl---/cd“’"_b’" bm(z|R)dz.  (4.4)

U1 —a1 U — Qo cu]—aq U —Qom,

Proof: We have

Q = PV >c— (i +e)/Ux 1<k<m)}
—Ple— @+ 6)/U < T <d (1< k <m)}
= P{l,>c— (0 +¢)/U, (1<k<m)}
—Ple—(Op+€)/Up < Te <d = (65— 0;)/Ux (1 <k<m)},
where the T}’s are defined in (3.1) and have the multivariate ¢-distribution referred to there.

Substitute Ty = Zj/Ug. Then by conditioning on Uy = u; (1 < k < m), the above

probability can be written as

Q - /Om..-/om[P{chuk—(a;;ﬂ;;) (1<k<m)

— P{cup — (05 + €;) < Zp < dugp — (05 — 03) (1 <k <m)}] hm,(u|R)du

= [T [T (O W) (ul R)

which is the expression (4.3). O
Lemma 2: The type I error probability of the UI-IU test is maximized at one or more of

the following configurations:

LFCO = {01 = 51,...,9m = 5m} or LFCk = {gk = —Ek,gg — 00, E?é k} (1 S k S m) (45)



Proof: To find the maximum of ) with respect to (w.r.t.) 0 over Hy = HY'U {UZ‘:1 HékE)},
we take the derivatives of ¥(0*|u) (cf. (4.4)) for fixed u w.r.t. 6; o< . In particular, for

k =1, using Oa, /00 = 0by /00 = 1, we get

ov(0* o0 o
( |'U,) — / / ¢m(CU1—al,ZQ,---,Zm|R)dZ2---dzm
891‘ cua—as c

Um —Am

dUbe;) dum*bm
_ l_/ - (s — by, 20, - 2| R)d2s . . do,

U2 —a2 Um —aAm

dus—bo At —bm
+ / Om(cur — ay, 29, ..., 2| R)d2s . . . dzy,
C

cu2—as U —Qm,

= [/OO /OO ¢m(CU1—Cll,ZQ,...,Zm|R)dZQ...dZm

U2 —ao Um —Am

Cu2—as Um —Am

dus—bo AU —bm
- / Om(cur —ay, 29, ..., 2| R)dzs . . . dzy,
C

duz—ba At —bm
+ / Gm(duy — by, 29, .oy 2| R)d2o . . . dzp,

cu2—as U, — Ao,

> 0.

Thus ¥(0*|u) is increasing in each @;. Therefore ¥(0*|u) (and hence @) is maximized over
H{®) at LFCy and over HékE) at LFCy, for 1 < k£ < m. The global maximum is found by

evaluating () at each of these m + 1 LFC’s, and taking the maximum over all of them. O

« .« Opte nin
er =04+ € = ’“Uk i /mljb (1<k<m). (4.6)

Then for LFCy we get

Let

sup \II(O*|u):/COO /°° gzﬁm(z|R)dz—/du1 ---/Cd“m (2| R)dz.

OEH(S) Uy —eq Um —Em cui—ej Um —Em
0

By substituting this expression in (4.3), the corresponding maximum of the type I error

probability equals

Quaso = [+ [” Voo_/oo bRz [ [ ¢>m(z|R)dz]hm,,,(u|R)du

U —Em cul—eq Um —Em
6
= P{ min | T+ kG >cand max T, >dp. (4.7)
1<k<m Sky/1/n1 +1/ng 1<k<m
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For LFC;, (1 <k <m) we get ay = 0,by = —ey, and ay, by — oo for £ # k. So

oo oo 00 dug—e —00 —00
wpmmm:://"uj %mmu—/kk/ m/ (2| R)dz
eeHéf) cuy J—o0 —00 cuy —00 —00
= 1— D(cuy).

It follows from (4.3) that for 1 <k < m,

Quase = [ 11 = ®{cwe) iy (ue) (4.8)

= P{T,> ¢}, (4.9)

where hy,(uy) is the density function of Uy ~ (/x2/v and T, is Student’s ¢ r.v. with v d.f.
Equating Qmaxx to a, we get ¢ =1,,.

Given ¢, one can solve for d by setting (Qmax,0 = . However, the solution of this equation
requires the knowledge of the covariance matrix 3. If the d;, and ¢, are specified as multiples
of the o then only the knowledge of the correlation matrix R is required. We will first study

the behavior of solution d in the asymptotic (v — oc) case.

4.2.2 The Asymptotic (v — oc) Case

For v — oo, U, — 1 for all £ with probability 1, and hence cup — ¢ and duy — d. In
that case, (4.7) becomes
Qmaxo = P {lg}clilm(Zk + ex) > ¢ and lrgr}cagn 7 > d} (4.10)
0 o0 d d
= [ [ bu@Rz = [ [ ba(zIR)dz, (41)
c—eq c—em c—eq c—em
and (4.9) becomes
Qmax,k =1- (I)(C) (1 <k< m)

To make Quaxr = « for 1 < k < m, we choose ¢ = z, (the upper « critical point of the
standard normal distribution) analogous to the small sample choice of ¢ = t,,. Next, we

address the question of how to choose d > c.
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Lemma 3 shows that if the ej, are “large” then d = 2, g ,, which is its largest value (that
required by the UI test of the hypothesis Hés)). Lemma 4 shows that if the e, are “small”
and the endpoints are independent then d = z,, which is its smallest value (that required
by the IU test of the hypothesis HSE)).

Lemma 3: If ¢, = d; + ¢; — oo for all k£ then d = z,, g ,, the upper « critical point of
maxi<k<m Lk, Where Z = (Zy,..., Z,) has an m-variate standard normal distribution with

correlation matrix R. If R is completely unknown then a conservative choice is d = z4/m.

Proof: For ¢, — oo (1 <k < 'm), we get

Qo = 1 — /‘; . ./doo bm(z|R)dz = 1 — P{max(Zy,..., Zm) < dJ.

Setting the above equal to a gives d = 2, g ,- By the Bonferroni inequality, the conservative
choice is d = zaym > 2 Ra- a
Lemma 4: If the endpoints are mutually independent and if all e, < ¢ = 2, then we can
choose d = ¢ = z,.

Proof: We only need to show that under the given conditions, choosing d = ¢ = 2z, makes
@max,0 < a. To see this, put d = ¢ in the expression for Qmax,0 and use the mutual indepen-

dence to obtain

Quaxo = [[[1 = ®(c—ex)] = [J[®(c) — (c — ex)]-
This is an increasing function of each ey since
8Q)max,o - a“ a“
“He. = ple—er)s J[ D—2(c—e)]— ] [®(c) — @(c—er)]p >0,
€k =10k (=1,04k

which follows because 1 — ®(c — e;) > ®(c) — ®(c — ¢4). Therefore, by setting e; = ¢ for all

k, we obtain an upper bound on @maxo:

Quaxo < (%)m _ <<I>(c) _ %)m
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To see that this upper bound is < 1 — ®(¢) = « we now show that

f@ =2 - (20)-3) <1-(5)"

This follows if we show that f(c) is an increasing function of ¢. Note that

£1(e) = é(c) — d()m (%) - %>m-1 .
> (0 - %)m_l.

The last inequality can be proved by induction as follows. Obviously, it is true for m = 2.

1
— —
m
Assuming that it is true for m > 2, we now show it to be true for m + 1:

e gt (w0 ) (o0 ).

which holds because

by the induction hypothesis and

This proves the lemma. O
Numerical Illustration of Lemma 4: Suppose that 6, = 0 and ¢, = Aoy, for 1 < k < m.

Also assume that ny = ny = n. Then the condition ¢, < ¢ becomes

Let A = 0.1 and ¢ = 1.645 (for @ = .05). Then

2(1.645)2
n < 2L645)7 541.2,
(0.1)2

which is a fairly large upper bound. O
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Lemma 4 has been shown only under the independence assumption. It does not hold in

general under dependence. If all e, — 0 then the lemma holds since in that case

Quaso = [+ [ om(zIR)dz < 1-0(c) =0

However, if the e, are large, e.g., if all e, = ¢, then the lemma does not hold under depen-
dence. In other words, we cannot choose d = z,. The proof of this result is omitted for
brevity.

It is still possible to choose d smaller than z,/, under dependence. Assuming known
covariance matrix 3, this can be done by solving Qmax,0 = « for d via simulation using the

probability representation in (4.7) as follows.

1. Generate i.i.d. m-variate normally distributed random vectors X;; (i =1,2;1 <j <

n;) having a null mean vector and covariance matrix 3.
2. Calculate the sample means X;; (7 = 1,2) and sample variances S7 (1 <k < m).

3. Calculate the t-statistics

4. Calculate a random variable Y such that

c=1,4 if mini<p<m {Tk + %} <c

Sk\/l/n1+1/n2

Y =
ax {¢, maxy<p<m Tk } 1<k<m{ b S/ /ni+1/ns > ¢

5. Having generated N replications of YV, find the (1 — «)th quantile of Y which is the

desired critical point d.

Table 1 gives the values of d evaluated assuming a common known correlation p among

the endpoints, and 6, = 0 and ¢, = Aoi. The following points are worth noting.
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1. The d values for n = oo equal 2, g ., where R is the correlation matrix with all off-
diagonal elements equal to p. This follows as a result of Lemma 3 since all ey = oo in

this case.

2. The d values for n = 25 equal ¢ = 45 05 = 1.6772 ~ 1.68 as all e, are small in this
case, and although Lemma 4 does not strictly apply, analogous result appears to hold

empirically.

3. As n increases, the d values generally decrease slightly (except when A = 0.2 and
p = 0.75) and then increase to their upper bound = z,, g ,. For most combinations
with A = 0.1 and n < 200, and even for many combinations with A = 0.2, d is between

1.65 and 1.68, indicating that almost no multiplicity adjustment is required.

4. The initial decrease followed by an eventual increase in d as n increases deserves an
explanation: The initial decrease is due to an increase in the degrees of freedom which
reduces the value of d = ¢ = 1,,; note that in this case the e, are “small.” For n
sufficiently large, the effect on d of the increase in the degrees of freedom becomes
negligible. As the e, become large, we see from the equation (4.11) that the event of
declaring all endpoints equivalent becomes more and more likely, which increases the

type I error probability (Qmax,0. Hence d must be increased to maintain Qmax,o = .

5. Example

We use the example from Tang, Geller and Pocock (1993) about the efficacy of an inhaled
drug for asthma compared to placebo. Seventeen patients were randomized in a double-blind
crossover trial. There were four standard respiratory function measures (endpoints): forced
expiratory volume (FEVy), forced vital capacity (FVC), peak expiratory flow rate (PEFR)

and penetration index (PI). FEV; and FVC are expressed as percentages of the predicted
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values for that patient’s age, sex and height in the normal population. PEFR is expressed in
per minute. PI measures the ability of a deep inhalation to reach small airways. There was
no period or crossover effect, so the comparisons for individual endpoints could be performed

using paired t-statistics. The summary statistics were as follows:

FEV, FVC PEFR PI
Mean Difference 7.56 4.81 2.29 0.081
Std. Dev. of Difference 18.53  10.84  8.51 0.17
t-Statistic 1.682 1.830 1.110 1.965

p-Value 0.0560 0.0430 0.1417 0.0335

The estimated correlation matrix was

1.000 0.095 0.219 —0.162W
1.000 0.518 —0.059

1.000  0.513

1.000 J

For these data the OLS and GLS statistics are highly significant indicating a global im-
provement. However, none of the individual endpoints can be identified as having significant
improvement at a = 0.05 using the Bonferroni procedure or one of its sharpened versions.

Suppose 0, = 0 and ¢, = Aoy, with A = 0.20 for 1 < k£ < 4. Then

. O + €

O-k\/1/7

here y/1/ny 4+ 1/ny is changed to 1/1/n since this is essentially a paired sample study with

n patients. The t-statistics given in the above table are the superiority ¢-statistics, tés) since

= 0.20V/17 = 0.825;

€k

the 6k =0.
For a = 0.05, we have ¢ = t35.05 = 1.746. Next we calculated d using the simulation

method given in Section 4 by assuming the above correlation matrix, and obtained d = ¢ =
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1.746. Note that e, = 0.825 < ¢ = 1.746, so the condition in Lemma 4 for d = ¢ is satisfied,
although that lemma is not strictly applicable here because (i) the lemma assumes that the
endpoints are independent, and (ii) the lemma assumes v = oc.

Taking sy &~ o and applying the rule (4.1), we find that

min {#¥ +0.825} = min {2.507, 2.655,1.935,2.790} > ¢ = 1.746

1<k<4

and

max {t{”} = max {1.682,1.830,1.110,1.965} > d = 1.746.
1<k<4

Therefore Hj is rejected and the inhaled drug is shown to be equivalent to the placebo on
all endpoints and superior on at least one endpoint.
From the above calculation one can see that the smallest value of A for which the equiva-

lence holds for all endpoints is given by tfﬁ;)m + AM/17 = 1.110 + A\V/17 > 1.746 or X > 0.154.

6. Generalizations and Extensions

The UI-IU procedure given above tests a single global null hypothesis in (2.1). However,
it may be useful to be able to determine exactly which of the endpoints show a superior
treatment effect. One way to do this is to define the family of individual endpoint hypotheses
Hy, = Hé,f) U HéE). We can close this family by including in it all intersections of Hyy, k € K.
Note that the overall intersection of all Hy is just Hg, and that the intersection of the

hypotheses in set K of endpoints can be written as

keK keK

o= () U

If we use a union-intersection test for each superiority component of the hypotheses in this

family and apply a closed test procedure, we obtain a step-down procedure as follows: Order

S)

the superiority t-statistics so that tgf)) <. < tgm). Denote the corresponding hypotheses
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by Ho1y, Ho2); - - - » Hogm)- The adjusted p-value for testing Ho(y) is
Pm) =P {1g}gl<n 7" >  nin 7 max 75 > %) },

and the adjusted p-value for testing Hyy for £ < m is

ﬁ(eﬂ),P{ min TIEE) > min tch); max TIES) > t(S)H .

Dy = max
PO £<k<m T <k<m

These adjusted p-values may be estimated through resampling. Note that if hypothesis Hyy
is rejected, one can conclude that the treatment is superior to the control on endpoint &
and equivalent on all others. While this step-down procedure allows decisions on individual
endpoints for superiority, it does not allow such decisions for equivalence. The simultaneous
confidence interval approach given in Section 3 does allow for decisions on both superior-
ity and equivalence on individual endpoints; however, it is conservative. A more powerful
step-down procedure, which classifies the treatment effect on each endpoint into superior,
equivalent and inferior, is a problem for future research.

The multivariate normality assumption may not hold in practice. In that case a bootstrap
version of the proposed test procedure can be easily applied.

Finally, the approach given here can be generalized to deal with the goal of showing that
the treatment is equivalent on all endpoints and superior on at least » endpoints, where r is

specified (1 <r <m).
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Figure 1: Rejection Region of the LR Test for m = 2
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Figure 2: Rejection Region of the COM Test for m = 2
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Figure 3: Hypotheses Hy and H,
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Figure 4: Rejection Region of the UI-IU Test for m = 2
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Table 1: Simulated Values of the Critical Constant d for o = 0.05.

ny=mn9g=mn

miA |p 25 50 100 200 oo

\V]
e
—_
)

1.68 1.66 1.65 1.65 1.96
025168 166 1.65 1.65 1.95
0.5 [1.68 166 1.65 1.70 1.92
075168 166 1.75 182 1.86
0210 1.68 1.66 1.65 1.76 1.96
0.251.68 166 1.70 1.85 1.95
05 [1.68 1.71 1.83 1.90 1.92
0.75]1.68 183 1.8 187 1.86

4 10110 1.68 1.66 1.65 1.65 2.24
0.25]1.68 1.66 1.650 1.65 2.21
0.5 | 168 166 1.65 1.65 216
0.75 1 1.68 1.66 1.67 1.96 2.06
0210 1.68 1.66 1.65 1.65 2.24

025168 166 1.65 199 221
0.5 [1.68 166 194 211 216
0.75]1.68 1.97 206 206 2.06

8§ 10110 1.68 1.66 1.65 1.65 2.49
0.25]1.68 166 1.65 1.65 2.46
0.5 | 168 166 1.65 1.65 2.38
0.75 1 1.68 1.66 1.65 2.00 2.23
0210 1.68 1.66 1.65 1.65 2.49
0.25|1.68 166 1.65 1.98 246
0.5 | 168 166 1.8 230 238
0.75 ] 1.68 2.04 221 223 223




