COMMUN. STATIST.—SIMULA., 22(4), 925-938 (1993)

SMALL SAMPLE CONFIDENCE
INTERVALS FOR THE DIFFERENCE,
RATIO AND ODDS RATIO OF TWO
SUCCESS PROBABILITIES

Paul R. Coe i Ajit C. Tamhane
Department of Mathematics Department of Statistics
Rosary College Northwestern University
River Forest, IL 60305 Evanston, IL 60208

Keywords and Phrases: Sterne method; binomial distrebution; py — po; ezact confidence

intervals; Bernoulli treatments

ABSTRACT

This paper discusses the problem of constructing small sample confidence intervals for the
difference of success probabilities of two independent Bernoulli distributions. An algorithm
is given based on an extension of Sterne’s (1954) method for constructing small sample
confidence intervals for a single success probability. These confidence intervals have sev-
eral invariance and other desirable properties such as short lengths and monotonicity. A
comparison is made with an algorithm due to Santner and Yamagami (1993) which is also
based on an extension of Sterne’s method. Qur algorithm is found to yield shorter intervals
for a majority of outcomes, and these outcomes are located in the central portion of the
sample space. Santner and Yamagami’s algorithm gives shorter intervals for outcomes in the
northwest and southcast corners of the sample space (corresponding to large differences in
the observed sample proportion of successes), and is computationally faster. Modifications

of the algorithm for obtaining confidence intervals for the ratio and odds ratio are indicated.
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1. INTRODUCTION

A common problem arising especially in biostatistical applications is how tao compare
two “success” probabilities, p; and ps, based on the observed values of two independent
binomial random variables, X, ~ B(ny,p1) and X; ~ B(ny, pz). The common functions
used for comparing p; and p, are: Berkson's simple difference A = P1 — pa, the relative
risk p = py/p2 and the odds ratio ¥ = pi(1 — p2)/pa(1 — py). In this article we present a
new method (referred to here as the CT method) for constructing small sample confidence
intervals (C.1.’s) for A (Section 2.3). We also show how this method can be modified to
obtain small sample C.1.’s for p and ¥ (Section 4). For reasons of space, only the method
for A is discussed in detail,

Our method can be thought of as an extension of Sterne’s {1954) method (as modified
by Blyth and Still (1983)) for constructing (1 — a)-level small sample C.L’s for a single
binomial “success” probability p. Sterne's method constructs short C.I’s for p by first
constructing, subject to certain constraints, smallest possible acceptance regions having
probability contents at least 1 — & for given values of p, and then inverting these acceptance
regions to obtain the desired C.1.'s. The extension to the present problem is complicated
because of two reasons: (i) The sample space is two-dimensional, and hence no simple linear
order exists among the sample outcomes. (#1) There are two parameters, namely A, the
parameter of interest, and p;, a nuisance parameter. Therefore, when finding the smallest
possible acceptance region for a given value of A in the Sterne-spirit {with probability
content at least 1 — a), it is necessary to consider the infimum of the probability content
over the range of possible values of p1. Nonetheless, as in the single p problem, the method
yields suitably short C.I’s for A. The algorithm for the method is readily programmable
and computationally feasible.

Other methods for constructing small sample C.1.’s for A have been developed by Thomas
and Gart (1977), Santner and Snell (1980), and more recently by Santner and Yamagami
(1993). After pointing out the liberal nature of the Thomas and Gart method, Saniner and
Snell proposed three new methods for constructing C.I's for A. Their first method (called
the conditional method or CM) involves obtaining C.1.’s for A {or p) from the conditional
C.1’s for ¢ derived by Cornfield (1956). Their second method (called the tail method or
TM) is an extension of Clopper and Pearson’s (1934) tail intervals for a single p. Their
third method (called the partition method or PM) is an extension of the Sterne method for a
single p. Of these three, only TM is a viable method; it is computationally feasible and gives
C.1’s having the desired invariance properties (discussed in the sequel), but is somewhat
conservative for the same reason that the Clopper and Pearson method is conservative for
Lhe single p problem. CM is computationally easiest of the three, but the resulting C.L's
are far too wide; e.g., CM yields C.1.’s for A (p) that always include 0 (1) regardless of the
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data or the confidence level. Thus the null hypothesis Hy : p, = p2 will always be accepted
if one uses these C.I’s for testing purposes. PM does not appear to be computationally
feasible nor programmable because of jts complexity; the only example Santner and Snel]
give for this method is for the case m = ny = 2, which they solve by hand.

Santner and Yamagami (1993) have given a computationally feasible extension of the
Sterne method (as modified by Crow (1956)) for which they have written a FORTRAN
program. ‘Their method (referred to here as the SY method) is described briefly in Section
3. Both our proposed CT method and the SY method improve upon TM. We shall explain
in Section 3 how the SY intervals are short for “extreme” values of A (close to +1) but
long for “middle” values of A (close to 0) for the same reason (as pointed out by Blyth and
Still) that the Crow intervals for p are short when pis close to 0 or 1, and are long when
p close to 1/2. This has the consequence that the maximum as well as the average interval
lengths are increased for the SY intervals, as they are for the Crow intervals. Blyth and Still
have pointed out another drawback of the Crow method, namely that it produces rather
irregular C.1’s for p (C.1.’s whose endpoints do not increase in a regular fashion with z for
fixed n, and do not necessarily decrease with n for fixed z where 7 is the observed value of
X ~ B(n,p)). Similar drawbacks may be expected with the SY method. However, the §Y
method is found to be computationally much faster than the CT method. A comparison
between the CT method and the SY method is given in Section 3.

We remark that our method can be readily embedded into a group sequential scheme
to obtain small sample repeated C.1.'s (Jennison and Turnbull 1984, 1990; Lai 1984) for the

measure of interest (A, p or ¥). This problem is considered in Coe and Tamhane (1993).

2. CONFIDENCE INTERVALS FOR A

2.1 Preliminaries

Let X denote the sample space of X = (X1, X2),
X ={2=(21,22): 0< 21 < ny,0 < 29 <y},

and let f(x) denote the joint probability mass function of X,

2

f(@) = f=|py. p2) = H (:)Pf'(l —pi)"T forze X, (2.1)

i=1
For fixed A, p; lies in the interval 1(A) where I(A) = [0,1 + Alfor —1 < A < 0 and
I{A) = [A,1) for 0 € A < 1. We will denote by P{X € £|p\, A}, the probability of event
€ C X computed under f(z) with “success” probabilities p; and py = p, — A
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In order that a rule, which assigns a set Cn(z) as a confidence set for A when outcome
z € A is observed using sample sizes n = (ny,n2), be a (1 - a)-level C.L rule, it must have
the following property:

(i) Forevery z € &, C(z) = Cn(z) should be interval-valued, i.e., Cp(z) = [Ln(=z), Un(z)]
for some real numbers —1 < L(z) = Ln(z) < U(e) = Un(z) < 1 (when it causes no con-
fusion, we shall suppress the dependence on 7 of the confidence limits and the other related

quantities, as is done here), and
P{L(X)< A < U(X)|p,A}21-a VA andp,.

In addition, we would like our C.I1.’s to possess the following desirable properties:

(11) The C.I.’s should be invariant with respect to the labelling of the populations. This
implies that if the population labels are interchanged so that the new outcome is 7z =
(z2,2,) and the new sample sizes are 7n = (ny,m) (where 7 is the permutation operator)

then the C.1. for the new A = py — py is given by
[Leon(r2),Urn(rz)] = [-Un(z), - Ln(z)]. (2.2)

(i) The C.I’s should be invariant with respect to the labelling of “successes” and
“failures.” This implies that under the transformation p; — 1 — p; (i = 1,2), the C.L for

the new A = ps — py Is given by
(En(n = 2), Un(n - 2)) = [~Un(z),~Ln(=)). (2.3)

(iv) For fixed n, the C.1’s should be monotone in  as follows: For fixed z2, both L(z)
and U(z) should be non-decreasing in z,. Similarly for fixed 21, both L(z) and U(=) should
be non-increasing in z;.

(v) Finally, for fixed n, we would like our C.1’s to be short in some overall sense, e.g.,

the average interval length, 3 5 »{U(=z) - L(x)}/card(X') should be as small as possible.

2.2 Considerations in the Development of the Algorithm

To obtain a (1 — a)-level C.I. for A, we first construct (1 — «)-level acceptance regions
A; for different values of A = A, (i.c., acceptance regions for a-level two-sided tests of the
hypotheses Hy : A = A fori=1,2,...,M; here -1 <A, < Ag < o < Ay < +1 are
prespecified. By inverting these acceptance regions in the usual manner (Lehmann 1986, p.
90)), a C.I. for A can be obtained.

We now explain what properties the acceptance regions .A; must have in order that the
resulting confidence sets C(x) for A have the properties stated above.

(i) Consider Property (i). In order that C(z) be interval-valued, each outcome = rmust

be contained only in a consecutive set of acceptance regions A;. In order that the resulting
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confidence intervals [L(z), ()] have a confidence level (1 — a), the A; must satisfy

Po(Ai A= inf (P{X € Ailp1,A) 21-a (1<i<M). (2.4)

(iz) The invariance property (Property (i)) with respect to the labelling of the popula-
tions can be guaranteed as follows: First consider the case ny = ny = n (say). Then using

the fact that #n = n in this case, from (2.2) and (2.3) it is easy to see that we need
(L), U(z)] = [E(n — m2),U(n — 7z)] ¥ = € X.

Hence the acceptance regions A; that produce these C.1.’s must satisfy
zedi=n-—mz=(n-—zn~z) €4 VY A;

i.e., each A; must be symmetric about the line x; + z, = n. This can be guaranteed by
adding or deleting the sample points (z;,22) and (n~z2,n —z;) in pairs when constructing
each A;. [t does not seem possible to give a similar simple condition on the acceptance
regions A; when ny # ny. However, the desired invariance can still be guaranteed by using
a given method to find the C.L’s for n; < n,, and applying (2.2) to find the corresponding
C.1.’s for ny > nj.

(112) The invariance property concerning the labelling of the “successes” and “failures”
(Property (iif)) can be satisfied as follows: Having constructed a (1 — a)-level acceptance

region A; for A = A;, use the acceptance region A} for A = —A; given by
Al={zeX n-zecA)
The fact that A{ also has probability content at least 1 — o follows from the identity
flzlpr,p2) = fin— x|l —py,1=py) Y2 e X,

which implies that Py(Aj, —A;) = Po(A;, ) 2 1 — e

(1) In order that the C.I.’s possess the monotonicity property (Property (#v)), each A,
must contain no “holes” either in the z,-direction for any fixed z, or in the ra-direction
for any fixed 2. Because if there is a “hole,” say, (zy = 1,2z2) € Ai (21 + 1,z3) € .4; but
(z1,23) & A;, then &; € [L{zy —1,20), Uz = 1,29)], A; € [L{z1+1,22), U(z) +1,25)] but
A; & [L(z1, 2}, U(zy, 2)], thus violating the monotonicity property.

(v) The narrowness property (Property (v)) is difficult to ensure formally because it
involves solving a highly complicated discrete optimization problem. However, this property

can be achieved at least approximately by constructing the A; containing as few points as
possible,
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2.3 Algorithm
Step 0 (Initialization)

0.1 Partition the A-space, i.e., the interval [~ 1,1], intoagrid =1 < A_; < -
< Ay <+ where Ay = =Ajfori = 1,..., M and

= Ao < A} < e
Ag = 0.
0.2 Set i = 1. Go to Step 1.
Step 1 (Addition)

1.1 Partition the pi-space, i.e., the interval [A;, 1], into a grid A; < py < pyy < .. <
pin, < | symmetrically around the midpoint (1 + A;)/2.

1.2 For j =1,..., Ny, construct A;; such that
flelpy = pijip2 = pij — A) 2 f(2'lpy = pijap2a =pij — ) YV € A,z @ Ay
and

P{X € Aijlpr = pij, & = Ay)

Il

Y f(@lpy = pij.p2 = pij — &)
:EEA.,'

v

l—a.

1.3 Set A; = U, A

1.4 Augment A; as necessary with additional sample points @ to ensure that A; has -

no “holes” either in the z;-direction or in the zs-direction.
1.5 Go to Step 2.
Step 2 (Elimination)
2.1 Let A(z) = 21/ny — z3/n;. Eliminate any «* € A; such that

A(z*)< min A(z) and @ ¢ Ai_;.
TeA -,

2.2 Let P = {z|z € A; and Py(A; — {=},4:) = 1 —a}. (If n; = ny then let
D = {{z,n - mz}[{z.n — 7z} € A; and Po(A; — {x,n — 7z}, ;) = 1 —al.
We refer to D as the set of “dispensable” outcomes in the sense that they can be

removed from A; without violating equation (2.4). If D = ¢, go to Step 2.5.

2.3 Find =" € D such that
Po(A; = {z*}, Ai) = max Py(A; — {z},A;),
xeD

and set A; = A; — {z*}. (If ny = n, then replace ® and =" in the above by

{m,mn—wz} and {z",n — 72"}, respectively.)
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2.4 Go to Step 2.2.

2.5 Seti=1i+1.Ifi< M, go to Step 1; otherwise go to Step 3.
Step 3 (Completion and Inversion)

3.1 Set the acceptance region

Aci={n-zeX zseA)lorA_; = —Api= 1,2 My (2.5)

3.2 Set
Ue)= _min {AiimeA) (2.6)

and
Ulz) = _Mr'n;JéM{ﬁ; cw € A} (2.7)

Several comments about the algorithm are in order.

(7} Note that we use a “greedy” heuristic for obtaining the minimum cardinality A; by
removing that @ which maximizes Py(A; ~ {2}, A;), and so on (thus enabling us to remove as
many “dispensable” sample points as possible). This strategy is not necessarily optimal for
constructing the smallest .4; in all cases, but other strategies are computationally costlier.

(#1) The guarantee of (2.3) (invariance with respect to the interchange of “successes” and
“failures™) follows from (2.5).

(#4) In Step 1.1, the grid on p; is chosen symmetrically around the midpoint (1 + A)/2

because
flzlpy=(1+8)24+e,pr=p1— A) = f(n—mzlpy = (1 + A)/2 - ¢,p, = p; - 4)

for 0 < e < (1~ A)/2 when ny = ny. Therefore ¢ € 4; @ n — 7z € A; is automatically
satisfied.

() It is not difficult to show that f(z) is unimodal; hence the Ajj obtained in Step 1.2
are convex, and thus have no “holes” in them. However, it is possible that the A; obtained
in Step 1.3 may be non-convex and therefore any “holes” in them must be filled in Step 1.4.
If the grid on p, is sufficiently fine (as was the case with our algorithm), we found that such
“holes” do not arise, and hence Step 1.4 is unnecessary.

() Step 2.1 ensures that each outcome z is in a consecutive set of acceptance regions
Ay, which in turn ensures Property (i) of interval-valued confidence sets.

(vi) A listing of the FORTRAN program for the above algorithm is given in Coe (1989).
The program is designed to handle n;, n, < 20. This program actually computes acceptance
regions for the negative half of the A-space, i.e., for A, i=1,...,M, and then obtains

the acceptance regions for positive A-values using (2.5). For three decimal place accuracy,
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we use an equispaced grid with A_j = —0.9995, A;yy — A; = 0.0010 and M = 1000,
Thus suppose from (2.6) we get L{z) = 0.3075 and from (2.7) we get U{z) = 0.7415; then
we know that the “true” (assuming unlimited degree of precision) L(z) is in the interval
(0.3065,0.3075) and the the “true® U(x) is in the interval (0.7415,0.7425), Therefore, to
three decimal place accuracy, the C.L is given by [0.307,0.742). Note that this interval
is found from the calculated values of the confidence limits by rounding down the lower
limit and rounding up the upper limit. All computations were done on a Macintosh SE/30
machine running Absoft MacFortran II version 2.1.

For the partition on p; for fixed A; < 0, an equispaced grid of 20 to 25 points, including
0 and 1 + Ay, is found to be sufficient to yield

inf  P{X € Ailpr, Ai) = Po(A:, 85), (2.8)
Ef(a)

min P{X € Ai[py = pij,p2 = pij — A} =
Puy P

which is needed in the checking of (2.4).
3. COMPARISON WITH THE SANTNER-YAMAGAMI METHOD

3.1 A Brief Review of the SY Method

The SY method first partitions the sample space A into disjoint equivalence classes,
Xi={zeX: Alz)=d)} (-K <i< K)where -l =d_x < - <dyg=0< ... <dg =
+1 are the distinct values of A(:c] = z/ny — x2/ny. This puts a partial linear order on the
A;. For a selected grid, 0 = Ag < --- < Ay = 1, the SY method constructs acceptance
regions A; for A; (0 < i< M) of the form:

Ai =B, UA’,_H U .UX(_I U(,’, for some s = s() and t = (i) (-K <s <t < K),
(3.9)
where B, C X_,,C, C Ay, and B, # ¢, X, - C, # ¢ when s < . It begins by constructing
Ag with the following properties: @ € Ay & n — = € Ag, Ag has as few points as possible,
and Py(Ap,0) = 1 — . (The infimum over p, required in evaluating Py (see (2.4)) is
approximated by the discrete minimum over py = piy,...,pin, as in (2.8).) In general,
having determined A; (i = 0,1,..., M — 1) of the form (3.9), it builds A;4; from A; as
follows: As a first try, set A;4, = A;. If condition (2.4) is satisfied for A;+) then remove
subsets B from B, (if B, = ¢, relabel X 4, as B,) as long as that condition continues to
be satisfied. If condition (2.4) is not satisfied for A;,; then add subsets C from &, — C, in
steps to C; (if C; = X, relabel X,y as &', and C; = ¢) until that condition is satisfied, and

then try deleting subsets B. _

Santner and Yamagami (1993) considered several different rules for choosing subsets B;
and C;. Their preferred rule is the so-called invariant rule, Ry, which deletes single sample
points ® that decrease Py(A;,A;) as little as possible, and adds single sample points = that

increase Pp(.A;, A;) as much as possible, just as does our method.
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(zy,x3) CT Interval SY Interval CT Length | SY Length | Shorter Interval
(0,0 (—=1451,0.451) (—0.162,0.462) 0.902 0.904 cr
(1) (=0.657,0.268) (—0.658,0.268) 0.925 0.926 cT
(1,1) (—0.488,0.488) (—0.189,0.489) 0.976 0.978 cr
(0,2) (=0.811,0.100) (—0.81 1,0.189) 0.911 1.000 oT
(1.2) | (=0.700,0.339) | (-0.700,0.462) 1.039 1.162 [l
(2,2) (—0.555,0.555) (—0.556,0.556) 1.110 1.112 e
(0,3) (—0.924,0.000) (-0.927,0.001) 0.924 0.928 cr
(1,3) (—0.825,0.238) (—0.826,0.239) 1.063 1.065 cT
(2,3) (—0.645,0.393) (—0.647,0.462) 1.038 1.109 cT
(3.3) | (~0.555,0.555) | (~0.556,0.556) 1110 1112 or
(0.4) [ (-0.990,-0.100) | (-0.990, —0. 189) 0.890 0.801 SY
(1,1) (—0.926,0.100) (—0.904,0.189) 1.026 1.093 cr
(2,1) (—0.825,0.238) (—0.826,0.239) 1.063 1.065 c1
(3.4) (=0.700,0.339) (—0.700,0.162) 1.039 1.162 cr
(1.1) (—0.188,0.188) (—-0.489.0.489) 0.976 0.978 cr

(0,5) | (~1.000,-0.339) | (~1.000,~0.162) |  0.661 0.538 Sy
(1.5) | (=0.990,-0.100) | (-0.990, —0.189) 0.890 0.801 SY
(25) | (-0.924,0.000) | (-0.927,0.001) 0.924 0.928 cr
(35) | (~0.811,0.100) | (-0.811,0.189) 0.911 1.000 i
(4, (=0.657,0.268) (—0.658,0.268) 0.925 0.926 cT
(5.5) (—0.451,0.451) (—0.462,0.162) 0.902 0.924 cT

3.2 Numerical Examples

We tried the CT and SY methods on three examples, two with equal sample sizes,
(n1,n2) = (5,5) and (10, 10), and one with unequal sample sizes, (n;,n,) = (15,5). The
95% CT and SY C.L’s (to three decimal place accuracy) for (ny,n;) = (5,5) are shown in
Table 1 for the upper half of the sample space X' = {(z;,z;) : 0 < & < 5} (those for the
lower half being obtained by symmetry). Note that the actual coverage probabilities of both
these methods depend on true (p1,p2) or equivalently (p1,4), but they are at least 95%.
We sce that the CT interval is shorter than the SY interval for 30 out of 36 outcomes. Space
does not permit us to give similar tables of confidence intervals for the other two examples.
However, Table 2 gives a summary comparison between the CT and SY methods for all
three examples. We see that the CT method gives shorter intervals for a majority of the
outcomes in each example. The average interval width is also shorter for the CT method.
But the computing time is longer for the CT method, and seems to increase faster with the
size of the problem. For example, for the smallest problem with (n1,n2) = (5,5) having
36 outcomes, the CT method requires four times as much time as does the SY method,

while for the largest problem with (n1,n2) = (10,10) having 121 outcomes, the CT method
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TADBLE 2

Comparison of CT and S§Y 95% Confidence Intervals

Average Interval | No. of Sample Points | Computing Time |

(ny, na) Length Interval is Shorter in mins:secs
T Y oL | SY [oF§ SY
(5, 5) 0565 9732 30 6 4:15 1:04
(15,5) | .7509 8290 74 22 15:36 2:08
| (10,10) | 6865 [ .7263 75 16 20:38 | 2:36

5 o o L ] o L] Ll

A a L] L] L] L] -

3 e ° ° . o °

2 L] ® ° ° ° °

1 e ° ° ° ° o

0 ® . ° ® o o

$2/$1 l 0 1 2 3 4 5

FIGURE 1

o Indicales Sample Points for Which CT Interval is Shorter
o Indicales Sample Points for Which SY Interval is Shorter
(my,m2) = (5,5)

requires eight times as much time as does the SY method. We shall discuss this issue further
in the following subsection.

Figures 1-3 show the sample spaces A’ for the three examples with the outcomes x for
which the CT intervals are shorter indicated by s, and those for which the SY intervals
are shorter indicated by o’s. We see that the CT intervals are shorter in the entire central
portion of the sample space X', while the SY intervals are shorter in the edge portion.

Santner and Yamagami (1993) compared the SY and TM methods for two examples
studied here, namely, (n;,n;) = (10,10) and (15,5). They report that the TM intervals are
longer than the SY intervals for all outcomes when (ny,n2) = (15,5), and for all outcomes
except 8 (central) out of 121 when (ny,n;) = (10,10). This indicates that the TM intervals
will also be longer than the CT intervals for almost all sample outcomes, although we have

not actually carried out the computations for the TM method.

3.3 Discussion

We see from the above examples that the CT intervals are shorter than the 5Y intervals
for z-values in the central portion of X', these outcomes being most likely when & is close

to 0, and are longer when A is close to £1. In practice, the A-values closer to 0 are more

i
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e Indicates Sample Points for Which CT Interval is Shorter

o Indicates Sample Points for Which 5Y Interval is Shorler
(r1,n2) = (15,5}
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s Indicates Sample Points for Which CT Interval is Shorter
o Indicates Sample Points for Which SY Interval is Shorter
(1, n2) = (10,10)

common than those closer to 1. The CT intervals are also superior to the SY intervals in
terms of the maximum and the average length criteria.

The reason for the long SY intervals for “middle” A-values is similar to that for the
long Crow intervals when p is close to 1/2. From the description of the SY method given
in Section 3.1, we see that it begins by constructing the acceptance region A, for A = 0
(which is symmetric in © and n — = and falls in the central portion of X'), and tries to stay
as close to it as possible when obtaining A; from A;_, for i = 1. Hence the z-values in the
central portion of A’ are included in many more acceplance regions .4; than are the x-values
near the edge of X'. As a result, the C.I.’s for the outcomes in the central portion of & are
much longer than for those near the edge of X'

Qur method requires longer computing times because it begins the construction of the

acceptance region A; for each A; from scratch. On the other hand, the SY method proceeds
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in a stepwise manner, modifying A;_, to obtain A;.. It should be realized, of course, that
computing times depend on the grids chosen for A and p;. Note that both methods produce
C.1.%s for all the outcomes in the sample space for given (n), na), and not just for a particular
observed outcome x of interest. It may be possible to modify the methods so that they stop

after the C.1. for the desired @ has been calculated, thus cutting down the computing time.

4, CONFIDENCE INTERVALS FOR p AND ¢

4.1 Confidence Intervals for p

Small sample C.1.’s for p can be constructed using an algorithm similar to that for A
described in Section 2. The main differences are as follows:

(i) In this case there is no invariance requirement with regard Lo the labelling of “suc-
cesses” and “failure.” However, the following invariance requirement with regard to the

exchange of labels of populations is imposed:
[Len(7a), Usn(ne)) = [1/Un(z), 1/ La(x)].

Here [Ln(x), Un(z)) is a given (1 — a)-level C.L for p when sample sizes n = (ny, n3) are
used and the outcome = = (1, z3) is observed.

(ii) The parameter p ranges over the infinite interval [0, 00]. One could map this interval
into a finite interval using one of the monotone transformations of p {tan™'(p), tanh™'(p)
or p/(1 + p)) suggested by Santner and Yamagami (1993), and apply the algorithm b_y
forming an equispaced grid in this new interval. Our program works directly with p with
an equispaced grid {p_;, (1 < i< M)} for p € (0,1) (specifically, the program uses a grid
starting at 0.005 with steps of 0.01, which gives a two decimal place accuracy between 0
and 1), and p; = 1/p_; for p € (1,0¢).

A FORTRAN program for implementing this algorithm is given in Coe (1989).

4.2 Confidence Intervals for ¥

The methods for calculating the C.1%s for A and p are based on the unconditional
probability distribution (2.1) of (X, Xz2) (and thus yield unconditional C.l.’s). On the
other hand, the method for ¥ is based on the following conditional distribution of X\,

conditioned on X, + X, = k (and thus vields conditional C.L’s):

fzilk, o) = (:) (k f:l)w",f i (':') (k"j i):;;",. (4.10)

where £ = max(0,k — ny) and m = min(k, n;).
The following points may be noted about this algorithm.
(i) The C.I’s for ¢ are requited to be invariant with respect to the labelling of the

populations as follows:
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[L:rn(”z),an(?m]] o= [I/Un(z)a 1/Lp(=)],

where [Ln(z), Un(z)] is a given (1 — a)-level C.1. for ¥ when sample sizes n = (n;,n,)
are used and the outcome @ = (z, x,) is observed. Similarly, the C.1.’s are required to be

invariant with respect to the labelling of “successes” and “failures” as follows:
[Ln(n — &), Un(n - )] = [1/Un(z), 1/Ln(z))].

(1) The parameter ¥ ranges over the infinite interval [0,00]. Our program works with
an equispaced grid {¢_;,(1 <7 < M)} for ¢ € (0,1) (specifically the program uses a grid
starting at 0.005 with steps of 0.01, which gives two decimal place accuracy between () and
1), and ¢y = 1/9_; for ¥ € (1,00). Note that if n, = ny, then it is sufficient to partition only
(0,1) since the other half of the parameter space, viz. (1,00), can be handled by symmetry.)

(t1) It should be noted that the construction of the acceptance regions A; is easier here
because we are in a one-dimensional sample space, and x|k, ¥) is unimodal in Ty.

A FORTRAN program for implementing this algorithm is given in Coe (1989). The nu-
merical results obtained with this program were found to be comparable to those obtained
using Baptista and Pike’s (1977) method. Note that their method does not involve inver-
sion of acceptance regions as does our method. Also, our method seems more convenient

for embedding into a group sequential scheme.
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ABSTRACT

The problem of deriving reliable tests for separate families of hypotheses is dis-
cussed. Two competing methodologies for testing hypotheses from separate
distributional families, the classical asymptotic approach of Cox [1961,1962]
and more modern methods using Monte Carlo or parametric bootstrap simu-
lation, are contrasted. It is shown that the two methods can be combined to
form a test with excellent statistical properties. Variants of simulation-based
tests are discussed. In addition, simple computational strategies using parallel
computers are described that can be used to reduce the combined test’s heavy
simulation load.

I. INTRODUCTION

Many hypothesis tests are parameter oriented: a basic distributional model
for relevant data is given and the question of primary concern is whether or
not a certain parameter, or parameter vector, assumed in or describing the
given distributional model, takes on a certain theoretically derived or hypoth-
esized value. However, there exist situations where what is in question is not
necessarily whether or not a certain parameter takes on a certain value, but
rather whether or not the data conform to one of two or more parametric
distributional models (e.g., normal, log-normal, Weibull, etc.). One approach
used in such situations involves the use of goodness-of-fit techniques to de-
termine whether or not one or more of the distributional models does not
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