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ABSTRACT: This paper presents methods for constructing exact repeated confidence intervals
(RCls) for the success probability, p, of a single Bernoulli treatment and for the dif-
ference of success probabilities, A = p; — p,, of two independent Bernoulli treatments
in the context of a group sequential clinical trial. These RCIs calculated at each interim
analysis are useful for evaluating the data in light of all the information available rather
than relying on rigid stopping criteria used by repeated significance tests. Extensions
to construction of RCIs for the relative risk p = pi/p; and odds ratio ¢ = pi(1 ~ p)/
p2(1 — p) are indicated.
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INTRODUCTION

In order to detect early evidence of treatment differences or harmful side ef-
fects, periodic reviews of the accumulating data (called interim analyses) are
often performed in clinical trials. Many sequential methods have been devel-
oped for this purpose, most taking the form of a repeated significance test. These
methods have not been readily embraced in practice, however, because the rigid
stopping criteria that they require are often inappropriate in clinical settings
[1,2]. More appropriate in these settings is the use of repeated confidence in-
tervals (RCls), which allow the study results to be evaluated flexibly at each
review in light of all the information available including the data on efficacy,
safety, and concurrent findings of other research groups [3].

RClIs were first derived independently by Lai [4] and Jennison and Turnbull
[5] for normally distributed responses. These authors also indicated how the
large sample normal approximation theory can be used to derive RCIs for the
parameters of interest in problems involving nonnormal data such as Bernoulli
and survival. For a recent review of the work on this topic, see an article by
Jennison and Turnbull [6].
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Many clinical trials are carried out with rather small numbers of patients.
This is especially true when the accumulating data are analyzed on an interim
basis at initial stages of a group sequential trial. Therefore, large sample
normal approximations may not be valid when the data are nonnormal. In
this paper we present exact methods for constructing RCIs when the response
variable is dichotomous in nature, eg, success or failure, and follows a Ber-
noulli distribution for each treatment group (referred to as a Bernoulli treat-
ment). We first consider a single Bernoulli treatment and show how RCIs can
be constructed for its success probability p using a single-stage method due
to Blyth and Still [7] which is a modification of the Sterne [8] method. The
basic idea underlying the method developed for p is extended in the next
section to construct RCIs for the difference between two success probabilities,
A = p; — p,, associated with two independent Bernoulli treatments. We
illustrate this method for A by a numerical example based on leukemia trial
data given by O’Brien and Fleming [9]. Next we briefly indicate how RCIs
can also be constructed for the relative risk p = py/p, and odds ratio ¢ =
Pi(l = pa)ipa(1 — p1). We conclude the paper by comparing the Sterne-type
approach followed here to an alternative approach [10] for constructing an
exact confidence interval for a Bernoulli parameter p.

REPEATED CONFIDENCE INTERVALS FOR A SINGLE BERNOULLI
PARAMETER

Let X be a binomially distributed random variable (rv) with parameters n
and p (henceforth denoted by X ~ B (n, p)). Several methods have been
proposed for constructing an exact (small sample) confidence interval (CI) for
p- A review can be found in Ref. 7.

Sterne’s [8] method begins by dividing the range of p (ie, the interval [0,1])
into a fine grid and then constructs minimal cardinality subsets of the sample
space of X with probability content at least 1 — « for each value p = p, in
the grid. Each such subset is a (I — «) level acceptance region for testing
Ho: p = po, and is an interval [L(po), U(po)] satisfying

P{L(p)) < X < Upo)lpe} = 1 - «

Clearly, this minimal cardinality acceptance region is obtained by including
in it the most likely outcomes X under p = po. By inverting these acceptance
regions in the usual manner, CIs with the shortest width can be obtained.
Unfortunately, these Cls are not always interval-valued. Blyth and Still [7]
modified the Sterne method so that both L(pg) and U(py) are nondecreasing
in po, which makes the CIs interval-valued. Earlier Crow [11] proposed an
alternative modification of the Sterne method to serve the same purpose. We
use the Blyth and Still modification of the Sterne method as the basic building
block of our method for constructing RCIs for p.

In the group sequential setting, let K be the maximum number of stages
and rny,n,, . . ., ng, the number of observations (patients) in these K stages.
Let X, be the number of successes (positive responses) in the stage k (X; ~
B(ny, p))and S = X; + X, + - - - + X,, the cumulative number of successes
in the first k stages in a total of N, = n, + n, + - - - + n, observations. Based
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on these data we wish to construct RCIs {lpew, Pl k = 1,2, .. ., K3, so that
they have an overall coverage probability at least 1 — q, je,

Ppu<p<py foralk=12...,K>1-« 1)

In our algorithm we need to choose a sequence of error rates o; < a, < -

< ax = o several possible choices are given in Ref. 12. For the sake of
simplicity, we will assume that the number of stages K, the sample sizes n,,
Nz - . -, Mg, and the error rates o, a, . . . , ok are fixed, although this need
not be the case (see Refs. 4 and 12).

We now describe our algorithm. First partition the interval [0,.5] into a
sufficiently fine grid on p. (For p > .5, the acceptance regions can be obtained
by symmetry.) We used a grid consisting of 500 points, beginning at .0005
and with a step size of .0010, ie, the grid p = .0005, .0015, .0025, . . . , .4995.
This grid gives a three-decimal-place accuracy for the Cls. At stage 1, construct
a(l — o) level acceptance region [L(po), Uy(po)] as in (1) for each p, value
in the grid by applying the Blyth and Still method. Invert these acceptance
regions to obtain a first stage CI, [py;, py], for p for any given outcome S, =
I8 Tp—

In general, at each stage k construct a (1 = o) level minimal cardinality
acceptance region, [Li(po), U(po)], in the sample space of S, for each po value
in the grid using the Blyth and still method subject to the following condition:

P{L,(pg) = S,‘ = U,(pg) fori = 1.2, . .. 4 klpo} =1 - oy (2)
This ensures that 5, S, . . ., Si are all in their acceptance regions,

[L1(po), Ur(po)], [La(po), Un(po)], . . . , [Le(po), Ur(po)]

which are computed sequentially. Since (1 — o) is decreasing in k, the ex-
istence of these acceptance regions is guaranteed. Invert the acceptance re-
gions [Li(po), Ui(po)] to obtain a kth stage CI, [p,prul, for any given outcome
k=0!1r'--;Nk-
That the resulting sequence of CIs has an overall coverage probability at
least 1 — « follows because for any value of p (strictly speaking, only in the
grid),

Ppu <p<pu fork=12..., Klp} = P{L(p) < S¢ < Ui(p)

fork =1,2,...,Kp} 3)
1 ~ Qg
l -«

W

Note that the S; values are the sums of the independent binomially distributed
X; values which facilitates the evaluation of the probability in (2). For example,

P{L:'(PD) =5 < uf(Po) fori = 1,2}

U(po) uz

= 2 P{X, = X1} 2 P{X, = X2}
x1=Lifpa) r2=[2
where L, = max{0,L,(po) — x;} and U, = min{n,, Us(ps) — x;}. See Ref. 13 for

further computational details.
A BASIC program to implement this algorithm is available from the first
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author. This program was used to compute 90% RClIs for p for a three-stage
group sequential plan with (n3,1n5,n3) = (15,10,10) (ie, (N1,N2,N3) = (15,25,35).
In computing these RCIs we used the linear error rate use function (a;, 0z, 03)
= (.0333,.0667,.1000). Other choices such as the convex use function are
possible but the linear use function represents an “intermediate” choice (Ref.
125 p. 662) between the O’Brien and Fleming [9] and Pocock [14] approaches,
and has the advantage of ease of application. The results are presented in
Table 1.

These RCIs are not directly comparable with anything presently available.
But it might be useful to know how much is lost (in terms of, say, the CI

Table1 90% RClIs for a Three-Stage Sampling Plan of Fleming [15]

Stage k N Sk Cl for p Stage k N Sk Clforp
1 15 0 (.000,.222) 3 35 0 (.000,.089)
1 15 1 (.002,.326) 3 35 1 (.003,.133)
1 15 2 (.019,.418) 3 35 2 (.015,.174)
1 15 3 (.048,.500) 3 35 3 (.032,.216)
1 15 4 (.085,.567) 3 35 4 (.051,.258)
1 15 5 (.127,.613) 3 35 5 (.070,.289)
1 15 6 (.174,.674) 3 35 6 (.088,.325)
1 15 7 (.222,.738) 3 35 7 (.104,.346)
1 15 8 (.262,.778) 3 35 8 (.133,.387)
1 15 9 (.326,.826) 3 35 9 (.142,.414)
1 15 10 (.387,.873) 3 35 10 (.173,.438)
1 15 1 (.433,.915) 3 35 1 (.193,.475)
1 15 12 (.500,.952) 3 35 12 (.216,.500)
1 15 13 (.582,.981) 3 35 13 (-241,.525)
1 15 14 (.674,.998) 3 35 14 (.258,.562)
1 15 15 (.778,1.00) 3 35 15 (.289,.586)

3 35 16 (.313,.607)
2 25 0 (.000,.134) 3 35 17 (.343,.646)
2 25 1 (.003,.199) 3 35 18 (.354,.657)
2 25 2 (.017,.258) 3 35 19 (.393,.687)
2 25 3 (-038,.300) 3 35 20 (.414,.711)
2 25 4 (.062,.354) 3 35 21 (.438,.742)
2 25 5 (.089,.400) 3 35 2 (.475,.759)
2 25 6 (-116,.437) 3 35 23 (-500,.784)
2 25 7 (.134,.482) 3 35 24 (.525,.807)
2 25 8 (.167,.518) 3 35 25 (.562,.827)
2 25 9 (.199,.563) 3 35 26 (.586,.858)
2 25 10 (.220,.600) 3 35 27 (.613,.867)
2 25 11 (.258,.646) 3 35 28 (.654,.896)
2 25 12 (.300,.675) 3 35 29 (.675,.912)
2 25 13 (.325,.700) 3 35 30 (.711,.930)
2 25 14 (.354,.742) 3 35 31 (.742,.949)
2 25 15 (.400,.780) 3 35 2 (.784,.968)
2 25 16 (.437,.801) 3 35 33 (.826,.985)
2 25 17 (-482,.833) 3 35 34 (.867,.997)
2 25 18 (.518,.866) 3 35 35 (.911,1.00)
2 25 19 (.563,.884)
2 25 20 (.600,.911)
2 25 21 (.646,.938)
2 25 22 (.700,.962)
2 25 23 (.742,.983)
2 25 24 (.801,.997)
2 25 25 (.866,1.00)
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width) because of using these repeated Cls as opposed to using one-time Cls.
In a group sequential setting, a one-time CI might be used when a decision
is made to stop the trial based on some fixed stopping criterion. The three-
stage plan that we have used here was in fact presented along with a stopping
boundary by Fleming [15] for testing Ho: p = .1 vs. H; = .3 with type I and
type II error rates approximately equal to .05 and .10, respectively. Jennison
and Turnbull [15] and Duffy and Santner [17] have given methods for com-
puting such one-time CIs upon exceeding the stopping boundary. Table 2
presents a comparison of our RCIs with these one-time CIs (both having a
nominal 90% confidence level) for the outcomes outside Fleming's [15] stop-
ping boundary. Also included in the table are one-time 90% fixed-sample Cls

Table 2 Comparison of 90% RCIs With Other CIs for a Three-Stage Sampling
Plan of Fleming [15] to Test Hy: p =

Boundaries Considered)

.10 vs. Hy: p = .30 (Stopping

Fixed Jennison
Sample & Duffy & Repeated
Stage k Ny Sk Decision Size Turnbull Santner (RCI)

1 15 0 Accept (.000,.168) (.000,.181) (.000,.165) (.000,.222)
1 15 5 Reject (-168,.567) (.142,.577) (.165,.558) (.127,.613)
1 15 6  Reject (.205,.635)  (.191,.640)  (.203,.640)  (.174,.674)
1 15 7 Reject (.267,.675) (.244,.700) (.260,.675) (.222,.738)
1 15 8 Reject (.325,.733) (.300,.756) (.321,.744) (.262,.778)
1 15 9 Reject (.365,.795) (.360,.809) (.389,.795) (.326,.826)
1 15 10 Reject (.433,.832) (.423,.858) (.436,.847) (.387,.873)
1 15 11 Reject (.500,.878) (.489,.903) (.523,.879) (.433,.915)
1 15 12 Reject (.567,.924) (.560,.943) (.558,.925) (.500,.952)
1 15 13 Reject (.633,.964) (.637,.976) (.639,.964) (.582,.981)
1 15 14 Reject (.733,.993) (.721,.997) (.744,.993) (.674,.998)
1 15 15 Reject (.832,1.00) (.819,1.00) (.846,1.00) (.778,1.00)
2 25 1 Accept (.004,.179) (.003,.199) (.007,.204) (.003,.199)
2 25 2 Accept (.021,.221) (.016,.238) (.023,.225) (.017,.258)
2 25 3 Accept (.045,.280) (.034,.284) (.049,.268) (.038,.300)
2 25 6 Reject (.118,.420) (.108,.412) (.127,.390) (.116,.437)
2 25 7 Reject (.158,.460) (.127,.445) (.151,.436) (.134,.482)
2 25 8 Reject (.179,.500) (.137,.470) (.165,.447) (.167,.518)
2 25 9 Reject (.221,.540) (.141,.489) (.194,.559) (.199,.563)
2 25 10 Reject (.246,.580) (.142,.501) (.203,.559) (.220,.600)
2 25 11 Reject (.280,.611) (.142,.508) (.260,.640) (.258,.646)
2 25 12 Reject (.320,.640) (.142,.510) (.320,.675) (.300,.675)
2 25 13 Reject (.360,.680) (.142,.511) (.321,.675) (.325,.700)
2 25 14 Reject (.389,.720) (.142,.511) (.389,.745) (.354,.742)
3 35 4 Accept (.051,.243) (.057,.286) (.046,.260) (.051,.258)
3 35 5 Accept (.071,.272) (.066,.297) (.081,.290) (.070,.289)
3 35 6 Accept (.084,.302) (.081,.315) (.097,.321) (.088,.325)
3 35 7 Reject (.110,.343) (.095,.335) (.112,.322) (.104,.346)
3 35 8 Reject (-128,.371) (.104,.351) (.123,.340) (.133,.387)
3 35 9 Reject (.154,.400) (.107,.363) (.148,.390) (.142,.414)
3 35 10 Reject (.171,.429) (.108,.369) (.164,.437) (.173,.438)
3 35 11 Reject (.201,.457) (.108,.372) (.165,.437) (.193,.475)
3 35 12 Reject (.220,.486) (.108,.373) (.194,.559) (.216,.500)
3 35 13 Reject (.243,.514) (.108,.374) (.203,.559) (.241,.525)
3 35 14 Reject (.272,.543) (.108,.374) (.203,.559) (.238,.562)
3 35 15 Reject (.300,.571) (.108,.374) (.260,.640) (.289,.586)
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for the same outcomes computed using the Blyth and Still [7] method. The
RCIs in Table 2 are the same those in Table 1 because even though the sample
points listed here for stages 1 and 2 correspond to the trial being terminated
early due to exceeding the stopping boundary, any unused error probability
cannot be applied to the last CI. Such a modification of the error rate use
function is valid only if it is done on the basis of variables independent of
the response variable, which is clearly not the case here; see Refs. 18 and 19.

The average CI widths for the four methods given in Table 2 are as follows:
fixed sample (.293), Jennison and Turnbull (.313), Duffy and Santner (.306),
and RCIs (.328). (The Duffy-Santner intervals given here are different from
those given in their paper and were provided to us by Professor Santner.
They represent an improvement over their original intervals in that the in-
terval end points at each stage i are nondecreasing in S;, there are no single-
point intervals, and the intervals do not require any manual adjustment and
can be machine-generated). We conclude that the extra price for computing
RCIs compared to fixed sample intervals is about 10%.

REPEATED CONFIDENCE INTERVALS FOR THE DIFFERENCE OF
TWO BERNOULLI PARAMETERS

Let X ~ B(m, p1) and Y ~ B(ny, p2) be two independent binomial rv’s.
Methods have been proposed for constructing an exact CI for A = p; — p,
by several authors, most recently by Santner and Yamagami [20] and Coe
and Tamhane [21]. Santner and Yamagami (SY) extended the Crow [11] method
for constructing an exact CI for a single p to construct an exact Cl for 4, while
Coe and Tamhane (CT) extended the Blyth and Still method for the same
purpose. The CT intervals are shorter than the SY intervals for more outcomes
in the sample space of (X, Y) and these outcomes lie around the line p; —
pa = xin; — yln, = 0 (which corresponds to A near zero); also the average
and maximum interval widths are shorter for the CT method than for the SY
method. Furthermore, the CT method is easier to extend to the multistage
setting for constructing RCIs for A. Therefore we used the CT method as a
basic building block in the algorithm for RCIs for A just as we used the Blyth
and Still method as a basic building block in the algorithm for RCls for p.
Before presenting our algorithm for the multistage setting, we first give a
brief outline of the CT method.

The CT method proceeds as follows: First partition the parameter space,
ie, the interval {—1,1], into a grid.

_IEQ_M‘CA_M'Fl('"{A_1<Ag<ﬂ1<"‘<a‘u"51
where A, = A, fori = 1,2, ..., Mand A, = 0. One must then construct a
(1 — a) level acceptance region A(4;) for each value A = A, i =12, ...,

M. (For —1 < A; < 0, the acceptance regions can be obtained by symmetry.)
The acceptance regions must have the property:

P{X, Visin AQ)pup =pr — A} =1 -« for all p; and for all 1.

These acceptance regions can then be inverted to give Cls for A.
To construct an acceptance region A(4;) for given A, partition the range
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of the nuisance parameter P1 ie, the interval [A,1], into a grid A; = p,; < py
<+ <pi = 1 symmetrically about the midpoint (1 + A;)/2. For each j=
L2, ..., N, construct an acceptance region A(A;,p;) such that

P{(Xz Y) is in A(Ai;paj)lpl =pPph=p—-Al=1 - o

and A(A;,p;) contains as few points as possible. This is done by including in
A(4,py) those points (x, y) that have the highest probabilities under P = pip2
= p1 — 4; until the total probability becomes at least equal to 1 — «. Let

Ni
A(4) = A(Ai:P.'l)UA(Q:',PQ) Wier s A(Af;p:’M’) = 'U1 A(&;Pﬁ;‘)
j=

This acceptance region A(A;) often is larger then necessary; ie, there are points
(x*, ¥*) in A(4)) such that

P(X, V)isin A(Q) - (x*, y)lpop, = p-Alz1-a

for all p,. Such points must be eliminated from A(A)) subject to the condition
that the final acceptance regions must be in some sense monotone in 4; so
that when they are inverted, the resulting CIs for A will be interval-valued.
For more details, see Refs. 21 and 22.

Returning to the multistage setting, we first introduce some notation. Let
XXy ..., XcandY,, Y, ..., Yebe two mutually independent sequences
of binomial rv’'s such that Xi ~ B(ny,py) and Y, ~ B(ny.,p2) fork = 1,2, . . .,
K; X, and Y, denote the number of successes on the two treatments in the

kth Stage. Let Sic = X]"'Xz + -+ Xk and Tk = Y: + Yz + -+ Yk be
the cumulative number of successes on the two treatments in the first k stages
in a total of le =My + Ay + - - + Mk and Nz&. = Ny + Hag + - -+ + Hay

observations, respectively. Based on these data we wish to construct RCls
{lA. 0], k=12, .. ., K} so that they have an overall coverage probability
at least 1 — q, ie,

PAu<A<dy  forallk=12,...,K21-«

As before, choose a sequence «; < o < - -+ < ag = a. For the sake of
simplicity, we will assume that the number of stages K, the sample sizes (n,,,
n21), . - ., (Mg, 1), and the error rates ay, a, . . ., ag are fixed, although
this need not be the case.

The algorithm for A is a logical extension of the algorithm for p. First
partition the interval [0,1] into a sufficiently fine grid on A. (For —1 < A <
0, the acceptance regions can be obtained by symmetry.) At stage 1, construct
a(l - o) level acceptance region, A;(4,), in the two-dimensional sample
space of (S, T;) by applying the CT method, ie,

P{(5,,T)) is in AA)pupa =p - A} =1 - a; for all p,

In general, at each stage k, apply the CT method as above, to obtain (1 -
) level acceptance regions A,(1) subject to the following condition:
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P{(S_j,]}) is In A_,(ﬁ,) fOl’j = 1,2, SN i kfphpz =P — A,} = 1 - O

This ensures that (5, Ty), (S, T2), - . ., (5 Ti) are all in their respective
acceptance regions, A;(4;), A2(A), . . . , AlQ;), which are computed sequen-
tially. Since 1 — oy is decreasing in k, the existence of these acceptance regions
is guaranteed. Invert these acceptance regions to obtain a kth stage Cl, [Aw, Axul,
for A for any given outcome (S, Tx), S« = 0,1, . . ., NywTie = 0,1, . . ., N
That the resulting sequence of Cls has an overall coverage probability 1 — a
follows by the same argument as in (3).

A FORTRAN program to implement this algorithm is available from the
first author. This program was used to compute 90% RClIs for A for a three-
stage group sequential plan with (ny,n3,n3) = (15,10,10), i = 1,2. The linear
error rate use function (o,;,03) = (.333, .0667, .1000) as in Table 1 was
chosen. The detailed results are not presented here, but we note that the
average CI width at the third stage was .346, which may be compared with
.310, which is the average CI width for 90% intervals for A using the CT
method for a fixed sample with n; = n, = 35. Thus the cost of making two
previous intervals is about an extra 10% in average interval width.

A NUMERICAL EXAMPLE

O'Brien and Fleming [9] describe a clinical trial carried out at the Mayo
Clinic during the years 1958-1973 to compare two drugs, prednisone (treat-
ment 1) vs. prednisone + vincristine (treatment 2) in the treatment of leu-
kemia. The response was remission (success), which in this case occurs rel-
atively soon after the treatment or not at all (failure). The study had three
stages with ny = 7, ny = 14 for k = 1, 2, 3. The cumulative number of
successes (Si, Ti) were (5, 12), (9, 25), and (14, 38) fork = 1, 2, 3, respectively.

O’Brien and Flemming [9] consider three methods for testing Ho: A =
p; — p2 = 0, all based on normal approximation (specifically, Pearson’s x*
statistic): a fixed-sample method, Pocock’s [14] group sequential method with
three stages, and O’Brien and Fleming's [9] group sequential method with
three stages. Both the fixed sample method and the O’Brien-Fleming method
reject Hy against a two-tailed alternative at a signifcance level @ = .02, but
the Pocock method rejects only at @ = .05; both the O’Brien-Fleming and
Pocock methods reject at third stage. (Note that the significance levels re-
ported in O’Brien and Fleming [9] are one-tailed.)

The normal approximation methods seem inapplicable for these data be-
cause of the small number of nonremissions in each treatment group. Spe-
cifically, there are only (2, 3, 2) and (2, 1, 1) nonremissions in the three stages
for treatment 1 and treatment 2, respectively. In fact, the exact two-tailed p
value for the results of this trial (assuming a fixed sample trial) using Fisher’s
exact test is .032. Therefore we computed exact 95% RClIs for A for these data
with (o), a, a3z) = (.0167, .0333, .0500). They are (—.59, .28), (—.56, .05),
(— .48, .00), respectively, for the three stages. Using these RCls would lead
to rejection of H, in favor of a two-tailed alternative at stage 3 at « = .05, but
these RCIs could also be weighed with other information before drawing a
final conclusion. Again, other choices of the «; are possible, resulting in
slightly different RCls.
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REPEATED CONFIDENCE INTERVALS FOR THE RELATIVE RISK
AND ODDS RATIO

The basic idea behind the construction of exact RCIs for A easily extends
to other functions of p, and p2 such as the relative risk p = p,/p, and the odds
ratio ¢ = pi(1 — p;)/p(1 — p;). What one needs is a Sterne-type method to
construct a one-time fixed-sample exact CI for the given parameter that can
be used as a basic building block for the multistage algorithm. Such methods
are given by several authors but we used the ones proposed by Coe and
Tamhane [21]. The CT method for pis very similar to that for 4; it also involves
finding the minimum probability content (over the nuisance parameter p;) of
the acceptance region for each value of p = po in the grid, but note that here
the range of p is the infinite interval [0,%]. The CT method for ¥ is a conditional
method (as are most other methods for ) based on the conditional distribution
of X given the total number of successes X + Y = m. This conditional dis-
tribution is independent of the nuisance parameter p, and reduces the sample
space to one dimension. Thus the computations are much easier in this case.
FORTRAN programs for computing RCIs for p and  are available from the
first author.

DISCUSSION

A referee has noted the following drawbacks associated with the Sterne
type approach used in the present paper:

1. It gives short two-tailed Cls by trading error probabilities in the two tails,
which ignores the possibility of different costs for over- and under-esti-
mating the parameter of interest.

2. The error probabilities in the two tails are not individually bounded.
Therefore, if such a CI is used to test a one-tailed alternative hypothesis
then the type I error probability will only be known to lie between 0 and
a. On the other hand, if a Clopper-Pearson [10] type of approach is used,
then the type I error probability will be controlled at a/2.

Drawback (2) can be readily overcome by modifying the method proposed in
the present paper to construct one-tailed (upper or lower) RCIs if they are
intended to be used to test a one-tailed alternative hypothesis. The resulting
test would in general be more powerful since it will control the type I error
probability at « rather than o/2. The two-tailed RCIs derived in the present
paper would result in a more powerful test of a two-sided alternative hy-
pothesis compared to a test based on Clopper-Pearson-type RCls because
the latter would be longer on average due to the separate bounds on the
individual tail probabilities. Of course, one must remember that the very
reason for resorting to RCIs is to get away from the rigid framework of
repeated hypothesis testing.

Drawback (1) cannot be similarly overcome. A Clopper-Pearson type of
approach must be used if the lower and upper tail error probabilities are
separately specified to be, say, o, and ay (@, + ay = @), respectively. How-
ever, as we show below, this would put severe restrictions on how these
error probabilities can be allocated over the successive stages of a group
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sequential trial, which would result in unnecessarily wide RCIs. We will
illustrate this for the case of a single Bernoulli parameter p.

To extend the Clopper-Pearson approach, it is necessary to construct two
sequences of RCIs {[px, 1, k = 1,2, ..., Kland {[0, prul, k = 1,2, ..., K}
such that

,2....8=21-a

Ppu<p forall k
and
P{Dﬁmu forallk 1,2,...,1(};1""11“

These two inequalities taken together imply the overall coverage probability
condition 1. To apply the method, one needs to choose two error rate se-
quences: ey < oy T - Say T opand oy S gy S v S gy = oy
Then, as explained earlier, a grid of values of p must be chosen and for each
value p = p, in the grid, two sequences of lower and upper acceptance limits,
{Li(po), k = 1,2, ..., Ktand {Upo), k = 1,2, .. ., K}, must be determined
satisfying

P{L,(Po) =5 = U,(po) fori = 1,2, ...,k-1; Lk(pﬂ) = Sklpg} =1-

(XH_,;C=1, ,...,K

and
P{Lipo) < S; < U{po) fori
o k=1,2,...,K

Combining these two and putting ax. + oy = o, it follows that the accep-
tance limits [Li(po), Ux(po)] satisfy condition 2. But, in order for Li(po) and Ux(po)
to exist, one must have

I

1,2, ..., k=15 < Udpo)lpo} = 1 -

max(l — oy, 1 — ) <=1 — (e + oyy) = 1 — oy
fork'=2,.::.; K
which is equivalent to

mil’l(ﬁﬂ_;aku) = 0 fork = 2, e K
Thus, if one chooses a;, = oy at each stage, then one must have
QkL=(lku=Ctkj2$tb“(2X2K_k) fOl'k=1,2,...,K

As an example, for « = .05 and K = 3, one must have a;; = ayy = .0125/2
and ay = oy < .025/2. Thus the « values for initial stages are very small
making the corresponding RCIs too wide. This problem is further com-
pounded by the discreteness of the probabilities being computed which typ-
ically causes the inequalities to be strict. Therefore, it is our view that the
Clopper—Pearson type of RCIs, although computable, will be extremely con-
servative and thus of much less practical value.
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