A note on the use of residuals for detecting an outlier in linear regression

By AJIT C. TAMHANE

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, U.S.A.

Summary

Consider the usual linear regression model \(y = X\beta + \varepsilon \), where the vector \(\varepsilon \) has \(E(\varepsilon) = 0 \), \(\text{cov} (\varepsilon) = \sigma^2 V \), where \(V \) is known. Let \(e = y - \hat{y} \) be the least squares residual vector. It is shown that a test based on the transformed residual vector \(d^* = V^{-1} e \) has, in the class of linear transformations of \(e \), certain optimal power properties for detecting the presence of a single outlier when the label of the outlier observation is unknown. The outlier model considered here is that of shift in location.

Some key words: Linear regression; Outlier; Power; Residual.

Consider the usual full rank linear regression model

\[y = X\beta + \varepsilon, \]

where \(y \) is an \(n \times 1 \) vector of dependent variables, \(X \) is an \(n \times r \) matrix of nonstochastic regressors, with \(r \leq n \), \(\beta \) is an \(r \times 1 \) vector of unknown parameters and \(\varepsilon \) is an \(n \times 1 \) vector of random errors with \(E(\varepsilon) = 0 \) and \(\text{cov} (\varepsilon) = \sigma^2 V \), where \(V \) is a known symmetric positive-definite matrix and \(\sigma^2 \) is an unknown positive scalar.

The least squares residual vector \(e \) is given by

\[e = y - \hat{y} = y - X\hat{\beta} = \{I - X(X'V^{-1}X)^{-1}X'V^{-1}\} y. \]

Standardized residuals \(z_i = \{e_i/\sqrt{\text{var}(e_i)}\} \) are often used to detect outlier observations or gross errors. In this note we show that the transformed residual vector \(V^{-1} e \) has certain optimal power properties for detecting a single outlier when the experimenter is unaware that there is exactly one outlier present. Thus the usual tests based on \(e \) are less powerful for this situation.

To avoid the complicated distribution problems associated with studentized residuals and obtain the power results in an uncluttered and distribution-free manner, we shall assume that \(\sigma^2 \) is known and hence can be taken to be unity.

We consider the class of all linearly transformed residual vectors \(d = Ae \), where \(A \) is an \(n \times n \) nonsingular, nonrandom matrix. The outlier detection procedure will be as follows. Define a test vector \(z \) based on \(d \) by

\[z_i = d_i/\sqrt{\text{var}(d_i)} \quad (i = 1, \ldots, n). \]

Then declare the \(i \)th observation an outlier if \(|z_i| > k \), where \(k \) is a suitably chosen positive constant.

We consider an outlier model in which \(E(e_i) \neq 0 \) for some \(i (i = 1, \ldots, n) \), where the label \(i \) of the outlier observation is, of course, unknown to the experimenter. Without loss of generality we may take the \(n \)th observation to be an outlier. Thus let \(E(\varepsilon) = \delta \), where \(\delta_n \neq 0 \) but \(\delta_1 = \ldots = \delta_{n-1} = 0 \). Under this assumption we define an optimal test vector \(z^* \), or equivalently the corresponding \(d^* \) since \(z^* \) and \(d^* \) are related by (1), for detecting
the outlier as follows: \(z^* \), or equivalently the corresponding \(d^* \), is said to be an optimal test vector for the test \(| z_i | > k \) for detecting a single outlier if for all \(k > 0 \),

\[
\text{pr} (| z^*_n | > k) \geq \text{pr} (| z_n | > k)
\]

(2)

for all \(z \),

\[
\text{pr} (| z^*_n | > k) > \text{pr} (| z^*_i | > k) \quad (i = 1, \ldots, n-1),
\]

(3)

with a strict inequality in (2) for at least some \(z \).

Thus \(z^* \) has the property that the correct observation is declared an outlier with the highest possible probability. Preparatory to stating the main result we introduce some additional notation: let \(P \) be an \(n \times n \) nonsingular matrix such that

\[
P'P = V^{-1}, \quad B' = AP^{-1}, \quad M = I - PX(X'V^{-1}X)^{-1}X'P',
\]

where \(I \) is an \(n \times n \) identity matrix. Then it is easy to show that \(E(d) = B'M\delta \), and \(\text{cov} (d) = B'MB = C \), say. Also write \(\gamma_i = E(z_i) = (B'M\delta)_i/\sqrt{c_{ii}} \), where \(c_{ii} \) is the \(i \)th diagonal entry of \(C \). Now we state our main result.

Theorem. If for fixed \(k > 0 \), \(\text{pr} (| z_i | > k) \) is an increasing function of \(| \gamma_i | \) for \(i = 1, \ldots, n \), then the optimal test vector for detecting a single outlier is given by \(d^* = V^{-1} e \), that is \(A^* = V^{-1} \).

Note that the assumption that \(\text{pr} (z_i > k) \) is an increasing function of \(| \gamma_i | \) \((i = 1, \ldots, n)\) is true, e.g. under the normality assumption for \(\varepsilon \).

Proof. Let \(Q = B^{-1} P \) and let \(p_i, q_i, b_i \) and \(c_i \) be the \(i \)th column vectors of \(P, Q, B, \) and \(C \) respectively. Then for \(i = 1, \ldots, n \)

\[
\gamma_i = \frac{(CQ\delta)_i}{\sqrt{(b_i'Mb_i)}} = \frac{\delta_n c_i^* q_n}{\sqrt{(b_i'Mb_i)}} = \frac{\delta_n b_i'Mp_n}{\sqrt{(b_i'Mb_i)}}
\]

when \(\delta_1 = \ldots = \delta_{n-1} = 0 \) and \(\delta_n \neq 0 \). Next

\[
A^* = V^{-1} \Rightarrow B^* = P'^{-1} V^{-1} = P'^{-1} P' P = P, \quad Q^* = B'^{-1} P = I.
\]

Therefore again for \(i = 1, \ldots, n \)

\[
\gamma_i^* = \frac{\delta_n c_i^* q_n^*}{\sqrt{(p_i'Mp_n)}} = \frac{\delta_n c_i^* q_n^*}{\sqrt{(p_i'Mp_n)}} = \frac{\delta_n p_i'Mp_n}{\sqrt{(p_i'Mp_n)}}.
\]

To show (2) it suffices to show that \(| \gamma_i^* | \geq | \gamma_n | \), that is

\[
\sqrt{(p_i'Mp_n)} \geq | b_i'Mp_n | / \sqrt{(b_i'Mb_n)}
\]

which follows by the Cauchy–Schwarz inequality. Next, to show (3) it suffices to show that \(| \gamma_i^* | > | \gamma_i^* | \) for \(1 \leq i \leq n-1 \), that is

\[
\sqrt{(p_i'Mp_n)} > | p_i'Mp_n | / \sqrt{(p_i'Mp_i)},
\]

which also follows by the Cauchy–Schwarz inequality; the strict inequality holds because \(P \) is nonsingular.

An obvious corollary is that if \(V \) is a diagonal matrix, then any \(d = A e \) gives an optimal test vector if \(A \) is diagonal.

[Received July 1981. Revised September 1981]