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Randomized Response Techniques for Multiple 
Sensitive Artr butes 

AJIT C. TAMHANE* 

Some randomized response techniques for investigating 
t _ 2 sensitive attributes are reviewed. A new technique 
is proposed that has the advantage of requiring only r 
trials per respondent (r ' t) if estimation of up to r-variate 
joint proportions is desired. The case of r = 2 is analyzed 
in detail. A procedure for deriving the restricted maxi- 
mum likelihood estimators (MLE's) of the proportions 
and a test of independence between any set of pairs of 
attributes are given. The notion of measure of respondent 
jeopardy is extended to our setup. Keeping this measure 
fixed, we make numerical comparisons for the t = 2 case 
between competing techniques in terms of the trace of 
the asymptotic variance-covariance matrix of the esti- 
mator vector. Finally, a practical application of the new 
technique is described. 

KEY WORDS: Randomized response; Restricted maxi- 
mum likelihood estimators; Multiple sensitive attributes; 
Sample survey techniques; Respondent jeopardy function. 

1. INTRODUCTION 
Surveys for eliciting information on sensitive or stig- 

matizing attributes are plagued by the problem of un- 
truthful responses or noncooperation by respondents, 
both of which lead to biased estimates. To avoid this 
''evasive answer bias" and to preserve the privacy of the 
respondent, Warner (1965) introduced an innovative tech- 
nique commonly referred to as randomized response (RR), 
technique. Since Warner's article, many authors have 
made contributions to this general area; a review of these 
contributions may be found in Horvitz, Greenberg, and 
Abernathy (1975). 

Most of the work on RR techniques is restricted to the 
study of a single sensitive attribute. Very often, however, 
social researchers are interested in studying several sen- 
sitive attributes together. Thus the researchers are not 
only interested in estimating and testing hypotheses con- 
cerning the proportions of the population possessing the 
individual sensitive attributes under study, but also the 
degree of association between the different attributes. 
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Engineering and Management Sciences, Northwestern University, Ev- 
anston, IL 60201. The author wishes to thank the previous editors, 
Morris H. DeGroot and George T. Duncan, an associate editor, and the 
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author is grateful to Cynthia Grant, Fred Hubbard, and Kate Robinson 
for carrying out the interviews. This research was supported by Grant 
NIE-C-74-0115 from the National Institute of Education. The author 
is grateful to Robert Boruch for providing this support. 

Suitable statistical techniques for collecting and analyz- 
ing data for surveys dealing with such multiple sensitive 
attributes do not appear to be available. 

The purpose of this paper is two-fold. First, we briefly 
review some recent literature that has a bearing on the 
multiple sensitive attributes problem. Second, we pro- 
pose and develop for the given problem a new RR tech- 
nique that has some desirable properties. This technique 
is an extension of a technique earlier proposed by Barks- 
dale (1971), but the estimation procedure proposed here 
is new. We also give a test of pairwise independence for 
any set of pairs of attributes. We extend the notion of 
respondent jeopardy proposed by Leysieffer and Warner 
(1976) to the multiple sensitive attributes set up. Keeping 
this measure of respondent jeopardy fixed, we carry out 
a numerical comparison of efficiencies of some competing 
procedures. Finally, we give the results of an actual ap- 
plication of the technique to demonstrate its feasibility 
in practice. 

In the numerical comparisons it turns out that the pro- 
posed technique does not fare as well as an "optimal' 
version of a technique involving a repeated (for each at- 
tribute) application of the Simmons unrelated question 
technique. Nevertheless, it was felt desirable to publish 
the results because the technique does have some prac- 
tical advantages and performs at least reasonably well. 
In any case, the comparisons between competing tech- 
niques should prove useful to the practitioner. Further- 
more, many of the results are new and interesting and it 
is hoped that they will attract other researchers to work 
on the problem. 

2. SOME PREVIOUS WORK-AN OVERVIEW 
In his dissertation, Barksdale (1971) proposed and ana- 

lyzed some'RR -techniques for investigating two sensitive 
dichotomous attributes. In particular, he considered a 
repeated (for each attribute) application of Warner's 
original technique (see also Clickner and Iglewicz 1976), 
a repeated application of Simmons's unrelated question 
technique (Greenberg et al. 1969), and a third technique 
that we describe in detail in the next section. In the re- 
peated application of Warner's technique (W technique) 
two trials are performed per respondent. On the ith trial 
(i = 1, 2) the interviewer presents the respondent with 
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a pair of statements: "I possess the attribute Ai" and 
"I do not possess the attribute Ai," where Ai is a sensitive 
attribute. The respondent picks one of the two statements 
at random according to known probabilities Pi and 1 - 
Pi (Pi * ) and, without revealing his choice to the in- 
terviewer, responds to it. Then from the observed fre- 
quencies of "Yes-Yes," "Yes-No," "No-Yes," and 
"No-No" responses, and the knowledge of the PF's, the 
desired proportions can be estimated. The repeated ap- 
plication of Simmons's technique (S technique) is quite 
similar, except that on the ith trial (i = 1, 2) the respond- 
ent is presented with a pair of statements, "I possess the 
attribute Ai" and "I possess the attribute Yi," where Y, 
is some unrelated and innocuous attribute. From the 
knowledge of Pi = the probability of picking the first 
statement, Pi = the proportion of population possessing 
the attribute Yi, and the observed frequencies of re- 
sponses, the desired proportions can be estimated. 

Some other contributions to the problem of multiple 
sensitive attributes are as follows. Drane (1975, 1976) 
studied the problem of testing independence between two 
sensitive dichotomous attributes, using repeated appli- 
cations of various RR techniques for single attributes. 
Warner (1971) proposed a general linear RR model for 
many attributes but did not explicitly consider the prob- 
lem of joint distributions of the attributes. Another tech- 
nique for estimating marginal distributions of several sen- 
sitive attributes that makes use of weighing designs was 
proposed by Raghavarao and Federer (1979). 

Related work on the RR techniques for multiple sen- 
sitive attributes has been done in Europe by Eriksson 
(1973) and Bourke (1975). Eriksson presented a theory 
for the general case of a two-way contingency table. 
Bourke considered various designs for estimating the cor- 
responding cell probabilities in a two-way table formed 
by t sensitive attributes, each having c categories of which 
at most (c - 1) are sensitive. Bourke's work does not, 
however, address the problem of estimating joint pro- 
portions of different attributes. The details of some of 
these techniques are found in Horvitz, Greenberg, and 
Abernathy (1976). 

3. MULTIPLE RR TRIALS TECHNIQUE 
3.1 Barksdale's Third Technique 

The technique we are about to propose is an extension 
of the third technique proposed by Barksdale (1971), 
which is as follows. The two statements concerning the 
two sensitive attributes are phrased so that a "Yes" re- 
sponse to one of the two statements would be nonstig- 
matizing (e.g., the two statements might be "I have never 
smoked marijuana" and "I am an alcoholic"). The in- 
terviewer presents both statements to the respondent on 
two occasions. On each occasion the respondent picks 
one of the two statements at random, unknown to the 
interviewer, but according to some known probability 
(different for each occasion), and responds to it. This 
procedure maintains the privacy of the respondent and 

yet allows the researcher to compute the estimates of the 
marginal and bivariate proportions of the attributes from 
the observed frequencies of "Yes-Yes," "Yes-No," 
"No-Yes," and "No-No" responses. 

In a survey dealing with t ?-2 sensitive attributes, the 
W and S techniques involve t trials per respondent. If t 
is large, then these techniques become tedious, costly, 
and lead to degradation in cooperation on the part of the 
respondents. Also, the estimating equations involve all 
the joint proportions, which often the researcher is not 
interested in. On the other hand, the technique described 
in the previous paragraph can be easily extended to the 
case of t > 2, with the number of trials per respondent 
restricted to r < t if the researcher's interest only lies in 
up to r-variate joint proportions. Quite often, r = 2 will 
suffice for the purposes of the research. 

Intuitively, it is clear that for t > 2, since the W and 
S techniques involve t trials while the technique to be 
proposed involves only r < t trials, the latter technique 
must be less informative. This is indeed so. Part of the 
extra information obtained by the former techniques is 
in the form of estimates of higher order joint proportions 
that are not obtainable with the latter technique, while 
the rest of the extra information manifests itself in terms 
of lower variances of the estimates. The former tech- 
niques, however, would suffer from degradation in co- 
operation for t as low as three or four while the latter 
technique, for fixed r (which is based on investigator's 
interests and goals) would suffer from somewhat inflated 
variances. The exact trade-off is not clear, nor is it clear 
how much larger sample sizes would be required with the 
latter technique to compensate for the inflated variances. 
These issues need further research. 

Now we describe the latter technique, which we refer 
to as the multiple RR trials technique or the M technique. 

3.2 Notation and Description of the Technique 
Consider t - 2 dichotomous attributes A1, A2, . . .. 

A,; we shall assume that all the attributes are sensitive, 
but obviously that need not be so. Let Oi, ...i denote the 
unknown proportion of individuals in the target popula- 
tion that possess the attributes Ai,, ... , Aiu(1 < i1 < 

< iu ? t, 1 - u ? t). The researcher's interest lies 
in making statistical inferences (estimation and hypoth- 
esis testing) concerning the 0's. 

For employing the multiple RR trials technique, the 
statements must be phrased so that a "Yes" response to 
some statements would be nonstigmatizing, while a 
"No" response to the others would be so. Without loss 
of generality, we shall assume that the first s < t state- 
ments are phrased "I possess the attribute Ai" (1 ? i 
? s), a "No" response to each one of which would be 
nonstigmatizing; the remaining t - s statements are 
phrased "I do not possess the attribute Ai" (s + 1 ? i 
? t), a "Yes" response to each one of which would be 
so. An appropriate choice of s would be -t/2. Let 

.iru4 be defined in the same manner as Oi..i but with 



918 Joumal of the American Statistical Assoclotion, December 1981 

respect to the modified attributes Bi, which are either the 
original Ai(I ' i _ s) or the complements of the Ai(s 
+ 1 _ i ' t). It is clear that the 0's can be obtained from 
the 7T's and vice versa, and therefore we shall consider 
the equivalent problem of estimation of the u's. 

As remarked in the previous section, we shall assume 
that the researcher is interested only in the marginal and 
bivariate proportions; that is, i.(1 _< i ' t) and rrir(1 ' 
i <j t), respectively. Thus there are t(t + 1)/2 unknown 
parameters to be estimated and only two trials may be 
performed per respondent. We now describe the technique. 

A total sample of n individuals is divided into b _ 1 
subsamples; the value of b will be specified in the fol- 
lowing section. Let n1, n2, . .. , nb be the subsample 
sizes with h = n. 

Each individual is presented all the t statements and 
asked to respond to one statement picked at random ac- 
cording to some randomizing device, but not reveal his 
choice of the statement to the interviewer. This procedure 
is repeated with another randomizing device, and both 
the responses are recorded. Let Ph/'( denote the (known) 
probability that an individual drawn from the hth sub- 
sample picks, on the lth trial, the ith statement (1 i 

t); obviously we have I= Phi"0 = I for I - h ' b 
and 1 = 1, 2. 

3.3 Estimation of the w's 

Suppose that the responses are coded so that a score 
of 2` ' is assigned to a "Yes" response on the Ith trial 
and a score of 0 is assigned to a "No" response. Then 
the total score, say v, completely identifies the individ- 
ual's response. For example, v = 3 corresponds to a 
"Yes-Yes" response, v = 2 corresponds to a "No-Yes" 
response, and so on. Let XhV denote the probability of 
obtaining a score of v for an individual drawn from the 
hth subsample, X = (XI,, X12, X13, * * * , 119 Xb2, Ab3) s- 
and iT = (,7T , t, 12, XT13, ITt - 1)'. Then we have 

A = RTr, (3.1) 
where the elements of the matrix R = {Rij} are given by 
the following equations. For 1 h h-' b and 1 c i _ t we 
have 

R3h-2,2 = Phi( '(l - Phi 

R3h1-,i = Phi (2 - Phi' ), (3.2) 

R3h,i = Phi(I)Phi 9 

andfor ii j< tifk = it - i(i + 1)/2 +jwehave 

R3h-2,k - (Phi MPhj(2 + Ph/'IPhi 2) (3.3) 

= R3h-I,k = -R3h,k . 

To find b, the total number of subsamples necessary 
to estimate the t marginal proportions {fi} and (t) bivar- 
iate proportions {7rri,}, consider an extreme case (and a 
most favorable one from the statistician's viewpoint) in 
which the P values can be chosen either equal to zero or 

one (which corresponds to the "direct response" case). 
By choosing Ph.(l = 1 and P*J(2) 1 for different pairs 
(i, j) for different subsamples h(l c h ' b), it is easy to 
see that all the parameters can be estimated by using 
(2) subsamples, and no smaller number of subsamples 
will do. An extension of this argument shows that even 
for general P values, at least (2) subsamples are required 
to estimate all the parameters. In other words, by suitably 
choosing the P's, the matrix R defined in (3.2) and (3.3) 
can be made to have a full column rank only if b _ (). 
Let us then assume that b _ (2) and that R is a full column 
rank matrix. 

We propose to obtain the maximum likelihood esti- 
mator (MLE) of n from the observed data {nhv} where nhv 

= the number of individuals from the hth subsample hav- 
ing a score of v(O c v c 3), 2J3=O nhv = nh(i _ h _ b). 
The usual method of first obtaining the unrestricted MLE 
(UMLE) of A (i.e., the UMLE of Xhv = nahvnh for 0 c 
v c 3, 1 c h c b) and then obtaining the UMLE of a by 
"solving" (3.1) is not applicable for two reasons in the 
present context. 

1. Matrix R can be chosen to be a square full rank 
matrix only for t = 2. For t > 2, in general, there is no 
unique solution in a to (3.1). 

2. Even in the case in which the UMLE of a can be 
obtained by the above method, the resulting estimator 
may not satisfy the natural restrictions on the r's, 
namely, that 

0O wi 1 Viand (3.4) 
max(O, wi + nj - 1) _rr _min(wi, wj) (i, j). 

From a theoretical viewpoint, the UMLE of T may even 
be inadmissible, as shown in the case of Warner's tech- 
nique for a single attribute by Fligner, Policello, and 
Singh (1977) and Devore (1977); it appears that Warner 
(1965) was also aware of this problem, as is evident from 
the footnote on page 65 of his paper. 

Therefore, we must find the restricted MLE (RMLE) 
of x, say *. We propose to obtain * directly by maxi- 
mizing the likelihood function 

b 3 

Lac: fJ H )nhv (3.5) 
h=I v=O 

subject to (3.4). In (3.5) the Xhv are given in terms of w 
by (3.1). Denote the restricted maximum of L by L*. The 
constraint set (3.4) is linear in the 1T's and the objective 
function loge L can be easily checked to be concave in 
the uT's. The resulting nonlinear programming problem 
is thus well structured and can be solved quite econom- 
ically on a computer using one of the commonly available 
algorithms. 

3.4 Properties of * 

The RMLE * is biased in small samples but is asymp- 
totically (as nh~ -Xo, Vh) unbiased. The asymptotic var- 
iance-covariance matrix of *T (which is also the exact 
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variance-covariance matrix of theiUMLE of w) is given 
by the inverse of the information matrix 5; we give below 
an expression for the elements of the upper left t x t 
principal submatrix of 5. For 1 c i, j - t we have 

5ij = E{2 log L/atirtj} 
b 3 

= Enh Y (111h,)(8ah,1aUYaXh,1aUj)- 
h = I v=O 

The remaining elements of 5, which would involve axhvl 
atij terms, can be obtained in an analogous manner. The 
various derivatives can be evaluated easily by using (3.1). 

Expressions for the variances and covariances of the 
RMLE's of the 0's, say 0's, can be obtained from those 
of the 1T's. Large-sample hypothesis testing concerning 
the 0's can be carried out by using the expressions for 
their asymptotic variances, with X replaced by its con- 
sistent estimate X = R*. Expressions for the (asymp- 
totic) variances for t = 2 are not given here but are 
obtainable from the author. 

3.5 Test of Independence 

First we note that testing pairwise independence be- 
tween the original attributes, say Ai and Aj, is equivalent 
to testing pairwise independence between the corre- 
sponding modified attributes. Therefore, we shall con- 
sider the problem of testing independence between pairs 
of modified attributes. 

Suppose that it is desired to test the hypothesis Hi: 
'i. = lirj for all pairs (i, j) in a certain set i;. We can 
use the generalized likelihood ratio method to test this 
'hypothesis as follows. Compute the maximum of the like- 
lihood function L in (3.5) subject to the following con- 
straints on the iT's 

? wi I Vi, 

max(O, iT + iTj - 1) ' mij ' min(Qi, iTj) V(i, j) (EJ 

Wij =i7rij V(i, j) E i. 

(3.6) 

Denote the corresponding maximum value of L by Lg*. 
Then under Hq asymptotically -2 log,(Lg*/L*) has a 
chi-squared distribution with f degrees of freedom (df), 
where f is the number of pairs in the set i. 

3.6 Choice of {Phi/} 

The determination of the "optimal" (for an appropriate 
criterion and subject to suitable constraints on the re- 
spondent jeopardy; see Sec. 5.1) choice of the design 
probabilities {Ph,('} appears to be a difficult problem be- 
cause of the complexities of the expressions for the 
asymptotic variance-covariances of {*} and the number 
of design parameters that can be manipulated. It should 
be pointed out that even if expressions for "optimal" 
{Ph1(0} can be obtained, they would depend on the un- 

known vector n. Thus, for implementation purposes one 
must use some prior estimate of n. 

Because of the above difficulties, we provide only some 
heuristic guidelines for the choice of {Phi('I}. It can be 
readily verified that if each Phi(' = Ilt, then matrix R in 
(3.1) becomes a deficient column rank matrix and hence 
,a is not estimable. Therefore, for fixed h and 1, the Phi") 
should be chosen as far away (in either direction) from 
Ilt as possible, subject to some respondent jeopardy con- 
straint and the constraint that = I Ph P) = 1 for 1 - h 
_ b and 1 = 1, 2. In fact, for large t, the length of the 
questionnaires can be cuV down for different subsamples 
by choosing PhiCO = 0 for different sets of statements. If 
the researcher is equally interested in all the attributes, 
the Phi/( should be chosen symmetrically as far as pos- 
sible. For t = 2, such a symmetric choice is provided by 
P1l(I) + p11(2) = 1; subject to this restriction, PI1(I) and 
Pjl (2) may be chosen as far away from A as the jeopardy 
constraint permits. The choice will depend on the average 
educational and social sophistication of the population. 
A pilot survey should be carried out to test different ran- 
domizing devices (different {Phi('}), as well as the ques- 
tionnaire itself. 

4. A MEASURE OF RESPONDENT JEOPARDY 

We shall consider two techniques in competition with 
the M technique developed here: the W technique and 
the S technique. For a fair comparison between these 
techniques it is necessary to keep some measure of the 
jeopardy of respondent's privacy fixed. In the following 
section we develop such a measure. 

4.1 Definition of the Jeopardy Function 

Leysieffer and Warner (1976) and Lanke (1976) have 
developed two different approaches for constructing such 
measures. Here we shall extend only the Leysieffer-War- 
ner approach to the case of t 2 2 sensitive attributes: The 
Lanke approach can be extended in the same manner, 
but because of lack of space we do not do so here; the 
Lanke approach leads to the same choice of design con- 
stants for different techniques as the Leysieffer-Warner 
approach. 

Consider the 2' mutually exclusive and collectively 
exhaustive groups into which the population is divided 
depending on the possession or nonpossession of differ- 
ent attributes, and denote these groups by AIA2 . . . A,, 
A,cA2 . .. A,, . . . , A .cA2c ... A,c where the notation 
is obvious. Consider, say, the group A1A2 ... A,. By 
using Bayes' theorem in the same manner as Leysieffer 
and Warner (1976), we can show that a measure of in- 
formation resulting from response v in favor of AIA2 
... A, against (AIA2 ... A,)c is given by 

g(v; A1A2 . . . A,) (4.1) 

= P(v | A1A2 . . . A,)IP(v | (A1A2 . . . A,)c). 
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Thus the response v can be regarded as jeopardizing with 
respect to the group AIA2 . . . A, (and not jeopardizing 
with respect to (AIA2 . . . At)C) if g(v; AIA2 . . . A,) > 
1; and not jeopardizing with respect to either A IA2 . . . 
A, or (AA2 ... A,)c if g(v; AIA2 ... A,) = 1. Now to 
get a measure of the worst jeopardy of the privacy of an 
individual in group AIA2 . . . A, we define the jeopardy 
function for that group as 

g(AiA2 ... A,) = max g(v; AIA2 ... A,). (4.2) 
v 

The jeopardy functions for other groups are defined in 
an identical manner. 

The design constants of each RR technique should be 
chosen so that the jeopardy function values for different 
groups do not exceed some prespecified upper bounds. 
We note here that these jeopardy function values will 
depend in general on the unknown 0's (in contrast to the 
case of t = 1). Therefore, some a priori guesses at values 
of 0's will be necessary to compute them. 

4.2 Jeopardy Functions for the Competing 
Techniques 

Using the definitions (4.1) and (4.2), we shall derive 
the expressions for thejeopardy functions associated with 
the W, S, and M techniques for t = 2. Here we shall 
consider only the following special case of practical in- 
terest. (The general case with t ' 2 is quite straightfor- 
ward but algebraically messy and is hence omitted.) For 
the W technique we take P1 = P2 = Pw (say) where Pw 
> i without loss of generality. For the S technique we 
take PI = P1 = Ps (say) and PI = P2 = P (say). For the 
M technique we take P1 1(1) = 1 - P1 (2) = PM (say) where 
PM > 2 without loss of generality. 

Define additional notation as follows: Qw = 1 - Pw, 
Qs = 1 - PS, QM = 1 - PM, y = 1 - ,B, and 012* = 
1 - 01 - 02 + 012. The expressions for the jeopardy 
functions are given in Table 1; the derivations of these 
expressions are obtainable from the author. 

4.3 Equating the Jeopardy Functions for the 
Competing Techniques 

Our approach here will be to first equate the jeopardy 
functions for the four different groups for the competing 
techniques and obtain their equivalent design constants, 
that is, their P values and the , value for the S technique. 
Clearly, the values of design constants yielded by the 
four sets of equations will not in general be consistent. 
We shall follow the convention of guarding the individuals 
in the most sensitive group, that is, controlling g(A1A2) 
for each technique. The next step in our approach will 
be to compute for each technique a measure of its per- 
formance based on these values of design constants. We 
have taken the measure of performance to be the trace 
of the asymptotic variance-covariance matrix of the es- 
timator vector. For t = 2, the expressions for the vari- 
ances of r1, *2, and *r12 using the three techniques are 
too lengthy to be given here but are obtainable from the 
author. These expressions are used in the numerical com- 
parisons carried out in Section 5. 

Equating gw(A1A2) with gM(AIA2), we see that 

PM = {0 12 gw(AIA2)} / 

[{012*gw(A1A2)}1/2 + (1 - 012)1/2] (4.3) 

if gw(AIA2) ' (1 - 012)/012*. Similar expressions for PM 
can be obtained by equating g(AICA2), g(AIA2c), and 
g(AlcA2C) for the W and M techniques, but these are not 
given here. It should be noted that the M technique cannot 
match the W technique (and also the S technique) at low 
levels of gw(A1A2); that is, the two techniques would be 
matched in terms of their jeopardy values for the A1A2' 
group only if gw(AIA2) is not smaller than (1 - 012)/012*. 

Next, equating gw(A1A2) and gs(A1A2), we obtain 

Ps = ,(2Pw - 1)/[(1 - PW) + P(2Pw - 1)] (4.4) 

Thus we have a class of S techniques available with de- 
sign constants (Ps, 0) satisfying (4.4). From this class we 
can make an optimal choice by selecting that combination 
(Ps, ,3) which minimizes the trace of the (asymptotic) 

Table 1. Expressions for Jeopardy Functions 

W Technique S Technique M Technique 

g(A1A2) PW2(1 - 012)/{PwQw(1 - 012 - 012') + Qw2012*} (Ps + QsO)2(1 - 012)/{QsP(Ps + QsO) PM2(1 - 012/QM2012* 

x (1 - 012 - 012*) + Qs2p2012*' 

g(AicA2) Pw2(1 - 02 + 012)/{PwQw(012 + 012*) (Ps + QsP)(Ps + QsY)(1 - 02 + 012) (1 - 02 + 012)/PMQM(012 + 012*) 

+ Qw2(01 - 012)) + {QsY(Ps + QSP)012 + Qs2py(01 - 012) 

+ QsP(Ps + QsY)012*} 

g(A1A2) PW2(1 - 01 + 012)/{PwQw(012 + 012') (Ps + QsP)(Ps + Qs'Y)(1 - 01 + 012) (1 - 01 + 012)/PMQM(012 + 012') 

+ QW2(02 - 012)) {QstY(Ps + QsP)012 + Qs2P'Y(02 - 012) 

+ QsP(Ps + QSY)012*} 

g(AlCA2C) Pw2(1 - 012')/{PWQW(1 - 012 - 012') + QW2012} (Ps + Qsy)2(1 - 012')/{QsY(Ps + QsY) PM2(1 - 012')/QM2012 

x (1 - 012 - 012*) + QS2'Y2012} 
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variance-covariance matrix of the associated estimator 
vector. The actual analytical minimization problem is 
messy because of the complexity of the criterion function. 
However, we can intuit the optimal choice of (Ps, O) by 
noting that the criterion function should be a decreasing 
function of Ps for fixed 1B and that from (4.4) the maximum 
value of Ps is obtained when 13 = 1. Thus the optimal S 
technique is the repeated application of the so-called 
forced yes technique (Drane 1975) with Ps = (2PW - 1)/ 
Pw and 1 = 1. If it is desired to have gw( ) and gs(Q) 
equal for all the four groups, then we obtain Ps = 2PW 
- 1 and 13 = 1. For this choice of parameters the criterion 
functions for the W and S techniques are identical, and 
therefore the two techniques are equivalent; this extends 
the corresponding result for t = 1 by Leysieffer and 
Warner (1976). 

5. COMPARISON OF COMPETING TECHNIQUES 

5.1 Numerical Results 

Define the trace inefficiency of an RR technique as the 
ratio of the trace of the (asymptotic) variance-covariance 
matrix of its estimates for 01, 02, and 012 to the corre- 
sponding quantity for the direct response technique when 
both the techniques use the same sample size n. This 
latter quantity is given by {01(1 - 01) + 02(1 - 02) + 

012(l - 012)}In. 
For numerical comparisons, 10 (01, 02) combinations 

representing a wide range of these parameters likely to 
be encountered in practice were selected; we take 02 
-' 01 without loss of generality. For each (01, 02) com- 
bination three 012 values were selected: 012 = 0, 02/2, 
and 02, thus covering the range of admissible values of 
012. For each (01, 02, 012) the value of correlation coef- 
ficient P12 was calculated by using the formula 

P12 = (012 - 0102)/V0102(1 - 01)(l - 02) 

For each (0I, 02, 012) combination the results correspond- 
ing to four Pw values (Pw = .70, .75, .80, .85, which 
represent the range of Pw values commonly used) were 
calculated, although here only the results for Pw = .70 
and .80 are given; the results for other Pw values are 
obtainable from the author. For each Pw the correspond- 
ing value of PM was computed by using (4.3). For the S 
technique the results for two (Ps, I) combinations are 
given: an optimal combination with I = 1 and another 
one with I = .7; in either case, the Ps value was com- 
puted from (4.4). Of course, the results for the W tech- 
nique correspond to I = .5. Thus we get a detailed picture 
of the performance of the S technique for different 
choices of its design constants. The values of the trace 
inefficiencies for all three techniques with design con- 
stants determined in the above manner were computed 
and are given in Table 2. 

5.2 Discussion of the Results 

First, note that the "optimal" S technique with 13 = 
1.0 dominates the other techniques in all cases studied. 

When 01 and 02 are small (<.05), the M technique dom- 
inates the S technique with 1B = .7 uniformly in p and Pw 
in all cases studied. When 01 and 02 are moderate (be- 
tween .05 and .10), the M technique dominates whenever 
p is not negative or Pw is not too large, or both. Finally, 
when 01 and 02 are somewhat large (>.10), the M tech- 
nique dominates the S technique only when p is suffi- 
ciently large and positive and Pw is not too large or both. 
The range of values of 01, 02, p, and Pw for which the M 
technique dominates the W technique is even greater. In 
many practical situations dealing with two sensitive at- 
tributes, 01 and 02 are in fact likely to be small and the 
correlation between the attributes is likely to be positive 
and large. Furthermore, Pw values that are not too large 
(usually in the range of .7 to .75) are more commonly 
used. Thus for the parameter values that are likely to be 
encountered in practice, the M technique does reasonably 
well, although not optimally well. 

6. APPLICATION OF THE M TECHNIQUE 

6.1 Description of the Application 

To determine the feasibility of the M technique in face- 
to-face interviews, a study involving an actual application 
of the technique was carried out. It was not the objective 
of this small study to compare the practical feasibilities 
and performances of all the RR techniques discussed in 
the previous sections; that comparison would have re- 
quired a larger study and greater resources than were 
available to us. However, it was decided to include a 
control group of subjects who would take the direct re- 
sponse interview and who would provide a datum against 
which the performance of the M technique can be com- 
pared with respect to extent of cooperation and truth- 
fulness of responses. Subjects were randomly allocated 
to the two groups as explained below. 

Students in the Spring 1980 Industrial Psychology (IE- 
C22) class at Northwestern University provided the 152 
subjects for the study. Three other students from the 
same class were recruited and trained to carry out the 
interviews. Based on discussions with the student coun- 
selor and the staff of the University Clinic, the following 
two issues were identified as relevant, potentially sen- 
sitive, and possibly correlated: (a) using hard drugs and 
(b) seeking psychiatric help. Accordingly, the following 
two statements were prepared for use in the direct re- 
sponse and the M technique interviews; of course, for 
the M technique the second statement was presented in 
the negative form by modifying it with the inclusion of 
the parenthetical "not." 

Statement 1: I presently take or in the past six months 
have taken at least one of the following drugs on a regular 
basis, that is, on the average, at least once a week for a 
month or longer; acid, angel dust, cocaine, heroin, quaa- 
ludes, speed, other drugs in the same category. Identify 
whether you belong to this group by saying "Yes" or 
"'No." 



922 Journal of the American Stafistical Association, December 1981 

Table 2. Trace Inefficiencies 

S Technique 
O1 02 012 P12 Pw PM W Technique 1 = .7 1 = 1.0 M Technique 

.05 .025 .0000 - .0367 .70 .6815 62.859 42.387 29.109 33.126 
.80 .7766 16.579 13.743 11.705 12.469 

.05 .025 .0125 .3306 .70 .6875 53.792 36.221 24.850 27.248 
.80 .7841 14.296 11.824 10.054 10.416 

.05 .025 .0250 .6980 .70 .6937 47.193 31.731 21.747 22.984 
.80 .7919 12.634 10.426 8.850 8.901 

.05 .05 .0000 -.0526 .70 .6753 48.146 32.349 22.118 26.592 
.80 .7690 12.904 10.672 9.070 10.103 

.05 .05 .0250 .4737 .70 .6874 38.520 25.807 17.610 19.633 
.80 .7839 10.473 8.625 7.306 7.710 

.05 .05 .05 1.0000 .70 .7000 32.341 21.663 14.750 15.273 
.80 .8000 8.936 7.327 6.185 6.141 

.10 .05 .0000 - .0765 .70 .6626 34.051 22.709 15.386 20.736 
.80 .7539 9.386 7.725 6.535 7.911 

.10 .05 .0250 .3059 .70 .6746 29.074 19.336 13.075 16.265 
.80 .7682 8.123 6.659 5.616 6.469 

.10 .05 .0500 .6882 .70 .6870 25.565 16.953 11.439 13.174 
.80 .7835 7.233 5.905 4.964 5.417 

.10 .10 .0000 -.1111 .70 .6497 26.612 17.622 11.833 18.020 
.80 .7388 7.530 6.170 5.198 6.800 

.10 .10 .0500 .4444 .70 .6739 21.264 14.003 9.365 12.042 
.80 .7674 6.166 5.015 4.199 4.984 

.10 .10 .1000 1.0000 .70 .7000 18.075 11.832 7.875 8.667 
.80 .8000 5.353 4.319 3.593 3.800 

.15 .075 .0000 -.1196 .70 .6431 24.583 16.215 10.833 17.624 
.80 .7312 7.026 5.742 4.824 6.562 

.15 .075 .0375 .2791 .70 .6611 20.930 13.749 9.159 13.019 
.80 .7521 6.093 4.952 4.142 5.248 

.15 .075 .0750 .6778 .70 .6800 18.438 12.061 8.007 10.056 
.80 .7747 5.456 4.409 3.671 4.305 

.15 .15 .0000 - .1765 .70 .6226 19.594 12.787 8.427 17.121 
.80 .7083 5.783 4.696 3.919 5.987 

.15 .15 .0750 .4118 .70 .6595 15.617 10.110 6.621 9.920 
.80 .7502 4.760 3.826 3.167 4.179 

.15 .15 .1500 1.0000 .70 .7000 13.396 8.594 5.583 6.507 
.80 .8000 4.189 3.329 2.728 3.038 

Statement 2: In the last six months I have (not) sought 
help for a mental, emotional, or a psychological problem 
from a professional such as a psychiatrist, psychologist, 
or a social worker. Identify whether you belong to this 
group by saying "Yes" or "No." 

The interviewing procedure was as follows. The sub- 
ject entered the interview room. His (her) name was re- 
corded, which, it was hoped, would make the subject 
take more seriously the sensitivity of the statements. 
Then the subject was randomly allocated to one of the 
two groups (direct response interview or M technique 
interview). In the case of the direct response interview 
the procedure was swift and simple and will not be elab- 
orated on here. In the case of the M technique interview 
a sheet of paper bearing the two statements was handed 
to the respondent along with a deck of cards. The subject 

was asked to shuffle the deck well and draw a card at 
random (and not show it to the interviewer); the subject 
was asked to respond to the first statement (second state- 
ment) if the card came up spade, heart, or diamond (club), 
and his (her) response was recorded. The card was re- 
turned to the deck and the procedure was repeated, but 
the choices of statements was reversed this time; thus 
P1l(l) = P12(21 - .75. The sheet of paper and the deck 
were then returned to the interviewer. Next, to assess the 
extent of preference of the M technique over the direct 
response technique, the following question was asked: 
"Supposing for the moment that your true response to 
either of the two statements was 'Yes,' would you feel 
more, less, or equally comfortable with this indirect 
method of questioning as compared to the direct method 
of questioning?" The response to this question was re- 
corded and thus the interview was concluded. After the 
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interview, the interviewers were asked to note down any 
unusual things (e.g., difficulty in understanding the in- 
structions) that happened during the interview. 

6.2 Results of the Application 

Following is the summary of the responses obtained 
by using the two techniques: 

Direct response: n = 75; No-No = 71, Yes-No = 3, 
No-Yes = 1, Yes-Yes = 0. 

M technique: n = 77; No-No = 14, Yes-No = 5, No- 
Yes = 41, Yes-Yes = 17. 

Thus from the direct response interviews we obtain the 
following estimates along with their standard errors 
(given inside the parentheses): 01 = .04 (.0226), 02 = 

.0133 (.0132), 012 = 0 (.00). 
To obtain the RMLE's of the 0's (by first obtaining the 

RMLE's of the 1T's) from the M technique interview data, 
we must maximize (3.5) subject to (3.4). For this purpose 
we used the generalized reduced gradient GRG algorithm 
of Abadie and Guigou (1969), which yielded the following 
estimates: 01 = .05195 (.0904), 02 = .01300 (.0774), 012 
= .01039 (.0562). The asymptotic standard errors of the 
estimates (given inside the parentheses) were computed 
from the formulas obtained by inverting the information 
matrix given in Section 3.4. The maximum value of the 
likelihood function was L* oc(.314555)77. Note that in this 
case the RMLE's are the same as the UMLE's; that is, 
the UMLE's satisfy the constraints (3.4). 

For testing H; that the attributes 1 and 2 are uncor- 
related, that is, 012 = 0102, the GRG program was again 
run with the constraint set (3.6). This yielded the maxi- 
mum value of the likelihood function under H;, namely 
L9* oc(0.314479)77. The value of the x2 statistic works out 
to be .0372. Comparing this with the upper critical values 
of the chi-squared distribution with one df, we conclude 
that the null hypothesis of independence cannot be re- 
jected. This small value of the x2 statistic is possibly due 
to two reasons: (a) we are dealing with rare attributes 
here and therefore much larger sample sizes are required 
to obtain a sufficiently powerful test; (b) in general, any 
RR technique yields a less powerful test compared with 
the direct response technique (assuming, of course, re- 
sponses are equally truthful for both the techniques). 

6.3 Discussion of the Results 

First, we note that somewhat higher estimates of the 
0's are obtained with the M technique than those obtained 
with the direct response technique, although the differ- 
ences are not statistically significant. This might indicate 
that the respondents tend to be more truthful with the M 
technique interview. To the question (asked only of in- 
dividuals in the M technique group) whether the respond- 
ent would feel more, equally, or less comfortable with 
the M technique than with the direct response technique, 
43 responded that they would feel more comfortable, 29 

responded that they would feel equally comfortable, and 
5 responded they would feel less comfortable. These re- 
sults show that the degree of truthfulness and cooperation 
by the respondents can be improved by using the M 
technique. 

Finally, out of 77 respondents in the M technique 
group, about 5 respondents had some difficulty following 
the instructions and needed to go over the instructions 
one more time. 

From this application we can conclude that the M tech- 
nique is feasible in practice and is likely to improve the 
cooperation on the part of respondents and thus reduce 
the bias. Some care, however, is needed in explaining 
the instructions to the respondents. 

[Received January 1977. Revised December 1980.] 
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