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Adaptive extensions of a two-stage group
sequential procedure for testing primary
and secondary endpoints (I): unknown
correlation between the endpoints

Ajit C. Tamhane,**" Yi Wu® and Cyrus R. Mehta®

In a previous paper we studied a two-stage group sequential procedure (GSP) for testing primary and secondary
endpoints where the primary endpoint serves as a gatekeeper for the secondary endpoint. We assumed a simple
setup of a bivariate normal distribution for the two endpoints with the correlation coefficient p between them
being either an unknown nuisance parameter or a known constant. Under the former assumption, we used the
least favorable value of p = 1 to compute the critical boundaries of a conservative GSP. Under the latter assump-
tion, we computed the critical boundaries of an exact GSP. However, neither assumption is very practical. The
p = 1 assumption is too conservative resulting in loss of power, whereas the known p assumption is never true in
practice. In this part I of a two-part paper on adaptive extensions of this two-stage procedure (part II deals with
sample size re-estimation), we propose an intermediate approach that uses the sample correlation coefficient r
from the first-stage data to adaptively adjust the secondary boundary after accounting for the sampling error in
r via an upper confidence limit on p by using a method due to Berger and Boos. We show via simulation that this
approach achieves 5-11% absolute secondary power gain for p < 0.5. The preferred boundary combination in
terms of high primary as well as secondary power is that of O’Brien and Fleming for the primary and of Pocock
for the secondary. The proposed approach using this boundary combination achieves 72-84 % relative secondary
power gain (with respect to the exact GSP that assumes known p). We give a clinical trial example to illustrate
the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: adaptive designs; familywise error rate; gatekeeping procedures; multiple comparisons;
O’Brien—Fleming boundary; Pocock boundary

1. Introduction

Tambhane et al. [1] studied a two-stage group sequential procedure (GSP) for the problem of testing pri-
mary and secondary endpoints with the former acting as a gatekeeper for the latter. Hung ef al. [2] were
the first to study this problem. They compared three different strategies via simulation in terms of the
type I error rate control for different values of p. They showed that the strategy that tests the secondary
null hypothesis at level & upon rejecting the primary null hypothesis does not control the error rate, but
the strategy that tests the secondary null hypothesis at level /2 is conservative. Finally, the strategy that
tests both the primary and the secondary null hypotheses by using the same «-level critical boundary
controls the error rate more accurately. Glimm ef al. [3] independently obtained the same results as in
[1]; they also considered other variations of the problem such as two coprimary endpoints instead of one
primary and one secondary.

Group sequential procedures have been around for more than 40 years beginning with the works
by Armitage ([4, 5]). Pocock [6] proposed constant critical boundaries for GSPs, whereas O’Brien and
Fleming [7] proposed decreasing critical boundaries. Lan and DeMets [8] proposed the use of error rate
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spending functions, which can be chosen to design the critical boundaries to suit the needs of the trial.
Jennison and Turnbull’s book [9] is a comprehensive reference on the topic.

Tamhane et al. [1] assumed that the correlation coefficient p between the primary and secondary
endpoints is either an unknown nuisance parameter or a known constant. Under the former assumption,
they showed that p = 1 is the least favorable value of p and used it to compute the critical boundaries
of the GSP. They also computed the critical boundaries of the exact GSP for selected known values of
p. However, neither assumption is very practical. The p = 1 assumption is too conservative resulting in
loss of power, whereas the known p assumption is never true in practice. In this paper, we show how
to use the sample correlation coefficient r from the first-stage data in place of p to adaptively adjust
the secondary boundary. The sampling error in r is taken into account via an upper confidence limit on
p following an approach due to Berger and Boos [10]. We show that this method achieves substantial
power gains: 5—11% absolute power gain and 72-84% relative power gain (with respect to the exact GSP
that assumes known p) compared with the conservative method that assumes p = 1.

We organize the paper as follows. Section 2 defines the notation and gives a brief review of the
Tamhane et al. [1] procedure. Section 3 presents the confidence limit method to deal with unknown
correlation. Section 4 gives the details of the calculation of the optimum critical boundary for the sec-
ondary endpoint using the confidence limit method. Section 5 discusses a simulation study to study the
robustness of the proposed procedure in terms of control of the familywise error rate (FWER) when the
variances of the primary and secondary endpoints are estimated from the data instead of being known as
assumed for convenience in the paper. Section 6 gives the results of the secondary power comparisons
of the proposed method with the conservative method and the exact method. In Section 7, we give the
modifications needed to extend the methodology developed in this paper for a single sample case to
the two-sample case (matched pairs or independent samples) necessary to deal with two parallel arm
trials. Section 8 gives an illustrative clinical trial example. Section 9 discusses the problem involved in
extending the methodology to binary data and gives some concluding remarks.

2. Notation and background

Assume a two-stage GSP with sample sizes n; and n,. For the sake of simplicity, we will con-
sider the single sample case. Let (X;;,Y;;) be independent and identically distributed bivariate
normal observations on the primary and secondary endpoints for the jth patient in the ith stage
(i=1,2,j =1,...,n;), where X;;j ~ N(u1,0%), Yij ~ N(p2,0%), and corr(X;;, Y;;) = p = 0. Let
81 = p1/01 and 8, = py/05. All parameters are unknown except o and o5, which are assumed to be
known for convenience. The hypotheses to be tested are H; : §; = 0 and H, : §, = 0 against upper
one-sided alternatives, subject to the gatekeeping restriction that H, can be tested iff H; is rejected;
otherwise H> is accepted without testing it.
The first-stage test statistics are defined as

X Y,
Ul/vnl 02/«/’11’

where X = Z;":l Xy;/ny and Y, = Z';‘Zl Yy;/n; are the first-stage sample means. Similarly, the
second-stage test statistics are defined as

X and Y1 = (1)

X, Y,
= ’Y2: b
o1//n1 +na 02/ /ni +ns

where X, and Y 5, are the overall sample means.
The joint distribution of (Xq, Y7, X3, Y>) is four-variate normal with the following means:

E(X1) =81/n1, E(Y1) =824/n1, E(X2) =81+/n1 + 1z, E(Y2) =6824/n1 + 2. 3)

In the following, we denote A1 = §1.4/n1 and Ay = 6, ./ny. Let f =ny/(n1 + ny) be the information
fraction [5] at the interim look . The correlation structure of (Xy, Y1, X3, Y>) is given by

X, ()

corr(Xy, Y1) = corr(X2, Y2) = p
corr(Xy, Xp) =corr(Y1,Y2) =1 4)
corr(Xy, Y2) = corr(X», Y1) = pr,
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where t = \/7 . Denote the primary critical boundary for (X1, X3) by (¢1, ¢2) and the secondary critical
boundary for (Y7, Y») by (d1, d2). The GSP, denoted by P, operates as follows.

Stage 1. Take n; observations, (X1;,Y1;).j = 1.....n1, and compute (X;,Y7). If X; < ¢; continue
to stage 2. If X > ¢y, reject H; and test H,. If Y1 > dy, reject Hy; otherwise accept Hy. In
either case, stop sampling.

Stage 2. Take n, observations, (X2;,Y2;),j = 1,...,n2, and compute (X», Y>). If X, < ¢, accept
H; and stop testing; otherwise, reject Hy and test H,. If Y, > dj, reject Hj; otherwise,
accept H>.

The critical boundaries (c1, ¢2) and (d1, d2) of P must be determined to satisfy the following FWER
control requirement:

FWER = P{Reject at least one true H; (i =1,2)} <« 5)

for a specified o when either H; or H; is true.
Tamhane et al. [1] showed that FWER is controlled at level « under H; if (c1,c¢2) is an «a-level
boundary, that is,

PHI(XI>Cl)+PH1(X1$C1,X2>Cz)=O(. (6)

For example, we can use the O’Brien—Fleming (OF) [7] boundary, which uses ¢; = cﬁ, cy, = ¢, or
the Pocock (PO) [6] boundary, which uses ¢; = ¢, = ¢, where ¢ > 0 is determined in each case to
satisfy (6).

Under H,, FWER is a function of A; and p (denoted by FWER(A1, p)). To control FWER for
given (cy,c2), we need to determine (d;,d>) so that maxa,, FWER(Ay,p) < «. It was shown
in [1] using numerical methods that maxa, FWER(A1, p) is an increasing function of p. Further-
more, it was shown analytically that the overall maximum of FWER(A1, p) occurs when p = 1 and
Ay = A} where A} depends on (cy.c2) and (di, d>). In particular, if both (1, c») and (dy,d,) are
a-level boundaries as defined in (6) and ¢; = d; and ¢, < d, (e.g., if (c1,c3) is the OF bound-
ary and (dy, d) is the PO boundary in which case ¢; > dy and ¢, < d; orif (c1,¢3) = (dy,d2))
then maxa, , FWER(A{,p) = FWER(AJ,1) = « where AT = ¢; — d;. On the other hand, if
¢1 < dy and ¢ > dy (e.g., if (¢1,c2) is the PO boundary and (di, d>) is the OF boundary), then
maxa,,, FWER(A1, p) = FWER(AT, 1) < «, where AT = t(c2 — d»); therefore, the a-level secondary
boundary (d1, d) can be changed to an «’-level secondary boundary (d, d5), where o’ > o to make
maxa,,p FWER(A{, p) = a.

Tamhane et al. [1] compared the secondary powers (i.e., the powers to reject false H,) of different
combinations of primary and secondary boundaries, for example, OF1-OF2, OF1-PO2, PO1-OF2, and
PO1-PO2 under various alternatives. They found that the OF1-PO2 combination is the most powerful
among all four combinations except when A; and A, are both small. Note also that the primary power
(i.e., the power to reject false H;) for the OF1 boundary is uniformly (for all A1) higher than that for the
PO1 boundary.

3. Confidence limit method

As can be seen from the previous text, the FWER control requirement (5) can be satisfied by choosing
both (c1, ¢3) and (d1, d») to be a-level boundaries, that is, they satisfy (6). However, the a-level (dy, d»)
boundary can be overly conservative because it assumes the least favorable value p = 1. Because the true
p is unknown, an important practical problem is how to choose a less conservative (d;, d») boundary by
using the sample correlation coefficient » from the first-stage data. If (dy, d») are determined simply by
substituting r for the unknown p, then FWER > « if r < p (because the (d1, d») boundary is underes-
timated) and FWER < « if r > p (because the (d;, d») boundary is overestimated). Thus, even though
the average FWER may be close to the nominal «, it can exceed « in a significant proportion of cases.
Figure 1 shows the plot of simulated proportion of times the FWER exceeds the nominal o« = 0.05 as a
function of A; when the sample estimate r is used in place of p; here, the true p is set equal to 0.5 and
n1 = 20. We see that for A1 ~ 1.5, the FWER exceeds o = 0.05 in about 50% of the cases. Therefore,
we should not simply substitute r for the true p. To deal with this nuisance parameter problem, we follow
the approach of Berger and Boos [10].

- _______________________________________________________________________________________________|
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Figure 1. Proportion of simulation runs of P in which FWER > 0.05 if r is used as the true p when p = 0.5 and
ny = 20.

Let p* be a 100(1 — €)% upper confidence limit on p, that is, P(p < p*) = 1 —¢. To calculate p*, we
used Fisher’s arctan hyperbolic transformation:

1 I+r 1 1+p 1
=1 ~ N|lzIn| —). , 7
ZH(I—V) approx. (2n(1_p) n1—3) (7
which leads to the following approximate 100(1 — €)% upper confidence limit:
e —1 1 147 z
= ———— wh =-1 S 8
Pr= g VR 2n(1—r)+«/_n1—3 ®

where z. is the 100(1 — ¢) percentile of the standard normal distribution. Using the property that
maxa, FWER(A1, p) is an increasing function of p, we can derive an upper bound on this maximum
for any unknown p as follows: let AT(p) be the value of A; that maximizes FWER(A{, p) for fixed
p. Then,

max FWER(A 1, p) < max FWER(AJ(p),p) X P(p < p*)+ max FWER(AT(p),p) x P(p> p*)
Ay {p<p*} {p>p*}

=FWER(A](p¥), p*) x (1 —¢&) + FWER(AJ(1),1) x ¢
=a'(1—¢)+a’s,
©)
where o’ = FWER(AT(p*), p*) < o” = FWER(AT(1), 1) are functions of (dy. d>).

We want to determine the sharpest possible (d;, d») (so as to maximize the secondary power) subject
to (9) < «. This problem can be solved numerically on a computer as follows. Suppose the boundary
(dy, d») is parameterized through some common d, for example, d; = d V2, d> = d for the OF2 bound-
ary and d; = d, = d for the PO2 boundary. Then, we choose the optimum confidence level 1 — ¢ so
as to minimize d and thus maximize the secondary power. First, note that if 1 — ¢ is increased, then p*
increases causing o’ to increase while o is fixed. Also, the weight 1 —¢ on «’ increases while the weight
g on «” decreases. The net result is that as 1 — & increases, the upper bound in (9) first decreases (because
the weight ¢ on «” > «’ decreases) and then increases. We should then choose, for each given n; and
r, the value of 1 — ¢ that minimizes the overall max FWER and choose d to make this minimax FWER
equal to . This is in essence the confidence limit method.

Remark 1

It should be noted that because p* is a random variable, the FWER control guarantee derived in (9)
is conditional on observed r. However, this guarantee holds for every observed r and so it holds
unconditionally.

- _______________________________________________________________________________________________|
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4. Calculation of the optimum (d;, d>) boundary

To calculate the optimum (d;, d») boundary for given sample correlation coefficient r, the primary
boundary (cy, ¢2), and the sample size ny = n, = n, we considered four cases: the (c1, ¢;) bound-
ary is either OF (in which case ¢; = 02\/5) or PO (in which case ¢; = c¢,). For each choice
of the primary boundary, we considered the same two choices for the secondary boundary: OF (in
which case d; = ~/2d,d> = d) or PO (in which case d; = d» = d). Table I gives the optimum
values of d for observed r =0.1(0.1)1.0, ny =n, =n =20,50,100 and ¢ = 0.05. For compari-
son purposes, we have also included the corresponding values of d for known p (i.e., n; = 00),
which are, of course, smaller. Note that Table I also lists the associated confidence coefficient 1 — ¢
(from which the upper confidence limit p* can be computed using (8)). However, to implement the
procedure, the intermediate quantities p* and associated 1 — & are not needed; only the secondary
boundary (dy, d>).

From Table I we see that, as expected, for any given combination of OF and PO boundaries and
for any given r, as n increases d decreases, approaching the limit for known p as n — oo. For
given n, as r increases, the confidence coefficient 1 — ¢ decreases and for given r, as n increases,
the confidence coefficient 1 — ¢ increases. The explanation for this behavior is as follows. As r
increases, the upper confidence limit p* becomes close to 1 if 1 — & becomes large, which makes
the first term in (9) large, whereas the second term only decreases slightly because of the decrease
in ¢ because FWER(A7(1), 1) is fixed. Hence, to compensate for the increase in p* as a result of
the increase in r and the consequent increase in FWER(AT(p*), p*), the confidence coefficient 1 — ¢
must decrease.

Table I. The optimum d-values for the secondary boundary (d1 = V2d,d> = d for OF2, dy = d» = d for
PO2) and the associated confidence level | —e(n] =ny = n, « = 0.05).

Observed r

Procedure  n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OFI-OF2 20 148 1503 1517 1532 1547 1565 158 1611  1.635 1.678
0.94)  (0.93) (0.92) (0.91) (0.89) (0.86) (0.79)  (0.69)  (0.64)
50 1463 1477 1492 1507 1524 1543 1564 1590 1622  1.678
0.97)  (0.97) (0.96) (0.96) (0.95) (0.94) (0.92) (0.87) (0.81)
100 1450 1464 1478 1494 1512 1531 1553 1579 1612 1678
0.98) (0.98) (0.98) (0.97) (0.97) (0.97) (0.96) (0.96)  (0.96)
oo 1416 1428 1440 1455 1473 1493 1519 1551 1591 1.678
OF1-PO2 20 1713 1724 1735 1746 1.758 1.771 1786 1.805 1.832 1.876
0.95)  (0.94) (0.93) (0.93) (0.92) (0.91) (0.89) (0.81)  (0.65)
50  1.692 1703 1715 1727 1740 1755 1771 1791  1.822 1.876
0.97)  (097) (0.96) (0.96) (0.96) (0.95) (0.94) (0.91) (0.83)
100 1.681 1.692 1704 1716 1730 1745 1762 1783 1811 1.876
0.98) (0.98) (0.98) (0.98) (0.97) (0.97) (0.97) (0.96) (0.91)
oo 1652 1663 1673 168 1.699 1717 1735 1760 1791 1.876
POI-OF2 20 1368 1383 1397 1412 1429 1447 1465 1490 1516 1.570
0.94)  (0.92) (0.91) (0.90) (0.87) (0.84) (0.83) (0.76)  (0.71)
50 1341 1355 1370 1387 1407 1426 1447 1471 1505 1.570
0.97)  (0.97) (0.96) (0.94) (0.91) (0.89) (0.88) (0.87)  (0.79)
100 1327 1341 1356 1372 1391 1410 1434 1459 1494 1570
0.98) (0.98) (0.97) (0.97) (0.96) (0.96) (0.94) (0.93) (0.91)
co 1290 1304 1317 1333 1350 1372 1396 1429 1470 1570
POI-PO2 20 1.697 1707 1717 1729 1741 1756 1774 1793 1818 1.876
0.96) (0.95) (095 (0.93) (0.91) (0.89) (0.85) (0.84)  (0.80)
50 1678 1.687  1.697 1709 1.722 1739 1759  1.781  1.809 1.876
0.98) (0.98) (0.97) (0.96) (0.96) (0.92) (0.88) (0.85) (0.82)
100 1.669 1.677 1.687 1.699 1712 1727 1745 1768 1802 1876
0.99)  (0.99) (0.98) (0.98) (0.97) (0.96) (0.95) (0.94)  (0.89)
oo  1.648 1655 1661 1.672 1683 1.698 1716 1742 1777 1876

The parenthetical entry below each optimum d is the corresponding confidence coefficient 1 — ¢.

- _______________________________________________________________________________________________|
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5. Unknown variances

Thus far, we assumed that the variances, o7 and 07, of the primary and secondary endpoints are known
and the critical boundaries (cy, ¢3) and (dy, d») were computed under this assumption. In practice, one
needs to use the sample estimates of 012 and 022 to compute the first-stage and second-stage test statistics.
To check whether the FWER is controlled under this setting, we conducted a small simulation study. We
focused on FWER control under the secondary null hypothesis, H; : i, = 0, because the error rate con-
trol under the primary null hypothesis when using an a-level primary boundary (c1, ¢;) is guaranteed and
does not involve the confidence limit method. Specifically, we simulated X;; ~ N(81.1), Y;; ~ N(0,1)
and corr(X;;,Y;;) = pfori =1,2,j = 1,...,n; with §; equal to AT(p)//n1, where AT(p) is the
value of A; that maximizes the FWER for given p. We chose p = 0.5 and ny = n, = n = 20, 25, 50,
and 100.

For each value of n, we simulated the proposed procedure 10,000 times using the OF1-PO2 bound-
aries. For each simulation, we generated the first-stage sample from which we calculated the estimates
of (67,0%) and then (X1, Y1) and r. If the procedure did not stop at the first stage (i.e., if X1 < ¢y), then
we computed the boundary (dy, d>) with di = dy = d for the observed r using the confidence limit
method (which sets maxa, FWER(A1, p) as close to « as possible). Next, we generated the second-stage
sample, calculated the pooled (from both stages) estimates of (012, 022), and then (X3, Y>). Finally, we
tested X, against c,, and if H; is rejected, then tested Y, against d; to see if H, can be rejected. Table II
shows the estimates of FWER obtained.

From the table, we see that the achieved FWER is very close to the nominal « = 0.05 when the
variances are estimated even for n as small as 20. In practice, typically n > 50 is used. Also note that
these simulations are made under the least favorable value of Aq, and so in other cases, the achieved
FWER will be even less. Therefore, using the sample variances in place of the unknown variances is not
a problem.

6. Power comparisons

We carried out two separate secondary power comparisons, both focused on assessing the advantage of
the confidence limit method over the conservative method. (Note that the primary power to reject H;
depends on the primary boundary (c;, ¢3) and A and is not influenced by the secondary endpoint.) The
exact method was also included in the comparisons as the gold standard. Power comparison I compared
the three methods using four different combinations of OF and PO primary and secondary boundaries
for different values of p for fixed Ay and A,. Power comparison II compared the three methods for
p = 0.3,0.5,0.7 and fixed A; for different values of A, where A; was chosen to guarantee 80%
primary power. In this case, only the OF1-PO2 boundary combination was studied because power com-
parison I showed that it dominates the other three combinations in terms of the secondary power for all
three methods, in particular for the confidence limit method.

6.1. Power comparison [

We carried out power computations for p = 0.1(0.1)1.0, Ay =3, A, =2, n; = ny = n = 20,50, 100,
and for four different combinations of OF and PO primary and secondary boundaries. We computed the
secondary powers for the conservative and the exact methods by using the integral expression (8) in [1].
In the case of the confidence limit method, we used simulations because p* is a random variable. For
given p and n1, we generated 10,000 values of the sample correlation coefficient r from its approximate
distribution given by (7). For each realization of r, we calculated the optimum value of d by interpo-
lating in Table I; we obtained the optimum (d;, d») boundary from this d as explained before. We then
calculated the secondary power for this optimum (d1, d>) using the aforementioned integral expression.
Finally, we used the average of the secondary powers thus calculated for the 10,000 simulated values
of r as an estimate of the true secondary power of this method. In Table III, we report the results for
n =50.

Table II. Estimated FWER when variances are estimated for
selected n; = no = n values (o = 0.05).

n 20 25 50 100
IFWER 0.0491 0.0496 0.0498 0.0491
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By examining this table, we can see that for each one of the three methods and for every value of the
true p, the OF1-PO2 boundary combination is more powerful than the other three boundary combina-
tions. Recall that the OF1-PO2 combination was also found to be generally more powerful than other
boundary combinations for the conservative method in [1].

To get a clearer picture of the differences between the three methods, we have made the plots of the
secondary powers versus the true p in Figures 2 and 3. We see that when the true p is small, the absolute
power gains of the proposed method with respect to the conservative method are high ranging from 9%
to 11% for OF1-OF2 and PO1-OF2 boundary combinations and 5% to 7% for OF1-PO2 and PO1-PO2
boundary combinations for p < 0.5. Although it is difficult to quantify precisely what an 11% gain in
secondary power implies for sample size (which is normally determined on the basis of the primary
power considerations), it is instructive to note that the sample size needed to boost primary power by
11% can be substantial. For example, if we were designing a two-sample ¢-test for 80% primary power
with a two-sided 0.05-level test and 50 subjects per arm, the same test would require 70 subjects per arm
for 91% power, a 40% increase in sample size.

As a further graphical aid for comparing the secondary powers of the three methods, we have plotted

Power (p = p*) — Power (p = 1)

Power Gain(%) = x 100 (10)

Power (Known p) — Power (p = 1)
as a function of p in Figure 4 for the OF1-PO2 boundary combination. Note that the percentage power
gain decreases as p increases. This is explained readily because as p increases to 1, all three methods
converge.
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Figure 2. Plots of secondary powers (left panel: OF1-OF2 boundary combination; right panel: OF1-PO2
boundary combination) as functions of true p for the exact method, confidence limit method, and
conservative method.
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Figure 3. Plots of secondary powers (left panel: PO1-OF2 boundary combination; right panel: PO1-PO2
boundary combination) as functions of true p for the exact method, confidence limit method, and
conservative method.
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Figure 4. Power gain (%) of the confidence limit method as a function of p for OF1-PO2 boundary combination.

6.2. Power comparison I1

We made the aforementioned secondary power comparisons for fixed A; = 3 and A, = 2. To assess
the power gains as a function of A,, we considered the following setup. Fix « = 0.05 and the primary
power 1 — 8 = 0.80. Then, for the OF primary boundary with two stages, the common sample size n per
stage is given by

2 2
: 1.645 + 0.840
n=R(2F2E) = (1016 (02 FO0N0V
51 51

where R = 1.016 is taken from [9, Table 2.4]. (Because we are considering a one-sided test with
a = 0.05, we used the entry for o = 0.10 for two-sided tests in that table.) Therefore,

Ay =81 /n1 = V1.016(1.645 + 0.840) = 2.505.

We chose n; = n, = 50, which gives §; = 2.505/+/50 = 0.3543. For the secondary boundary, we chose
the PO boundary as discussed before. Then, we calculated the secondary powers for the three methods
(the confidence limit method, the conservative method, and the exact method) for selected values of
Ay = 8,./ny for three values of p = 0.3,0.5,0.7. We present the results in Table IV. Note that the
power values shown for A, = 0 are in fact the secondary type I error probabilities.

Inspection of Table IV shows that the confidence limit method achieves a major fraction of the power
gains possible compared with the exact method. To give a graphical picture of the relative power advan-
tage of the confidence limit method over the conservative method, we have plotted the percent power
gain defined in (10) as a function of A, for p = 0.3,0.5,0.7 in Figure 5 for the OF1-PO2 boundary
combination. We see that the percent power gain increases from about 76% to 84% for p = 0.3, 74% to
81% for p = 0.5, and 72% to 79% for p = 0.7 as A, increases from 0 to 4 (although the absolute power
differences between the three methods tend to 0 as A, increases). The percent power gain is higher for
lower p for every A,, which can be easily explained by the fact that the comparisons are carried out with
the conservative method, which assumes p = 1.

7. Extension to two samples

If the trial uses the matched pairs design, then the data can be reduced to the single samples setup in the
usual manner by taking the differences between the paired observations on the treatment and the control
arms for each patient and applying the methodology given previously. So, we consider two independent
samples with n;; patients on arm i in stage k (i,k = 1,2), where i = 1 denotes the treatment arm and
i = 2 denotes the control (placebo) arm. Let (U;jx, V;jx) denote the observations on the primary and the
secondary endpoint on arm i on the jth patient in stage k (j = 1,...,n;¢). Assume that (U, Vijk)
are independent and identically distributed bivariate normal random variates with marginal distributions
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Figure 5. Power gain (%) of the confidence limit method as a function of A, for p = 0.3,0.5,0.7 and the
OF1-PO2 boundary combination

Uik ~ N(&i.o?), Vijk ~ N(i.03), and corr(Ujjk, Vijx) = p = 0. Note that this model assumes
homoscedasticity, that is, the standard deviations for the two arms are the same (o7 for the primary end-
point and o, for the secondary endpoint). All the parameters are unknown except o; and o5, which are
assumed to be known for convenience (but using their sample estimates is not problematic as seen in
Section 5). Let 8; = (§; — &>)/01 and 63 = (1 — n2) /02 be the standardized treatment effects for the
primary and the secondary endpoints, respectively.

To define the test statistic, we first define U; and V; as the sample means of the observations
Uijr and V;ji averaged over patients j = 1,. .., n;x, respectively. Then, the first-stage test statistics are
given by

Ul.l —vz.l 71.1 —Vz.l

X = and Y| = .
o2/ 1/n11 +1/n2

(11)
o1/ 1/ni1+1/n2

Next, denote by U ;.. and V.. the overall sample means of the primary and secondary endpoints data for
the treatment arm and U .. and V.. the corresponding overall sample means for the control arm. Also
denote by 1. = n11 + n12 and ny. = npy + ny; the total number of patients on the treatment and the
control arms, respectively. The cumulative test statistics are given by

U,y.—U,. Vi.=V,.
X, = ! 2 and Y, = ! 2 (12)

o1/ 1/n1. + 1/n,. 0'2\/1/7’l1.+1/l12.‘

The correlation structure of (X1, Y1, X3, Y2) is the same as that given in (5) but with

L= (n1.+n2.)( niinai ) (13)
ni.no. ni +ny1

We have assumed that the standard deviations o7 and o, are known, but in practice, they must be
estimated. The pooled estimates (from the treatment arm and the control arm) of o and o> at the interim
look are given by

)

2 i T7 2 i 7
(1) \/Zizl YL Ui =Ui)? \/Zizl YL Vijn = Via)?
0, = and o, =

nip +nz —2 nip +nz —2
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which are used in (11). Similarly, the overall pooled estimates of o and o, are given by

]

2 2 ik 77 2 2 i 17
d \/Zizl Zim 20 Wi =Un? o J Y o T Vi~ Vi ?
o1 = and o, =

ny. +ny —2 ny. +n, —2

which are used in (12).
Finally, note that the sample correlation r is computed from the first-stage data consisting of 11 +75;
pairs (Ujj1, Vij1) fori = 1,2; thus, n; in formulas (7) and (8) must be replaced by n.; = n11 + na;.

8. Example

Burge et al. [11] reported the results from the ISOLDE trial, which was a randomized, double-blind,
placebo-controlled study of fluticasone propionate (treatment) in patients with moderate to severe
chronic obstructive pulmonary disease. Patients were recruited between October 1, 1992 and March 31,
1995 in 18 UK hospitals. After an 8-week run-in period, a total of 751 patients were randomized (376 on
the treatment and 375 on the placebo) to receive either 500 pg of the treatment or an identical placebo
administered twice daily from a metered dose inhaler. The patients were followed-up for 36 months with
visits scheduled every 3 months for spirometry and safety assessments. This was a disease-modifying
drug trial where the treatment was intended to slow down the decline of the pulmonary function for
patients with chronic obstructive pulmonary disease. The primary outcome measure was the rate of
decline in forced expiratory volume at 1 s (FEV1), the trial being anticipated to show that the rate of
decline in FEV1 will be smaller in the treatment group than in the placebo group. Forced vital capacity
(FVC) was also measured but not used as an efficacy endpoint. There were a total of 612 patients (313
on the treatment and 299 on the placebo) with at least two visits (baseline and final). To account for
the dropouts and correlations among the repeated measures, the authors of the study used the mixed
model approach.

We will use this dataset but make a few changes in the analysis to fit the setting of the present paper
and for the sake of simplicity. First, we will assume that the rate of decline in FEV1 is the primary
endpoint and the rate of decline in FVC is the secondary endpoint. Figure 6 shows the rates of decline
in FEV1 and FVC in both the treatment and the control groups, which are roughly linear. It is evident
that the rates of decline in both the outcome measures are steeper in the control group than in the treat-
ment group. Because of the approximate linear downward trend, we calculated the rate of decline in
each case simply by dividing the difference between the final measurement (the timing of which varies
from patient to patient depending upon how many visits they completed) and the baseline measurement
(at randomization) by the period (in months) between the two measurements. Furthermore, this study
employed a fixed sample design with just one final look. We will instead assume a group sequential
design with two looks, the interim look being at the quarter point, that is, after the first 153 patients.

1.54 " " " " : 35 . .
—A—Treatment 4 —A—Treatment
152 ES
3.45¢ 1
1.5 1
3.4,
1.48} ]
3.35f
>‘_ 1.46[ 1 o
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Figure 6. Time series plots of FEV1 (left panel) and FVC (right panel) for the treatment and control groups.
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The sample sizes on the treatment and the control arms in the first stage are n1; = 71,127 = 82. The
statistics at the interim look are

Ui.q =—0.0029, U, = —0.0070, V1.1 = —0.0089, V5.; = —0.0140,

5" =0.0141,5" = 0.0301. r = 0.6667.

From these summary statistics, we calculate X; = 1.791 and Y; = 1.040. We use the OF1-PO2 bound-
ary combination, that is, for FEV 1, we use the OF boundary, which depends on the correlation coefficient
T given by (13). Note that this formula involves the observed sample sizes n1,7n21,7., and n,., which
are not precisely known at the beginning of the trial (7. and n,. are not known even at the interim look)
because they are the outcomes of randomization. Therefore, we assume equal allocation on the treatment
and the control arms. For the interim look at the quarter point, we get t = \/7 = 0.5 (if we substitute
the observed values of ny1,n21,11., and n,., we get T = 0.4988, which is not too different from 0.5).
The corresponding OF1 boundary is (cy, ¢2) = (2.813,1.989). Because X; < c;, we continue sampling
to the second stage.

The sample sizes at the second stage are ni, = 242,n,, = 217, which give the total sample sizes
on the two arms as n1. = 313,n,. = 299. Next, we calculate the PO2 boundary. The sample correla-
tion coefficient r = 0.6667 is based on 153 pairs of observations. Using the confidence limit method,
we calculate the optimum value of the confidence level 1 — & = 0.97, the upper confidence limit

* = 0.7540, and the secondary boundary (d;,d>) = (2.116,2.116). Using the conservative method
(assuming p = 1), we would have (dy,d,) = (2.212,2.212). The cumulative statistics at the final
look are

Uy. =—0.0044,U,.. = —0.0080, V.. = —0.0085, V5. = —0.0129,5; = 0.0132,5, = 0.0280.

From these summary statistics, we calculate X, = 3.406 and Y, = 1.914. Thus, X, > ¢,, but Y, < d5.
So, we are able to claim significance on FEV1 but not on FVC.

9. Discussion

This paper has given a powerful method and a table of secondary boundary constants to implement it
when the correlation between the primary and the secondary endpoint is unknown and is estimated from
the first-stage data in a two-stage group sequential procedure in which the primary endpoint acts as a
gatekeeper for the secondary endpoint. The OF1-PO2 boundary combination is shown to give the best
secondary power performance among all four boundary combinations; it is already known that the OF1
boundary gives a better primary power performance than the PO1 boundary.

It is natural to ask whether the method can be extended to binary data, which are common in prac-
tice. Unfortunately, there are major difficulties as we outline in the following text without getting too
much into details. Assume that 7, independent observations are taken from the treatment and the control
group in the first stage and n, independent observations are taken from each group in the second stage.
Let p; — p2 and g1 — g2 be the differences in success probabilities between the treatment group and
the control group for the primary and the secondary endpoints, respectively. The primary and secondary
null hypotheses are Hy : p; — p» = 0 and H; : g1 — g2 = 0 against upper one-sided alternatives. Let
’ﬁ(k) pgk) and ¢ A(k) ?igk) be their sample estimates (proportions) based on the cumulative data up to
the kth stage (k = 1 ,2). The first-stage Wald statistics are

_ @ =)y v @ —g")ymr
G 0 (1—7M) V2¢O (1 —gm)’

and the second-stage Wald statistics are

v O PV ) @7 -3) )
2T 001 -59) 1= V27O -3y

where (") and p® are the pooled cumulative estimates of p; and p, at the first and second stages,
respectively, and similarly (" and §® are the pooled cumulative estimates of ¢; and g, at the first
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and the second stages. For large ny,n,, which are typical in clinical trials, the approximate joint nor-
mal distribution of (X1, X2, Y1, Y>2) follows from the multivariate central limit theorem. However, the
assumption of homoscedasticity, that is, the common variances and the common correlation coefficient,
will not be valid unless both the null hypotheses, H; and H», are true. This is because the covariance
matrix between the primary and the secondary endpoint depends on the corresponding success probabili-
ties; on the other hand, for bivariate normal data, the covariance matrix can be specified independently of
the means. Unequal variances is not a major problem because they can be estimated precisely with suf-
ficiently large sample sizes. However, unequal correlation coefficients for the treatment and the control
groups is problematic because the confidence limit method developed in this paper is applicable only for
a common pooled sample correlation coefficient. There is also the question of how well the arctan hyper-
bolic transformation of the sample correlation coefficient computed from binary data would approximate
the normal distribution. Thus, it is debatable whether the method proposed in this article can be readily
extended to binary data. This is a topic for future research, which can be addressed via simulation.
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