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Abstract: Estimation of the proportion or the number of true null hypotheses 
is an important problem in multiple testing, especially when the number of 

hypotheses is large. Wu, Guan and Zhao [Biometrics 62 (2006) 735-744] found 
that nonparametric approaches are too conservative. We study two parametric 
mixture models (normal and beta) for the distributions of the test statistics 
or their p-values to address this problem. The components of the mixture are 
the null and alternative distributions with mixing proportions 7ro and 1 - r7o, 
respectively, where 7ro is the unknown proportion to be estimated. The normal 
model assumes that the test statistics from the true null hypotheses are i.i.d. 

N(0, 1) while those from the alternative hypotheses are i.i.d. N(6, 1) with 6 5 0. 
The beta model assumes that the p-values from the null hypotheses are i.i.d. 
U[0, 1] and those from the alternative hypotheses are i.i.d. Beta(a, b) with 
a < 1 < b. All parameters are assumed to be unknown. Three methods of 
estimation of 7ro are developed for each model. The methods are compared 
via simulation with each other and with Storey's [J. Roy. Statist. Soc. Ser. B 
64 (2002) 297-304] nonparametric method in terms of the bias and mean 

square error of the estimators of 7ro and the achieved FDR. Robustness of 
the estimators to the model violations is also studied by generating data from 
other models. For the normal model, the parametric methods perform better 

compared to Storey's method with the EM method (Dempster, Laird and 
Rubin [Roy. Statist. Soc. Ser. B 39 (1977) 1-38]) performing best overall 
when the assumed model holds; however, it is not very robust to significant 
model violations. For the beta model, the parametric methods do not perform 
as well because of the difficulties of estimation of parameters, and Storey's 
nonparametric method turns out to be the winner in many cases. Therefore 
the beta model is not recommended for use in practice. An example is given 
to illustrate the methods. 
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1. Introduction 

Suppose that m null hypotheses, Ho01,..., Hom, are to be tested against alternatives, 
H1,... , Him. Let X1,... , Xm be the test statistics and pl, ..., Pm their p-values. 
Throughout we assume that the Xi's and hence the pi's are mutually independent. 
Suppose that some unknown number mo of the hypotheses are true and m l= 
m-mo are false. We wish to estimate mo or equivalently the proportion 7ro = mo/m 
of the true hypotheses based on the Xi's or equivalently the pi's. The estimate miio is 
useful for devising more powerful adaptive multiple comparison procedures (MCPs) 
to control an appropriate type I error rate, e.g., the familywise error rate (FWE) 
(Hochberg and Tamhane [11]) in the Bonferroni procedure or the false discovery rate 
(FDR) in the Benjamini and Hochberg [1] procedure. These procedures normally 
use the total number m as a conservative upper bound on the number of true 
hypotheses. Adaptive procedures based on mio are especially useful in large-scale 
multiplicity testing problems arising in microarray data involving m of the order of 
several thousands. 

A number of methods have been proposed for estimating mo starting with 
Schweder and Spjetvoll [18]; see, e.g., Hochberg and Benjamini [10], Benjamini 
and Hochberg [2], Turkheimer, Smith and Schmidt [23], Storey [21], Storey et al. 

[22], Jiang and Doerge [15] and Langaas et al. [17]. Many of these methods reject 
the p-values that differ significantly from the null U[0, 1] distribution as non-null 
and exclude them from the estimation process. Different formal or graphical tests 
are used for this purpose. For example, consider Storey's [21] method with a fixed 
A-level test for a sufficiently large A (e.g., A = 0.5) to reject any p-value < A as 
non-null. (It should be noted that in fact A is not fixed but is a tuning parameter 
whose value is determined from the data to minimize the mean square error of 
the estimate of 7ro using bootstrap.) Let Nr(A) = (pi 5 A) denote the number of 
rejected hypotheses and Na(A) = O(Pi > A) the number of accepted hypotheses at 
level A e (0, 1). If type II errors are ignored for a sufficiently large A then 

(1.1) E[Na(A)] r mo(1 - A). 

Storey's (ST) estimator is given by 

. N'(>) Na(A) (1.2) 0o(1A) 
= 

or mo0(A) = - m(1 - 
A) 1 - A 

Schweder and Spjotvoll's [18] method visually fits a straight line through the origin 
to the plot of Na(p(i)) = m - i vs. 1 - p(i) (1 < i < m) for large values of 
the P(i). The slope of the fitted line is taken as an estimate of mo according to 
Equation (1.1). Because these estimators attribute all nonsignificant p-values to 
the true null hypotheses (type II errors are ignored) and do not explicitly model 



306 Tamhane and Shi 

the non-null p-values, they tend to be positively biased which results in conservative 
adaptive control of any type I error rate. 

To get a handle on type II errors, so that both the null and non-null p-values can 
be utilized to estimate or0, the mixture model approach has been proposed by several 
authors. The mixture model differs from the setup given in the first paragraph in 
that the number of true hypotheses is a random variable (r.v.) and mo is its expected 
value. Specifically, let Zi be a Bernoulli r.v. which equals 1 with probability rr0 if 

Hoi is true and 0 with probability ri = 1 - io if Hoi is false. Assume that the Zi 
(1 < i < m) are i.i.d. Then the number of true hypotheses, Mo = 

Z~= Zi, is a 
binomial r.v. with parameters m and 7ro, and E(Mo) = mo = m-ro. 

A parametric mixture model was considered by Hsueh, Chen, and Kodell [12] 
(HCK). They assumed the following simple hypothesis testing setup. Suppose that 
all m hypotheses pertain to the means of the normal distributions with Hoi : i = 0 
versus Hli : pi > 0. (HCK considered a two-sided alternative, but that is not 

germane to their method.) Conditional on Zi, the test statistic Xi ~ N(6i, 1), 
where 6i is the standardized lpi with 6i = 0 if Zi = 1 and 6i = 6 > 0 if Zi = 0 
where HCK assumed that S is known. We refer to this model as the normal model, 
which was also used by Black [3] to study the bias of Storey's [21] estimator. An 

expression for the expected number of Xi's that are greater than any specified 
threshold can be derived using this setup. By plotting the corresponding observed 
number of Xi's against the threshold, mo could be estimated as the slope of the 

straight line through the origin using least squares (LS) regression. 
The normal model is the topic of Section 2. We first extend the HCK estimation 

method to the unknown 6 case, which is a nonlinear least squares (NLS) regression 
problem. Next we note that the HCK method makes use of only the number of Xi's 
that are greater than a specified threshold; it does not make use of the magnitudes 
of the Xi's. Therefore we propose two alternative methods of estimation which uti- 
lize the magnitudes of the Xi's in an attempt to obtain a better estimate of 6 and 

thereby a better estimate of mo. The first of these alternative methods is similar to 
the LS method of HCK, but uses the sample mean (instead of the number) of the 
Xi's that are greater than a specified threshold. We refer to it as the test statis- 
tics (TS) method. The second method is the EM method of Dempster, Laird and 
Rubin [4] which finds the maximum likelihood estimators (MLEs) of the mixture 
distribution of the Xi's. 

This normal mixture model approach in conjunction with the EM algorithm was 

proposed by Guan, Wu and Zhao [8] and most recently by Iyer and Sarkar [14]. So, 
although the use of the EM algorithm for estimation in the context of the present 
problem is not new, we perform a comprehensive comparison of it with the other 
two new methods, and find that it performs best when the assumed model is correct, 
but is not robust to model violations. 

In the second approach discussed in Section 3, the non-null p-values are modeled 

by a beta distribution with unknown parameters a and b (denoted by Beta(a, b)). 
We refer to this model as the beta model. Here we restrict to estimation methods 
based on p-values since the Xi's can have different null distributions. All three 
estimators (HCK, TS and EM) are also derived for the beta model. 

We stress that both the normal and beta models are simply '"working" models 
intended to get a handle on type II errors. We do not pretend that these models are 
strictly true. Therefore robustness of the estimators to the model assumptions is an 
important issue. In the simulation comparisons for the normal model, robustness of 
the fixed 6 assumption is tested by generating different (5's for the false hypotheses 
from a normal distribution. Robustness of the normal model assumption is tested by 
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generating pi's for the false hypotheses using the beta model and transforming them 
to the Xi's using the inverse normal transformation. Similarly, the robustness of the 
beta model is tested by generating Xi's using the normal model and transforming 
them to pi's. 

Adaptive control of FDR using different estimators of mo is the topic of Sec- 
tion 4. The ST, HCK, TS and EM estimators are compared in a large simulation 

study in Section 5. The performance measures used in the simulation study are the 
biases and mean square errors of the estimators of ro and FDR. An example illus- 

trating application of the proposed methods is given in Section 6. Conclusions are 
summarized in Section 7. Proofs of some technical results are given in the Appendix. 

2. Normal Model 

The normal mixture model can be expressed as 

(2.1) f(xi) = 7roA(xi) + airl(xi - 6), 

where f(xi) is the p.d.f. of Xi and 0(.) is the p.d.f. of the standard normal distri- 
bution. Although 6 will need to be estimated, we are not too concerned about its 
estimation accuracy since, after all, it is a parameter of a working model. 

2.1. Hsueh, Chen, and Kodell (HCK) Method 

Let 

(2.2) 0(6, A) = PHlI{Pi > A} = PHI {Xi < zA} = " (zA - 6) 

denote the type II error probability of a test performed at level A where D(.) is the 
standard normal c.d.f. and zA - (-1(1- A). Then E[Nr(A)] = moA + (m-mo)[1- 
3(6, A)], and hence 

(2.3) E[Nr(A)] - mb (-zA + 6) = mo[A - 4P (-zA + 6)]. 
For A = p(i), i = 1, 2,..., m, the term inside the square brackets in the R.H.S. of 
the above equation is 

(2.4) i = p(i) - 4 (-zp(, + 6) 
and the L.H.S. can be estimated by 

(2.5) y, 
= i - (-zP(,) + 6). 

If 6 is assumed to be known then we can calculate (xi, yi), i = 1, 2,..., m, and using 
(2.3) fit an LS straight line through the origin by minimizing 1 _(y, - moxi)2 with 
respect to (w.r.t.) mo. The LS estimator of mo is given by 

SEi)=1 xiyi (2.6) mio 
=- 

m 
AA ml2 " 

We first extend the HCK estimator to the unknown 6 case by incorporating 
estimation of 6 as part of the NLS problem of minimizing Zml=(yi - moxi)2 w.r.t. 
mo and 6. The iterative algorithm for this purpose is given below. The initial values 
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for this algorithm as well as the algorithms for the TS and EM estimators were 
determined by solving the following two moment equations for mo and 6: 

m m 

(2.7) Xi = (m - mo)6 and X2 = m0 + (m - mo)(62 + 
i=1 i=1 

HCK Algorithm 
Step 0: Compute initial estimates mio and 6 by solving (2.7). Let ro = 

-io/m. 
Step 1: Set 6 = 6 and compute (xi, y), i = 1, 2,..., m, using (2.4) and (2.5). 
Step 2: Compute mio using (2.6) and ro = iio/m. 
Step 3: Find 6 to minimize Ei=l(yi 

- 
moxi)2 

Step 4: Return to Step 1 until convergence. 

Remark. One could use weighted least squares to take into account the het- 
eroscedasticity of the yi's. We tried this, but the resulting NLS problem was com- 
putationally much more intensive without a collateral gain in the efficiency of the 
estimators. 

2.2. Test Statistics (TS) Method 

As noted in Section 1, we hope to improve upon the HCK estimator by utilizing 
the information in the magnitudes of the Xi's. Toward this end we first propose 
an estimator analogous to the HCK estimator except that it uses the sample mean 

(rather than the number) of the Xi's that are significant at a specified level A. 
Define 

Sa(A) = {i: pi > A}{= i :Xi < zA} and S,(A) = {i: pi ( i:Xi > zA. 

Then Na(A) = ISa(A)I and Nr(A) = ISr(A)I. Finally define 

1 1 
Xa(A) 

= 1 
Xi and Xr,(A)N(A) Xi. 

sNa(A)ESa(A) iESr(A) 

To derive the expected values of these sample means the following lemma is useful. 

Lemma 1. Define 

coa(A) = EHoi (Xi4Xi < zA) , Cr(A) = 

EHo, 
(Xi|Xi zA), 

Cla(6,1A) = EHli (XilXi 
< zA) ,c1l(6, A) = EH1i (XilXi X 

zA) . 

and 

Then 

and 
Coa(A (zA)cor(A)- (zA) 

1( - - 
A 

Cla(6,A) -=6 
- (z - 6) 

-)Clr(6 
a 

A)( + -Z) C(zA - 6)O) ( - ZA) 

Proof. The proof follows from the following expressions for the conditional expec- 
tations of X ~ N(1i, 1): 

E(XIX x) = -( and E(XIX > x) 
= ( + 

-x) E(IX< )- 
,D 

(x - 
CA)X 
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The desired expected values of Xa(A) and Xr(A) are then given by the following 
lemma. 

Lemma 2. Let 

pro(1 - A) 
(2.8) g(iro, 6, A) = P {Zi = Xi < z} r (1 - A) -xo (1 - 

A) + rrl 4) (zA 
- 

6) 

and 

(2.9) h(7ro, 6, A) = P (Zi = 1Xi A> zA} 
= roA 

7roA + rI (-zA + 6) 

Then 

(2.10) E[X,(A)] = g(iro, 6, A)co0a(A) + [1 - g(lro, 6, A)]clia(6, A) 

and 

(2.11) E[Xr (A)] = h(ro, 6, A)cor(A) + [1 - h(7ro, 6, A)]Cr(6,lA), 

where coa(A)), cor(A), cla(6, A) and cl,(6, A) are as given in Lemma 1. 

Proof. Given in the Appendix. El 

To develop an estimation method analogous to the HCK method note that from 
(2.3) and (2.11) we get 

(2.12) E[Nr(A)]E[Xr(A)] - mJA (-ZA + 6) clr(6, A) 
-= mo [Acor(A) - ( (-zA + 6) clr(6, A)]. 

For A = p(i), i = 1, 2,..., m, the term inside the square brackets in the R.H.S. of 
the above equation is 

(2.13) xi 
= 

p(i)Cor(P(i)) - 4 (-zp 
- 

+ 6) Clr(6,P(i)) 

and the L.H.S. can be estimated by 

Yi = iXr(P(i)) - m(1 (-zp(i) + 6) clr(6, p(i)) 
m 

(2.14) = E X(j) - 
m(J (-zp(-) 

+ 6) Clr(6, p(i)). 
j=m-i+l 

Then from (2.12) we see that a regression line of yi versus xi can be fitted through 
the origin with slope mo by minimizing ~- =(yi - moxi)2 w.r.t. mo and 6. The 
algorithm to solve this NLS regression problem is exactly analogous to the HCK 
algorithm. 

2.3. EM Method 

Whereas the HCK and TS methods compute the LS estimators of or0 and 6 (for 
two different regression models), the EM method computes their MLEs. For these 
MLEs to exist, it is necessary that r0o be bounded away from 0 and 1. The steps in 
the EM algorithm are as follows. 
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EM Algorithm 
Step 0: Compute initial estimates miio and 6 by solving (2.7). Let i~o = 

-?io/m. Step 1 (E-step): Calculate the posterior probabilities: 

Roq(Xi) 
7roo(Xi) + 910(Xi - ) 

and ji(Xi) = 1 - 7o(Xi), i = 1, 2,..., m. 
Step 2 (M-step): Calculate new estimates: 

= 1 o(X) ( 
-iz1 l(Xi)Xi ro =and 6 = m m E , 7i(Xi) 

Step 3: Return to Step 1 until convergence. 

3. Beta Model 

In many applications the normal model may be inappropriate because the test 
statistics may not be normally distributed or different types of test statistics (e.g., 
normal, t, chi-square, Wilcoxon, log-rank) may be used to test different hypotheses 
or only the p-values of the test statistics may be available. In these cases we use 
the p-values to estimate r0. 

We propose to model the non-null p-values by a Beta(a, b) distribution given by 

g(pla, b) = F(a 
+ 

b)a-1(1 p)b1 r1(a) (b) 
with unknown parameters a and b with a < 1 and b > 1. This restriction is imposed 
in order to ensure that g(pla, b) is decreasing in p. It is well-known that the non-null 
distribution of the p-values must be right-skewed and generally decreasing in shape 
(see Hung, O'Neill, Bauer and Kohne [13]). Langaas et al. [17] imposed the same 
restriction in their nonparametric estimate of the non-null distribution of p-values. 

Of course, the null distribution of a p-value is Beta(l, 1), i.e., the U[0, 1] distri- 
bution. As in the case of the normal model, the beta model can be represented as 
a mixture model for the distribution of the pi: 

(3.1) f(pi) = 7ro x 1 + rlg(pipa, b). 

The parameters a and b must be estimated along with 7ro. This problem is analogous 
to that encountered for the normal model with the difference that in addition to 

r0o, we have to estimate two parameters, a and b, instead of a single parameter 6. 
We first extend the HCK method for the normal model discussed in Section 2.1 to 
this beta model. 

3.1. Hsueh, Chen, and Kodell (HCK) Method 

Denote the type II error probability of a test performed at level A by 

(3.2) (a, b, A) = PHPi > r(ab) pa-l(1 p)b-ldp = 1 - IA(a, b), 

where IA (a, b) is the incomplete beta function. Put 

(3.3) xi = P(i) - Ip(,) (a, b) and yi = i - mlP(,) (a, b). 
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Then the HCK method amounts to solving the NLS problem of minimizing 

A 1(Yi - mOXi)2 
w.r.t. mo and (a, b) (subject to a < 1 < b). Gauss-Newton 

method (Gill et al. [7]) was used to perform minimization w.r.t. (a, b). The initial 

starting values for this algorithm as well as the algorithms for the TS and EM 
estimators described below were determined by solving the following three moment 
equations for mo and (a, b): 

m 1 a 
pi = -mo + mi, 

2 a+b 
i=-1 

m 1 a(a + 1) (3.4) 
m 2= mo+ mi, 

i=1 

3 (a+b)(a + b + 1) 
m 3_o1 a(a + 1)(a + 2) 

i= 4 (a + b)(a + b + 1)(a + b + 2) i= 1 

3.2. Test Statistics (TS) Method 

Here the TS estimator is based on the average of the "accepted" or "rejected" 
p-values defined as 

1 1 

Pa( 
Na()A) 

= 
I 

E 

piandpr(A)- 1r(EA) Pi" 
Na(A s(Nr() s(A) 

Analogous to Lemma 1, we have the following lemma. 

Lemma 3. Define 

do (A) = EHo (Pi Ip > A) do0r(A) = EHoi (pilpi < A), 

dia(a, b, A) = EH1, (pi lpi > A), dir(a, b, A) = EH1, 
(PAi 

< A). 

and 

Then we have 

and 

A+1 A 
doa(A) 2 ,dor(A) 2 

7 

1 - IA(a + 1, b) a IA(a + 1, b) a 
1 - I(a, b) a + b' I (a, b) a + b 

Proof. Straightforward. O 

The next lemma gives 
E[,a(A)] 

and E[pr(A)]; its proof is exactly analogous to 
that of Lemma 2. 

Lemma 4. Let 

aio(1 - A) 
g(7ro, a, b, A) = P {Zi = 1lpi > Al} = 7o(1 - A) 

7ro(1 - ) + 
71i [1 - IIA(a, b)] 

h(7ro, a, b, A) = P {Zi = 1 lpi < A} 7roA 
7rOAA + 7rIA (a, b) 

and 
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Then 

(3.5) Epa(A)] = g(rro, a, b, A)doa(A) + [1 - g(7ro, a, b, A)]dia (a, b, A) 

and 

(3.6) E[r(A)] = h(rro, a, b, A)dor(A) + [1 - h(7ro, a, b, A)]dlr (a, b, A), 

where do,(A), dor(A), dia(a, b, A) and dir(a, b, A) are as given in Lemma 3. 

The equations for the TS estimator are derived as follows. Analogous to (2.12), 
we obtain 

E[Nr(A)]E[pr(A)] - mIA(a, b)dir(a, b, A) = mo[Ador(A) - IA(a, b)dir (a, b, A)]. 

For A = p(i), i = 1, 2,..., m, the term in the square brackets in the R.H.S. of the 
above equation equals 

2 

P(i) a (a ,b) Xi 2 a+b Ip(,) (a + 1, b) 

and the L.H.S. can be estimated by 
i 

Yi EP(j)-a+ Ip(a+1,b). 
j=a1 

The TS algorithm for the normal model can be modified to minimize EAi=l(Yi 
- 

moxi)2 by replacing the minimization with respect to 6 by minimization with re- 
spect to (a, b). 

3.3. EM Method 

The steps in the EM algorithm, which gives the MLEs of 70 and (a, b), are as fol- 
lows. As in the case of the normal model, for these MLEs to exist, it is necessary 
that 

0ro 
be bounded away from 0 and 1. 

Step 0: Initialize o0 and (a, b) by solving (3.5). Let 
r0o 

= io/m. 
Step 1 (E-Step): Calculate the posterior probabilities: 

7Iro 
ro (Pi)) = + * o , 

So + 9lg(Pi|Id , b) 

and Ai1(pi) = 1- -'o(pi), 1,2,..., m. 

Step 2 (M-Step): Calculate ai and b as solutions of the equations (see equa- 
tions (21.1) and (21.2) in Johnson and Kotz [16]): 

EM 
, 

'i(p i) In pi 
O(a) - O(a + b) m 

Eiml *Il(pi) 
CEm ji (pi) In(' - pi) 

O(b) - V)(a + b) 
= 

EI n1 -p) Ei=ilAI(Pi) 
where 0(.) is the digamma function (i.e., the derivative of the natural logarithm of 
the gamma function). Also calculate 

m 
Ei= i 7o0(Pi) 7r0 -- 

m 

Step 3: Return to Step 1 until convergence. 
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4. Adaptive Control of FDR 

We now discuss the use of the estimate mio for adaptively controlling the FDR. 
The control is assumed to be strong control (Hochberg and Tamhane [11]), i.e., 
FDR < a for some specified a < 1 for all possible combinations of true and false 
null hypotheses and the respective parameter values. Let R be the total number of 

rejected hypotheses and let V be the number of true hypotheses that are rejected. 
Benjamini and Hochberg [1] introduced the definition 

FDR=E -E=E 
- 

R>0 P(R>0), 

where 0/0 is defined as 0. Benjamini and Hochberg [1] gave a step-up (SU) procedure 
that controls FDR < a. 

Storey [21] considered a single-step (SS) procedure (which he referred to as the 
fixed rejection region method) that rejects Hoi if pi <y for some common fixed 
threshold y. His focus was on estimating the FDR. He proposed the following non- 

parametric estimator: 

(4.1) FDR) (7) = 
- {Nr(A) V 1}/m' 

where ro(A) is given by (1.2). The solution ' to the equation FDRA(y) = a can 
be used in an MCP that tests each hypothesis at the '-level. Storey, Taylor and 

Siegmund ([22], Theorem 3) have shown that this heuristic procedure (which uses 
a slightly modified estimator of lro) controls the FDR. The heuristic procedures 
proposed below along the same lines (which use parametric estimators of the FDR) 
have not been rigorously shown to control the FDR. 

We propose the following parametric estimator of the FDR: 

(4.2) FDR(-) - 0 r0oY + 1[1 - P(, 7)] 

where 3(-, -) is either 3(5,, 7) given by (2.2) for the normal model or 3(', b, 7y) given 
by (3.2) for the beta model. To adaptively control the FDR at level a, we use 
the same heuristic procedure as above except that ' is obtained by setting this 
parametric estimator equal to a. 

We may confine attention to a < ro since if a > ro then one can choose 
- 

= 1, 
and reject all hypotheses while still controlling the FDR = r0o < a. Existence and 
uniqueness of ' for a c (0, iro] is proved in the following two lemmas for the normal 
and beta models, respectively. 

Lemma 5. For the normal model, the solution ' to the equation FDR(7) = a, 
where FDR(y) and (6, -y) are given by (4.2) and (2.2), respectively, exists and is 
unique fora cE (0, ro]. 

Proof. Given in the Appendix. Ol 

Lemma 6. For the beta model, assuming 0 < 'a< 1 < b, the solutions to the 
equation FDR(7) = a, where FDR(7) and (6, 7) are given by (4.2) and (3.2), 
respectively, exists and is unique for a E (0, 

0ro]. 
Proof. Given in the Appendix. O 
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To develop an adaptive FDR-controlling procedure for the normal mixture model, 
Iyer and Sarkar [14] took a somewhat different approach via the following asymp- 
totic result of Genovese and Wasserman [6]: Assume that the pi are independent 
U[0, 1] when the Hoi are true and have a common distribution F when the Hoi are 
false. Then the nominal a-level Benjamini and Hochberg SU procedure is asymp- 
totically (as m --+ oo) equivalent to Storey's SS procedure that rejects Hoi if pi < 5 
where ' is the solution to the equation 

1 - aior0 
Fy() = py and p =.1 

a(1 - wo) 

Furthermore, since the SU procedure actually controls the FDR conservatively at 

r0oa level, exact control at level a is achieved by replacing a in the expression for 
p by a/7ro, which results in the following equation for y: 

(4.3) F(7) = p and pa) 
Fa(1 - Qd o)" 

By writing F(y) = 1 - 3(., 7), we see that FDR(y) = a and (4.3) are identical if 

r0o is replaced by ro in (4.3). Iyer and Sarkar [14] used the solution ' from (4.3) 
in Storey's SS procedure with F(y) =- (6 - zy), and 6 and 7ro replaced by their 

estimates 6 and ro obtained from the EM method, which results in an adaptive 
FDR-controlling procedure, which is identical to the one proposed before. 

5. Simulation Results 

We compared different estimators by conducting an extensive simulation study. The 
ST estimator was used with A = 0.5 throughout. The estimators were compared 
in terms of their accuracy of estimation of r0o and control of FDR at a nominal 
a = 0.10 using the SS procedure. The bias and mean square error (MSE) of the 
estimators were used as the performance measures. The results for the normal model 
are presented in Section 5.1 and for the beta model in Section 5.3. Throughout we 
used m = 1000 and the number of replications was also set equal to 1000. We varied 

7ro from 0.1 to 0.9 in steps of 0.1. The values 7ro = 0 and 1 were excluded because 
io exhibits erratic results in these extreme cases; also FDR = 0 when 7ro 

= 0. 
In each simulation run, first the random indexes of the true and false hypotheses 

were generated by generating Bernoulli r.v.'s Zi. Then the respective Xi's or the 
pi's were generated using the appropriate null or alternative distributions. The bias 
of each 

r0o 
estimator was estimated as the difference between the average of the ro 

values over 1000 replicates and the true value of 7ro. In the case of FDR, the bias 
was estimated as the difference between the average of the FDR values over 1000 
replicates and the nominal a = 0.10. The MSE was computed as the sum of the 
square of the bias and the variance of the ro (or FDR) values averaged over 1000 
replicates. The detailed numerical results are given in Shi [20]; here we only present 
graphical plots to save space. 

5.1. Simulation Results for Normal Model 

Simulations were conducted in three parts. In the first part, the true model for the 
non-null hypotheses was set to be the same as the assumed model by generating the 
Xi's for the false hypotheses from a N(6, a2) distribution with a fixed 6 = 2 and 
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a = 1. In the other two parts of simulations, robustness of the assumed model was 
tested by generating the Xi's for the false hypotheses from different distributions 
than the assumed one. In the second part, the Xi's for the false hypotheses were 

generated from N(6i, a2) distributions where the 6i's were themselves drawn from a 
N(Jo, ao2) distribution with 60o = 2 and ao = 0.25 corresponding to an approximate 
range of [1, 3] for the 6i. In the third part, the pi's for the false hypotheses were 
generated from a Beta(a, b) distribution with a = 0.5 and b = 2, and the Xi's were 
computed using the inverse normal transformation Xi = -1(1 - pi). 

Results for Fixed 6 

The bias and the square root of the mean square error (v'MSE) of ro for ST, HCK, 
TS and EM estimators are plotted in Figure 1. Note from equation (2.3) that the 
bias of the ST estimator is given by 

1 - A (5.1) Bias[io(A)] = 
I(z4 

- S). 1-AA 

Also, using the fact that Na(A) has a binomial distribution with number of trials 
m and success probability, 

p = P{pi > A} = -xo(1 - A) + (1 - 7ro) I(zA 
- 6), 

and using equation (1.2) for 'ro(A), we have 

p(1 -p) (5.2) Var[ro(A)]- = ) 
m(1 - 

A)2 

These formulae were used to compute the bias and MSE of the ST estimator instead 
of estimating them by simulation. Note that the bias of the ST estimator decreases 
linearly in 

0ro. 
The v/MSE plot for the ST estimator is also approximately linear 

because the bias is the dominant term in MSE. This is true whenever the alternative 
is fixed for all false null hypotheses. 

The TS estimator does not offer an improvement over the HCK estimator, as we 
had hoped, and in fact performs slightly worse in terms of MSE for 7ro _ 

0.5. We sus- 
pect that this result is due to the bias introduced when the term E[Nr(A)]E[Xr(A)] 
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FIG 1. Bias and VM7-- of 7o for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Normal Model with Fixed 6). 
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FIG 2. Bias and v/iAM of FDR for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Normal Model with Fixed 6). 

in equation (2.12) is estimated by iXr(p(i)) for A = p(i) because of the fact that the 
product of the expected values does not equal the expected value of the product of 
two dependent r.v.'s. The EM estimator has consistently the lowest bias and the 
lowest MSE. 

The bias and MSE of FDR for ST, HCK, TS and EM estimators are plotted 
in Figure 2. We see that the ST estimator leads to a large negative bias which 
means that, on the average, FDR is less than the nominal a = 0.10 resulting in 
conservative control of FDR. The other three estimators yield approximately the 
same level of control. Surprisingly, there is very little difference in the MSEs of the 
four estimators. The EM estimator still is the best choice with the lowest bias and 
the lowest MSE throughout the entire range of io values. 

Results for Random 6 

The bias and V/MSE of ro and of FDR for ST, HCK, TS and EM estimators are 
plotted in Figures 3 and 4, respectively. By comparing these results with those for 
fixed 6 = 2, we see that, as one would expect, there is a slight degradation in the 

performance of every estimator because the assumed model does not hold. The 
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FIG 3. Bias and VM-E of io for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Normal Model with Random 6). 
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FIG 4. Bias and fM&S of FDR for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Normal Model with Random 6). 

comparisons between the four estimators here are similar to those for fixed 6 with 
the estimators ranked as EM > HCK > TS > ST. 

5.2. Robustness Results for Data Generated by Beta Model 

The bias and v/MSE of 
0ro 

and of FDR for ST, HCK, TS and EM estimators are 
plotted in Figures 5 and 6, respectively. Looking at Figure 5 first, we see that the 
biases and MSEs of all four estimators are an order of magnitude higher compared 
to the normal model data which reflects lack of robustness. 

It is interesting to note that the EM estimator is no longer uniformly best for esti- 
mating rro. In fact, the HCK estimator has a lower bias and MSE for 0.2 <7ro 0 0.7. 
The lack of robustness of the EM estimator is likely due to the strong dependence 
of the likelihood methods on distributional assumptions. On the other hand, for the 
least squares methods, the dependence on the assumed distribution is only through 
its first moment and hence is less strong. As far as control of FDR is concerned, 
there are not large differences between the proposed estimators. However, when 
7ro = 0.9 the proposed estimators exceed the nominal FDR by as much as 0.05, 
while the ST estimator still controls FDR conservatively. In conclusion, the HCK 
estimator performs best for the middle range of r0o values. 
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FIG 5. Bias and VM&~ of 'o for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Beta Model). 
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FIG 6. Bias and V 7K of FDR for ST, HCK, TS and EM Estimators for Normal Model (Data 
Generated by Beta Model). 

5.3. Simulation Results for Beta Model 

Results for Beta(0.5, 2) Data 

In this case the non-null p-values were generated from a Beta(a, b) distribution with 
a = 0.5, b = 2.0 and the null p-values were generated from the U[0, 1] distribution. 
As before, the bias and variance of the ST estimator were not estimated from simu- 
lations, but were computed using Equations (5.1) and (5.2) with ((zA -6) replaced 
by 

1-Ia 
(a, b). Note that the bias of the ST estimator decreases linearly in ro in this 

case as well and v/MSE decreases approximately linearly. From Figure 7 we see that 
all estimators of 

0ro, 
except ST, have significant negative biases particularly over 

the interval [0.2,0.5] and forr0 o > 0.7, resulting in the achieved FDR significantly 
exceeding the nominal value of a = 0.10 over the corresponding ranges of ro as can 
be seen from Figure 8. Comparing the results here with those for the normal model 
with the fixed 6 case, we see that the biases and MSEs of all estimators are an order 
of magnitude higher in the present case. The reason behind this poor performance 
of the beta model probably lies in the difficulty of estimating the parameters a, b 
of the beta distribution. Only the ST estimator controls FDR conservatively and 
has the smallest MSE for 0.2 < 7 o < 0.7. Thus the ST estimator has the best 
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FIG 7. Bias and v/IAS of ^o for ST, HCK, TS and EM Estimators for Beta Model (Data 
Generated by Beta Model). 
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FIG 8. Bias and VMH of FDR for ST, HCK, TS and EM Estimators for Beta Model (Data 
Generated by Beta Model). 

performance since it is a nonparametric estimator (and the performance would be 
even better if A is not fixed, but is used as a tuning parameter). In other words, 
the benefits of using a parametric model are far outweighed by the difficulty of 

estimating the parameters of the model resulting in less efficient estimators. 

Robustness Results for Data Generated by Normal Model 

In this case we generated the data by the normal model with N(2, 12) as the al- 
ternative distribution. The p-values were then computed and all four methods of 
estimation were applied. The results are plotted in Figures 9 and 10. From these fig- 
ures we see that none of the proposed estimators exhibit consistent negative bias as 
they did when the data were generated according to the beta model. This is some- 
what surprising since one would expect these estimators to perform more poorly 
when the assumed model does not hold as in the present case. We also see that 
the EM estimator performs worse than other estimators. Thus lack of robustness 
of the EM estimator to the model assumptions is demonstrated again, and for the 
same reason. The TS estimator generally has the lowest bias for estimating 

0ro 
and 

its achieved FDR is closest to the nominal a; the ST estimator has the second best 
performance. 
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6. Example 

We consider the National Assessment of Educational Progress (NAEP) data ana- 
lyzed by Benjamini and Hochberg [2]. The data pertain to the changes in the average 
eighth-grade mathematics achievement scores for the 34 states that participated in 
both the 1990 and 1992 NAEP Trial State Assessment. The raw p-values for the 
34 states are listed in the increasing order in Table 2. The FWE controlling Bon- 
ferroni procedure and the Hochberg [9] procedure both identified only 4 significant 
results (those with p-values < P(4) = 0.0002) Application of the FDR controlling 
non-adaptive Benjamini-Hochberg SU procedure resulted in 11 significant results. 
By applying their method they estimated fio = 7 

(0o 
= 0.2059); using this value 

in the adaptive version of their procedure yielded 24 significant results. 
We applied the three methods of estimation considered in this paper to these 

data under both the normal and beta models. The estimates ro and the associated 
J or (', b) values are given in Table 1. We see that for both models, the HCK and 
EM methods give smaller estimates of r0o than does the TS method. The '-values 
obtained by solving the equation FDR(-y) = a for a = 0.05 are inversely ordered. 

The p-values < - are declared significant. From Table 2, we see that the number 
of significant p-values for HCK, TS and EM for the normal model are 28, 21 and 

27, respectively. Thus, HCK and EM methods give more rejections than Benjamini 
and Hochberg's [2] adaptive SU procedure. 

Before fitting the beta mixture model, it is useful to plot a histogram of the p- 

TABLE 1 
Estimates of the Parameters for the Normal and Beta Models, Value of^ and Number of 

Rejected Hypotheses for the HCK, TS and EM Methods 

Normal Model Beta Model 

HCK TS EM HCK TS EM 

lro 0.1317 0.3233 0.1407 0.0096 0.1307 0.0160 

7 0.3163 0.0918 0.2946 1.0000 0.3092 1.0000 

6 1.8285 2.2657 1.9221 - - - 

a- - - 0.3291 0.4474 0.3210 

b - - - 2.0764 3.2842 1.9313 
Nr 28 21 27 34 27 34 
Nr = Number of rejected hypotheses. 
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TABLE 2 
NAEP Trial State Assessment: Test Results for the HCK, TS and EM Methods (Normal Model) 

State p-value HCK TS EM State p-value HCK TS EM 
RI 0.00000 * * * NY 0.05802 * * * 
MN 0.00002 * * * OH 0.06590 * * * 
HI 0.00002 * * * CA 0.07912 * * * 
NC 0.00002 * * * MD 0.08226 * * * 
NH 0.00180 * * * WV 0.10026 * * 
IA 0.00200 * * * VA 0.14374 * * 
CO 0.00282 * * * WI 0.15872 * * 
TX 0.00404 * * * IN 0.19388 * * 
ID 0.00748 * * * LA 0.20964 * * 
AZ 0.00904 * * * MI 0.23522 * * 
KY 0.00964 * * * DE 0.31162 * 
OK 0.02036 * * * ND 0.36890 
CT 0.04104 * * * NE 0.38640 
NM 0.04650 * * * NJ 0.41998 
WY 0.04678 * * * AL 0.44008 
FL 0.05490 * * * AR 0.60282 
PA 0.05572 * * * GA 0.85628 

*Significant p-values are indicated by asterisks. For the beta model, the HCK and EM methods 
find all p-values significant, while the TS method finds the p-values less than - = 0.3093 significant, 
i.e., the same as those under the EM column in this table. 

values. This histogram is shown in Fig. 11. It has a decreasing shape, and assuming 
that the majority of the p-values are non-null, it corresponds to a < 1 and b > 1. 
HCK and EM methods yield ?ro < a = 0.05, hence ' = 1 which means that all 34 
hypotheses are rejected. This evidently liberal result is likely due to underestimation 
of 

0ro 
using the beta model as noted in Section 5.3. The TS method yields o0 = 

0.1307 and ' = 0.3092, which are close to the estimates produced by the HCK and 
EM methods for the normal model and it rejects the same 27 hypotheses. 

Rejections of hypotheses with large p-values will justifiably raise many eyebrows. 
This appears to be a problem with FDR-controlling procedures when there are many 
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FIG 11. Histogram of the p-Values for the NAEP Data. 
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hypotheses that are clearly false (with p-values close to zero) which lowers the bar 
for rejection for other hypotheses. Shaffer [19] has discussed this problem and has 
suggested imposing additional error controlling requirements in order to limit such 
dubious rejections. This is a topic for further research. 

7. Concluding Remarks 

In this paper we offered two different mixture models for estimating the number of 
true null hypotheses by modeling the non-null p-values. For each model (the normal 
and beta), three methods of estimation were developed: HCK, TS and EM. Gener- 
ally speaking, these parametric estimators outperform (in terms of the accuracy of 
the estimate of iro and control of the FDR) the nonparametric ST estimator for the 
normal model but not for the beta model. The reason for this is that the normal 
model is easier to estimate and so the benefits of the parametric estimators are not 
significantly compromised by the errors of estimation. On the other hand, the beta 
model is difficult to estimate and so the benefits of the parametric estimators are 
lost. Therefore we do not recommend the use of the beta model in practice. 

For normally distributed test statistics, the EM estimator generally performs best 
followed by the HCK and TS estimators. However, the EM estimator is not robust 
to the violation of the model assumptions. If the EM estimator for the normal model 
is applied to the data generated from the beta model or vice versa, its performance 
is often worse than that of the HCK estimator, and sometimes even that of the ST 
estimator. The TS estimator did not improve on the HCK estimator in all cases 
as we had hoped. Thus our final recommendation is to use the normal model with 
the EM method if the test statistics follow approximately normal distributions and 
the HCK method otherwise. If only the p-values calculated from various types of 
test statistics are available then the ST method is recommended; alternatively the 
p-values may be transformed using the inverse normal transform and then the HCK 
method may be applied. 

Appendix 

Proof of Lemma 2. We have 

E[Xa(A)>= E { Xi 
jiESa(A) 

= E EXi So (A) = sa,Na (A) - na 
iEsa 

= -E- na [g(~o, 6, A)COa(A) + [1 - 
g(l0o, 

6, A)]Cla(6, A)] 

= g(lro, 6, A)coa(A) + [1 - g(ro, 6, A )]cia(, A). 

In the penultimate step above, we have used the fact that conditionally on Xi 
zA, the probability that Zi = 1 is g(lro, 6, A) and the probability that Zi = 0 is 
1 - g(ro, 6, A). Furthermore, the conditional expectation of Xi in the first case is 

C0a(A) 
and in the second case it is Cia(6, A). The expression for E[X,(A)] follows 

similarly. O 
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Proof of Lemma 5. By substituting for 0(., 7) from (2.2) and dropping carets on 

FDR(7), ro, ~Ii and 6 for notational convenience, the equation to be solved is 

FDR(y) = 7 

0ro 
+ 71r (6- zy)/y 

It is easy to check that FDR(0) = 0 and FDR(1) = r0o. We shall show that FDR(7) 
is an increasing function of y which will prove the lemma. Thus we need to show 
that u(6, y) = (D(6 - zy)/y is decreasing in 7. By implicit differentiation of the 
equation (I(zy) = 1 - y, we get 

dzy 1 

dy q(zy) 

du(6, 7) _ y(6 - z7) - A(zy)4(6 - zy) 
dy 72A(zy) 

Hence, 

Therefore we need to show that 

v(6, 7) = - zy) - Y7(6 - zy) > 0 V 6 > 0. 

Now v(0, y) = 0. Therefore we must show that 

dv(6, 7) 
db = q(6 - zy)[q(zy) + y(6 - zy)] > 0, d6 

which reduces to the condition: w(6, y7) = (z7) + y(5 - zy) > 0. Since w(6, y) is 
increasing in 6, it suffices to show that 

w (0, y) = A(zy) - yzy > 0. 

By putting x = zy and hence 7 = ((-x) the above inequality becomes 

4(-x) 1 
()<-, q$(x) x 

which is the Mills' ratio inequality (Johnson and Kotz [16], p. 279). This completes 
the proof of the lemma. O 

Proof of Lemma 6. By substituting for 3(., 7) from (3.2) and dropping carets on 

FDR(y), o, 1i, a 
and b for notational convenience, the equation to be solved is 

(A.1) FDR(7y) 7r 0ro + rlly (a, b)//y 
Note that FDR(0) = 0 and FDR(1) = 7ro. To show that FDR(y) is an increasing 
function of 7 we need to show that Iy(a, b)/7 decreases in y. To see this, note that 
the derivative of Iy(a, b)/7 w.r.t. y is proportional to yg(7ya, b) - Iy (a, b), which is 
negative since the beta p.d.f. g(yja, b) is strictly decreasing in 7 for a < 1 and b > 1, 
and so yg(71a, b) < Iy(a, b). It follows therefore that the equation FDR(7) = a has 
a unique solution in 7 E (0, 1) for a E (0, 7r0]. O- 
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