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The objective of this paper is to give an overview of a relatively new area of multiplicity research that

deals with the analysis of hierarchically ordered multiple objectives. Testing procedures for this

problem are known as gatekeeping procedures and have found a variety of applications in clinical

trials. This paper reviews main classes of these procedures, including serial and parallel gatekeeping

procedures, and tree gatekeeping procedures that account for logical restrictions among multiple

objectives. We focus on procedures based on marginal p-values; extensions to procedures that exploit

the joint distribution of the p-values are also noted. Clinical trial examples are used to illustrate the

procedures and their important properties. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is becoming increasingly common to consider
designs with multiple endpoints, analyses and
objectives in registration studies because addi-
tional information on the efficacy and safety
profiles of an experimental drug helps patients,
prescribing physicians and payers better under-
stand its properties. More complicated study
designs give rise to more sophisticated analysis
methods. In the area of multiple comparisons,
these problems motivated research on novel testing

strategies for hierarchically ordered objectives
[1–4].

This paper gives an overview of recent develop-
ments in this area with emphasis on testing
strategies for multiple families of analyses.
The analyses are often related to multiple
endpoints (both primary and secondary) but can
also represent dose–control comparisons, nonin-
feriority and superiority tests or inferences at
several time points. Testing strategies considered
here are commonly referred to as gatekeeping
strategies. This terminology highlights the fact
that the families of analyses are examined sequen-
tially and each one serves as a gatekeeper for
the subsequent families. The sequential testing
approach reflects the hierarchical nature of
the problem and improves the power of theyE-mail: dmitrienko alex@lilly.com
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more important analyses placed early in the
sequence.

The paper is organized as follows. Section 2
introduces the basic concepts about gatekeeping
and establishes notation. Section 3 describes
serial gatekeeping procedures and Section 4 de-
scribes parallel gatekeeping procedures. A general-
ization of the two approaches, termed the tree
gatekeeping approach, is considered in Section 5.
Tree gatekeeping procedures enable clinical
trial researchers to construct testing strategies
that combine serial and parallel gatekeepers
and also account for logical restrictions among
multiple analyses conducted in a clinical trial.
The procedures discussed in Sections 3–5 are
based on marginal p-values. In Section 6 we
briefly discuss methods that exploit the joint
distribution of the p-values; these include
resampling and normal theory methods. Section
7 gives a summary and references for downloading
the SAS macros for applying the above proce-
dures. Clinical trial examples are provided
to illustrate key properties of gatekeeping
procedures.

2. BASIC CONCEPTS AND
NOTATION

This paper assumes that the reader is familiar with
the key concepts in the theory of multiple
comparisons. For more information about multi-
ple comparison procedures, see Hochberg and
Tamhane [5]. To introduce the concepts under-
lying gatekeeping testing strategies, consider a
clinical trial with multiple objectives. Each objec-
tive is associated with a null hypothesis of no
treatment effect and each hypothesis is tested
using an appropriate significance test. The objec-
tives are hierarchically ordered, for example,
primary, secondary and tertiary objectives are
defined. To account for the hierarchical structure
of the testing problem, the hypotheses are
grouped into families. Consider m families denoted
by F1; . . . ;Fm and let Hi1; . . . ;Hini denote the
hypotheses included in Fi; i ¼ 1; . . . ;m: Further,

let n ¼ n1 þ � � � þ nm denote the total number of
hypotheses. The families are examined sequentially
beginning with F1 that corresponds to the most
important objectives. Inferences in this family are
performed without adjusting for tests of hypoth-
eses in the other families. However, when sig-
nificance tests are carried out in the subsequent
families, one needs to introduce a multiplicity
adjustment to account for the previously examined
families.

Each of the first m� 1 families serves as a
gatekeeper for the families placed later in the
sequence. A family is termed a serial gatekeeper if
and only if (iff) one must reject all hypotheses in
this family to test subsequent families. Serial
gatekeeping procedures were considered by
Maurer et al. [1], Bauer et al. [2] and Westfall
and Krishen [3]. As an example, in clinical trials
for Alzheimer’s disease, two primary endpoints are
generally required: Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale (ADAS-Cog) and
Clinical Global Impression of Change (CGIC).
The trial is declared successful only if the treat-
ment effect on both endpoints is significant.
Therefore, the primary gatekeeper can be passed
only if the null hypotheses for both the endpoints
are rejected.

The concept of a parallel gatekeeper was
introduced in Dmitrienko et al. [4]. To pass a
parallel gatekeeper, one needs to reject at least one
hypothesis in the family. The acute respiratory
distress syndrome (ARDS) trial in [4] provides an
example of a parallel gatekeeper. It had two
primary endpoints (mortality and lung function
endpoints). A significant treatment effect with
respect to either of these two endpoints allowed
the researcher to test for efficacy with respect to
secondary endpoints.

As pointed out in [6], the serial gatekeeping
approach is analogous to intersection–union
testing [7] in which the union of several component
hypotheses is rejected iff all of them are
rejected. Likewise, the parallel gatekeeping ap-
proach is similar to union–intersection testing [8]
in which the intersection of several component
hypotheses is rejected iff at least one of them is
rejected.
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Gatekeeping procedures are defined as multiple
testing procedures that meet the following condi-
tions:

* Type I error rate control: The familywise error
rate (FWER) associated with the null hypoth-
eses in F1; . . . ;Fm is controlled in the strong
sense at a prespecified a level [5].

* Serial and parallel gatekeeping conditions: Con-
sider Fi; i ¼ 1; . . . ;m� 1: If Fi is a serial
gatekeeper, then hypotheses in Fiþ1 are tested
iff all hypotheses in Fi are rejected. In other
words, if epi1; . . . ; epini are multiplicity adjusted p-
values in Fi; then the hypotheses in Fiþ1 are
tested iff

maxðepi1; . . . ; epini Þ4a

If Fi is a parallel gatekeeper, then hypotheses in
Fiþ1 are tested iff one or more hypotheses in Fi

are rejected, i.e.

minðepi1; . . . ; epini Þ4a

The untested hypotheses are automatically
accepted.

* Independence condition: Inferences in Fi; i ¼
1; . . . ;m� 1; are independent of the p-values for
the hypotheses in Fiþ1; . . . ;Fm:

The independence condition plays a key role in
clinical applications [9, Section 2.7]. It ensures that
more important analyses (e.g. analysis of primary
endpoints) will not depend on the results of less
important analyses (e.g. analysis of secondary
endpoints). However, relaxing this condition,
when it is consistent with the objectives of a
clinical trial, can result in some power gains, see
Chen et al. [10], Dmitrienko et al. [9, Section 2.7.3]
and Hommel et al. [11].

3. SERIAL GATEKEEPING
PROCEDURES

Serial gatekeeping procedures have a straightfor-
ward stepwise form that facilitates their use in
multiplicity problems arising in clinical studies. As
an example, consider a trial with two families of
hypotheses, F1 and F2; the first of which is a serial

gatekeeper, and suppose the overall FWER is to
be controlled at the a level. Since it is required that
all hypotheses in F1 must be rejected to test the
hypotheses in F2; a powerful procedure to use
would be the intersection–union test of Berger [7].
This test tests each hypothesis in F1 at the a level.
Hypotheses in F2 can be tested using any multiple
test that controls the FWER for that family at the
a level, e.g. the Holm test [12] or the Hochberg test
[13] (assuming that conditions under which the
Hochberg test controls the FWER are satisfied, see
Sarkar and Chang [14]).

This simple setting is easily extended to the
general case of m families in which the first m� 1
families are serial gatekeepers. Since any coherent
gatekeeping procedure can be expressed as a
closed testing procedure [15], this serial gate-
keeping procedure protects the FWER in the
strong sense.

As an illustration, consider a clinical trial
in patients with Alzheimer’s disease that was
conducted to evaluate the efficacy and safety of a
single dose of an experimental drug compared
to placebo. The primary objective of the trial
was to assess the effect of the experimental drug
on two endpoints, P1 (ADAS-Cog) and P2
(CGIC). The null hypotheses associated with the
primary endpoints were included in F1: This family
served as a serial gatekeeper for F2 which
contained two hypotheses related to the secondary
endpoints, S1 (a biochemical endpoint) and S2 (an
imaging endpoint). The hypotheses in both
families were equally weighted and the FWER
was set at a ¼ 0:05: The raw p-values produced by
the primary and secondary tests are given in
Table I.

F1 is a serial gatekeeper and the hypotheses
corresponding to P1 and P2 are tested by using an
intersection–union test that does not require an
adjustment for multiplicity. The p-values in F1 are
significant at the 0.05 level and thus the primary
objective of the trial is met. Since the primary tests
are both significant, the testing procedure passes
the serial gatekeeper and can now examine the
hypotheses in F2: The secondary tests are carried
out using the Holm test. Comparing the Holm-
adjusted p-values in F2 to 0.05, it is easy to see that
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only S1 is significant. The overall conclusion is
that the experimental drug is significantly different
from placebo with respect to P1, P2 and S1 at the
0.05 level.

4. PARALLEL GATEKEEPING
PROCEDURES

The most basic parallel gatekeeping procedure,
derived from the Bonferroni test, was proposed in
Dmitrienko et al. [4]. This procedure was for-
mulated as a closed testing procedure and guar-
anteed strong control of the FWER due to the
closed testing principle [16]. To satisfy the parallel
gatekeeping and independence conditions, a
weighted Bonferroni test was defined for each
individual intersection hypothesis in the closed
family induced by the null hypotheses in F1; . . . ;
Fm: Since the closed family contains 2n � 1
intersection hypotheses, this process is generally
computationally intensive; the decision matrix
algorithm [9, Section 2.7] systematizes these
computations.

A detailed examination of the underlying
decision rule reveals that the Bonferroni parallel
gatekeeping procedure has, in fact, a simple
stepwise structure that provides important insights
into the nature of gatekeeping inferences. This
stepwise procedure, proposed in Dmitrienko et al.
[6], is described below. The procedure is built
around the concept of a rejection gain factor. At
the first stage of the procedure, inferences are
performed at the a level, where a is the FWER. At

each subsequent stage, significance tests are carried
out at the rka level, k ¼ 2; . . . ;m: The rejection
gain factor, 04rk41; depends on the number and
importance of hypotheses rejected at the earlier
stages.

In mathematical terms, let wi1; . . . ;wini be the
weights representing the importance of null
hypotheses in Fi; i ¼ 1; . . . ;m (it is assumed that
05wij51 and wi1 þ � � � þ wini ¼ 1). The stepwise
parallel gatekeeping procedure for testing the null
hypotheses in F1; . . . ;Fm is as follows:

* Family Fk; k ¼ 1; . . . ;m� 1: Test the null
hypotheses using the Bonferroni test at the rka
level.

* Family Fm: Test the null hypotheses using the
weighted Holm test [12] at the rma level.

The rejection gain factors r1; . . . ;rm are given
by

r1 ¼ 1; rk ¼
Yk�1
i¼1

Xni
j¼1

rijwij

 !
; k ¼ 2; . . . ;m

where rij ¼ 1 if Hij is rejected and 0 otherwise. For
equally weighted hypotheses (wij ¼ 1=ni), the
formula for rk simplifies to

rk ¼
Yk�1
i¼1

ri

ni

� �
; k ¼ 2; . . . ;m

where ri ¼
P

j rij is the number of rejected
hypotheses in Fi: Thus, rk is the product of the
proportions of rejected hypotheses in F1 through
Fk�1:

Table I. Serial gatekeeping procedure in the Alzheimer’s disease trial.

Raw Multiple Adjusted Test
Family Endpoint Weight p-value test p-value outcome

F1 P1 0.5 0.023 IU 0:023 S
F1 P2 0.5 0.018 IU 0:018 S
F2 S1 0.5 0.014 Holm 0:028 S
F2 S2 0.5 0.106 Holm 0:106 NS

Primary endpoints, P1 (ADAS-Cog) and P2 (CGIC). Secondary endpoints, S1 (a biochemical endpoint) and S2 (an imaging endpoint).
Multiple test, IU (intersection–union test) and Holm (Holm test). The adjusted p-values are identical to the raw p-values in F1 and are
produced by the Holm test in F2: Test outcome, S (significant at the 0.05 level) and NS (not significant at the 0.05 level).
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In order to incorporate the rejection gain factors
into the decision rule, it is convenient to re-define
the adjusted p-values for the hypotheses in the last
m� 1 families. The modified adjusted p-value for
Hij ; i ¼ 2; . . . ;m; is given by epij=ri; where epij is the
usual adjusted p-value produced by the multiple
test in Fi: After this modification, inferences in F2

; . . . ;Fm can be performed by comparing adjusted
p-values to the prespecified FWER, a:

It follows from the formula for rk that Fk is
tested iff the procedure passed the preceding
gatekeepers, i.e. iff at least one hypothesis is
rejected in F1; . . . ;Fk�1 and thus rk is positive.
Further, the combined weight of the null hypoth-
eses rejected at the earlier stages determines the
penalty one has to pay for performing multiple
inferences in Fk: No penalty is involved, i.e. rk ¼
1; if the procedure rejects all hypotheses in F1; . . .
;Fk�1: Otherwise, rk is strictly less than 1 and
therefore the significance level for Fk is adjusted
downward.

To illustrate the utility of the stepwise gate-
keeping procedure, consider the ARDS trial
example given in [4, Section 4]. The trial was
designed to compare a single dose of an experi-
mental drug to placebo. Two families of endpoints
were considered in this trial. F1 consisted of two
hypotheses related to the primary endpoints, P1
(lung function) and P2 (mortality), and F2

consisted of two hypotheses related to the second-
ary endpoints, S1 (ICU-free days) and S2 (quality
of life). F1 was a parallel gatekeeper. P1 was
deemed more important than P2 in F1 (w11 ¼ 0:9;
w12 ¼ 0:1), but S1 and S2 were equally weighted
(w21 ¼ 0:5; w22 ¼ 0:5). The raw p-values for the

treatment comparisons are given in Table II. The
FWER is to be controlled at a ¼ 0:05:

To apply the stepwise parallel gatekeeping
procedure, one first considers the adjusted p-values
produced by the weighted Bonferroni test and
Holm test for the null hypotheses in F1 and F2;
respectively. Since r1 ¼ 1; the primary hypotheses
are tested at the full a ¼ 0:05 level. The P2
comparison is significant at this level, whereas
the P1 comparison is not. Therefore, the rejection
gain factor for the secondary family is r2 ¼ w12 ¼
0:1 and the adjusted p-values for S1 and S2 are
0:026=r2 ¼ 0:260 and 0:004=r2 ¼ 0:040; respec-
tively. It is clear that only the hypothesis
concerning S2 is rejected. These conclusions
are identical to those based on the parallel
gatekeeping procedure that was derived using the
closed testing principle (compare to Table III,
Scenario 3 of [4]).

Generalizations of the Bonferroni-based parallel
gatekeeping procedure were studied by Dmitrien-
ko et al. [17] and Hommel et al. [11]. Dmitrienko
et al. discussed procedures with an extended
parallel gatekeeping property. These procedures
are derived from the fallback test [18] and enable
researchers to carry over a predetermined fraction
of the Type I error rate to the next family even if
no hypotheses are rejected in the previous family.
Dmitrienko et al. demonstrated how this testing
approach can be used in dose-finding studies with
multiple endpoints. Hommel et al. described a
general family of Bonferroni-based stepwise test-
ing procedures and applications to clinical trials
with several dose–control comparisons and out-
come variables.

Table II. Stepwise parallel gatekeeping procedure based on the Bonferroni test in the ARDS trial.

Raw Rejection Multiple Adjusted Test
Family Endpoint Weight p-value gain factor test p-value outcome

F1 P1 0.9 0.048 1 Bonf 0:053 NS
F1 P2 0.1 0.003 1 Bonf 0:030 S
F2 S1 0.5 0.026 0.1 Holm 0:260 NS
F2 S2 0.5 0.002 0.1 Holm 0:040 S

Primary endpoints, P1 (Lung function) and P2 (Mortality). Secondary endpoints, S1 (ICU-free days) and S2 (Quality of life). Multiple
test, Bonf (weighted Bonferroni test) and Holm (Holm test). The adjusted p-values are produced by the weighted Bonferroni test (for
F1) and Holm test (for F2). Test outcome, S (significant at the 0.05 level) and NS (not significant at the 0.05 level).
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The stepwise testing framework described above
relies on the basic Bonferroni test in the first m� 1
families and it is natural to ask whether alternative
tests can be utilized to improve the power for the
more important objectives. One can consider more
powerful Bonferroni-based tests (e.g. the truncated
Holm test defined below) and Simes-based tests
(e.g. the Hochberg test). These alternative ap-
proaches are described below. Parallel gatekeeping
procedures based on resampling and parametric
tests (e.g. the Dunnett test [19]) are described in
Section 6.

The most straightforward extension of the
Bonferroni gatekeeping procedure relies on repla-
cing the Bonferroni test at the first m� 1 stages
with a more powerful test. The Holm test cannot
be used for this purpose because it ‘spends’ all of
the Type I error rate at each stage [9, Section
2.7.5]. As an alternative, one can consider the
truncated Holm test based on a convex combina-
tion of the Bonferroni and Holm tests. Consider,
for the sake of simplicity, the case of equally
weighted hypotheses (wij ¼ 1=ni). Let pið1Þ5 � � �5
piðniÞ denote the ordered p-values in Fi: The
truncated Holm test rejects the hypothesis HiðkÞ

corresponding to piðkÞ; k ¼ 1; . . . ; ni; if

piðjÞ4a
1� gi
ni
þ

gi
ni � j þ 1

� �
; j ¼ 1; . . . ; k

where 04gi51 is the truncation fraction for Stage i
between the Bonferroni and Holm tests (it is
analogous to the relative importance factor defined
in [9, Section 2.7.5]). When gi ¼ 0; this test
simplifies to the Bonferroni test and, when gi ¼
1; it is equivalent to the regular Holm test. The

power of the truncated Holm test is an increasing
function of gi:

A parallel gatekeeping procedure based on the
truncated Holm test was constructed in [9, Section
2.7.5] and can be illustrated using the ARDS trial
example. Table III gives the results produced by
the gatekeeping procedure based on the truncated
Holm test with g1 ¼ 0; 0.5 and 0.9. When g1 ¼ 0;
this procedure is equivalent to the Bonferroni-
based procedure and thus the conclusions are
identical to those presented in Table II. Setting g1
¼ 0:5 leads to a nonsignificant outcome for the S2
endpoint. However, with g1 ¼ 0:9; the treatment
differences become significant for all primary and
secondary endpoints.

In general, g1 can be thought of as a leverage
factor that determines the power of the signifi-
cance tests in F1 relative to the power of the
remaining tests. The power of the tests in F1 is an
increasing function of g1: The power of the tests in
F2; . . . ;Fm can increase or decrease with increasing
g1 depending on the number of true hypotheses in
all families as well as the effect sizes for false
hypotheses.

Parallel gatekeeping procedures based on the
Simes test [20] were studied by several authors (this
work was done under the assumption that condi-
tions under which the Simes and related tests
control the FWER are met [14]). The first attempt
to construct a Simes-based parallel gatekeeping
procedure was made in [4]. It was based on a
straightforward extension of the principles under-
lying the Bonferroni-based procedure and
was subsequently shown to have certain undesir-
able properties such as the violation of the

Table III. Parallel gatekeeping procedure based on the truncated Holm test in the ARDS trial.

Test outcome

Family Endpoint Weight Raw p-value g1 ¼ 0 g1 ¼ 0:5 g1 ¼ 0:9

F1 P1 0.9 0.048 NS NS S
F1 P2 0.1 0.003 S S S
F2 S1 0.5 0.026 NS NS S
F2 S2 0.5 0.002 S NS S

Primary endpoints, P1 (Lung function) and P2 (Mortality). Secondary endpoints, S1 (ICU-free days) and S2 (Quality of life). Test
outcome, S (significant at the 0.05 level) and NS (nonsignificant at the 0.05 level).
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independence condition (see [9, 10, Section 2.7.3]).
Quan et al. [21] proposed parallel gatekeeping
procedures that relied on a Bonferroni-type mod-
ification of the Hochberg test to achieve control of
the Type I error rate. Another Simes-based parallel
gatekeeping procedure was introduced by Chen
et al. [10]; however, this procedure does not satisfy
the independence condition. More recently, Wang
[22] developed a gatekeeping method based on a
combination of the Bonferroni and Simes tests that
satisfies the three conditions given in Section 2.
Further research is required to improve the power
advantage of this procedure over the Bonferroni
parallel gatekeeping procedure.

5. TREE GATEKEEPING
PROCEDURES

The gatekeeping procedures described in Sections
3 and 4 are based on the assumption that ordered
objectives have a simple ‘one-dimensional’ form
defined by a sequence of serial or parallel gate-
keepers. Testing problems encountered in clinical
trials with multiple objectives often exhibit a more
complicated ‘multi-dimensional’ structure with
one dimension corresponding to multiple outcome
variables, another to multiple doses and yet
another to multiple analysis objectives (e.g. non-
inferiority and superiority tests). In addition, one
may need to account for logical relationships
among the multiple comparisons, for example,
require that secondary tests in dose-finding studies
with multiple endpoints be restricted to the doses
at which the primary endpoints are significant. In
order to develop testing procedures for complex
problems of this kind, the standard gatekeeping
framework needs to be extended. Dmitrienko et al.
[23] proposed a testing approach, termed the tree
gatekeeping approach, that supports decision trees
with multiple branches.

The tree gatekeeping approach assumes the
setting described in Section 2 that involves m
families of hypotheses, F1; . . . ;Fm: The families
are tested sequentially as described below. The
algorithm begins with the hypotheses in F1; which

are tested using an appropriate test with local (for
F1) level a: When the other families are examined,
one first determines whether each particular
hypothesis is testable. Consider, for instance, Fi;
i ¼ 2; . . . ;m; and select a hypothesis, say, Hij ; j ¼
1; . . . ; ni: This hypothesis is tested by the tree
gatekeeping procedure iff it meets the following
two conditions:

* All hypotheses from a prespecified subset of
hypotheses in F1; . . . ;Fi�1; denoted by RS

ij ; are
rejected. This subset is referred to as the serial
rejection set for Hij :

* One or more hypothesis from a prespecified
subset of hypotheses in F1; . . . ;Fi�1; denoted by
RP

ij ; are rejected. This subset is referred to as the
parallel rejection set for Hij :

If either condition is not satisfied, Hij is
automatically accepted. Otherwise, it is tested with
an appropriate adjustment for multiplicity. The
other hypotheses are tested in a similar manner.

Using the principle of closed testing, Dmitrien-
ko et al. [23] developed Bonferroni-based tree
gatekeeping procedures. These procedures can be
applied to a wide variety of testing problems
encountered in clinical trial applications. Exam-
ples considered in [23] include clinical trials with
(1) ordered primary/secondary endpoints and
noninferiority/superiority assessments and (2) or-
dered primary/secondary endpoints and multiple
dose levels. Another important application of the
tree gatekeeping approach involves testing pro-
blems with several treatment groups and noninfer-
iority/superiority assessments. This application is
described below.

Suppose a parallel-group trial is conducted to
compare a new formulation of an insulin therapy
(Formulation A) to a standard formulation (For-
mulation B) in patients with Type 2 diabetes.
Patients are allocated to three treatment groups
(A, B and Aþ B) and the efficacy analysis is based
on the mean change in hemoglobin A1c from
baseline to a 6-month endpoint. The three pairwise
comparisons among the treatment groups are
ordered according to their clinical relevance. The
primary objective of the study is to compare the
new formulation to the standard one (A versus B).
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After that, the combination is compared to the
standard formulation (Aþ B versus B) and to the
new formulation (Aþ B versus A). Each compar-
ison begins with a noninferiority test followed by a
superiority test if noninferiority is established.

According to this strategy, the six null hypoth-
eses are grouped into four families:

* Family F1 ¼ fH1g; where H1 states that A is
inferior to B.

* Family F2 ¼ fH2;H3g; whereH2 states that A is
not superior to B and H3 states that Aþ B is
inferior to B.

* Family F3 ¼ fH4;H5g; where H4 states that A
þB is not superior to B and H5 states that Aþ
B is inferior to A.

* Family F4 ¼ fH6g; where H6 states that Aþ B
is not superior to A.

The four families are tested as shown in the
decision tree (Figure 1). To set up a tree gate-
keeping procedure, one needs to define serial and
parallel rejection sets for the hypotheses in F2; F3

and F4: In this case, the parallel rejection sets can
be set to be empty and serial rejection sets defined
as given in Table IV. This table also gives the raw
p-values for each analysis and multiplicity adjusted
p-values produced by the tree gatekeeping proce-
dure based on the Bonferroni test.

The procedure begins with the single hypothesis
in F1 and rejects it at the 0.05 level. Due to this
rejection, the procedure passes the first gatekeeper
and proceeds to testing the hypotheses H2 and H3

in F2: The two hypotheses are tested using the
Bonferroni test and are both rejected at the 0.05

level. Note that F3 depends on H3 and thus the
next step is to examine the hypotheses H4 and H5:
These hypotheses are again tested using the
Bonferroni test, H4 is found false but H5 is
accepted. Since H5 is in the serial rejection set of
H6; testing stops and H6 is accepted without
testing. The overall conclusion is that Formulation
A is superior to Formulation B and the combina-
tion of A and B is superior to B.

The computation of adjusted p-values in this
example is performed using the closed testing
procedure proposed in Dmitrienko et al. [23].
The computational algorithm relies on a complete

Table IV. Tree gatekeeping procedure based on the Bonferroni test in the Type 2 diabetes trial.

Serial Raw Adjusted Test
Family Hypothesis rejection set p-value p-value outcome

F1 H1 NA 0.011 0:011 S
F2 H2 H1 0.023 0:046 S
F2 H3 H1 0.006 0:012 S
F3 H4 H3 0.018 0:046 S
F3 H5 H3 0.042 0:084 NS
F4 H6 H5 0.088 0:088 NS

The parallel rejection sets are empty. The adjusted p-values are produced by the tree gatekeeping procedure. Test outcome, S
(significant at the 0.05 level) and NS (nonsignificant at the 0.05 level).

Figure 1. Decision tree in the Type 2 diabetes trial.

Noninferiority (Noninf) and superiority (Super) tests.
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enumeration of all intersections in the closed family
but in some cases it assumes a simple sequential form.
For example, the adjusted p-value for H4 is the
maximum of the Bonferroni p-value for H4

(2p4 ¼ 0:036) and the largest adjusted p-value
associated with the hypotheses in F1 and F2 (0.046).
The maximum is taken in this calculation to account
for the sequential nature of this procedure.

6. PARALLEL GATEKEEPING
PROCEDURES BASED ON JOINT
DISTRIBUTIONS OF TEST
STATISTICS

Further improvements of the Bonferroni-based
gatekeeping procedure discussed in Section 4 can
be achieved by considering tests that account for
the joint distribution of the test statistics asso-
ciated with the null hypotheses in F1; . . . ;Fm: A
resampling-based approach to construct parallel
gatekeeping procedures was proposed in [4] (see
also [9, Section 2.7.4]). This approach relies on the
closed testing principle and replaces the potentially
conservative Bonferroni test for each intersection
hypothesis in the closed family with parametric or
nonparametric resampling tests described in West-
fall and Young [24] (assuming that resampling-
based procedures preserve the FWER, e.g. the
subset pivotality condition is met). The resulting
procedure takes into account the correlations
among the test statistics within each family and
across families. For an application of a resam-
pling-based gatekeeping procedure to the analysis
of multiple dose–placebo comparisons, see [4,
Section 5]. In this example, the use of a parametric
resampling procedure led to uniformly smaller
adjusted p-values compared to the Bonferroni-
based gatekeeping procedure.

In dose-finding studies, instead of using the
Bonferroni test for comparing doses to a placebo
control, one can use the more powerful Dunnett
test [19] if the normality assumption is satisfied.
This was done in Dmitrienko et al. [25]. The
Dunnett test used there accounted for not only the
correlations among the dose–placebo contrasts,

but also between the endpoints. It was shown via
simulations that the Dunnett-based gatekeeping
procedure is more powerful than the Bonferroni-
based procedure. The power advantage of the
parametric procedure increased with increasing
correlations among the endpoints, especially in the
case when all primary dose–control comparisons
were significant.

7. SUMMARY

This paper reviewed developments in the growing
area of multiple comparison research, namely,
multiple testing procedures for hierarchically
ordered objectives. The gatekeeping framework
described in the paper provides clinical trial
researchers with useful tools for managing multi-
plicity in clinical trials that guarantee strong
control of the FWER. We described two basic
approaches to gatekeeping, namely serial and
parallel gatekeeping, and a unified approach of
tree gatekeeping.

The gatekeeping procedures discussed in the
paper can be carried out using a number of
SAS macros freely available on the Internet.
The Bonferroni-based gatekeeping procedure de-
scribed in Section 4 can be carried out using the
%Gatekeeper macro available at http://

biopharmnet.com/books/book40005.html. The
tree gatekeeping approach (Section 5) is imple-
mented in the %TreeGatekeeper macro that can
be downloaded from http://www.biopharmnet.

com/code.
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