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ABSTRACT

In this article we extend to the heteroscedastic setting the multiple stepwise test
procedures proposed in Tamhane et al. [Tamhane. A. C., Dunnett, C. W., Green,
J. W., Wetherington, J. F. (2001). Multiple test procedures for identifying a safe
dose. J. Am. Statist. Assoc. 96:835-843] for finding the maximum safe dose. Toxi-
cological data are often heteroscedastic; therefore, the extensions given herein
should be highly useful in practice. Simulations are performed to study the Type
1 familywise error rate and power properties of the procedures. A real data
example is given to illustrate the procedures.
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INTRODUCTION

In Tamhane et al. (2001}, we developed three stepwise multiple-testing procedures
(labeled SD1PC, SD2PC, and SDIHC) for finding the maximum safe dose (MAXSD)
level of a compound using toxicological data. These procedures are applicable to
homoscedastic data. However, toxicological data are often heteroscedastic (i.e., the
data from different doses have different variances). In this article we extend the
procedures in Tamhane et al. (2001) to the heteroscedastic setting. Extensive simula-
tions are conducted, which show that the procedures applicable to homoscedastic
data significantly exceed the nominal familywise Type I « level under certain hetero-
scedastic settings. On the other hand, the modified procedures for heteroscedastic
data control the o level reasonably well under most heteroscedastic settings.

The outline of the article is as follows. Preliminaries and Notation gives the
problem formulation and defines the notation. Test Procedures proposes the hetero-
scedastic extensions of the SDIPC, SD2PC, and SDIHC procedures. Simulation
Results describes the simulation results on the Type I error rates and powers of
homoscedastic and heteroscedastic versions of SDIPC, SD2PC, and SD1HC. Of these
three procedures, SD2PC is generally the preferred procedure. A real data example is
given in Example. Finally, conclusions are summarized in Concluding Remarks.

PRELIMINARIES AND NOTATION

Let 0,1,...,k denote increasing dose levels with 0 being the zero dose level
(control). Assume that the measurements y;; (j = 1,2....,n;) on dose i are indepen-
dent and normally distributed with mean g, and variance ¢’ (denoted by
yij ~ N(p;,07)). Let 3; denote the sample mean and s7 denote the sample variance
based on n; — 1 d.f. from dose i (0 <i < k). A small g, (e.g., a lower yield of a crop
contaminated by a herbicide) implies a more toxic response. The case where a large
Y,; represents a more toxic response can be handled analogously.

We regard as unsafe a decrease in mean yield below a specified percentage
(e.g., 10%) of the mean yield y, at the zero dose level. In general, we specify 4 < 1
(e.g., 1 =0.90 for a 10% decrease in the mean yield compared to y,). All doses with
W < Aug are regarded as unsafe and those with u; > y, are regarded as safe. The
MAXSD for specified A is defined as

MAXSD = max{i: u; > Ay Vj < i} (1)

Define the minimum unsafe dose (MINUD) by MINUD = MAXSD + 1. If a larger
u; represents a more toxic response, then 4 > 1. In that case, doses with y; > Ay, are
regarded as unsafe and those with u; < Ay, are regarded as safe. The MAXSD is
then defined as MAXSD = max{i : u; < Ay ¥j < i}.

We want to guarantee that the probability that any unsafe dose is declared
safe is no more than a specified constant «. If MAXSD denotes the estimated
MAXSD, then this requirement translates to

P{MAXSD > MAXSD} < o. (2)
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Now consider the family of hypothesis-testing problems

Hoi g < Aug  vs. Hyop > Ay (1 <<i < k). , (3)

Here Hy; states that the ith dose is unsafe and Hj, states that the ith dose is safe. After
testing the hypotheses, we set MAXSD = max{i : Hy; is rejected}. The error prob-
ability requirement Eq. (2) is satisfied if we control the type I familywise error rate
(FWE) at level o for the family of hypotheses (Eq. (3)):

FWE = P{Any true Hy; is rejected} < a. (4)

It was shown in Sec. 8 of Tamhane et al. (2001) that this requirement is satisfied if the
null hypotheses in (Eq. (3)) are tested in a step-down (SD) manner beginning with
Hoy: if it is rejected, then test Hyp and so on, each at level , which is what SD2PC
does. On the other hand, SDIPC and SD1HC test ﬂi‘.:i Hy; € Hy; in a step-down
manner (i=1,2,... k), each at level o. Under the assumption of monotonicity
Ho > My = -+ > 1y, we have Hy = ﬂ/;:l. Hyj; therefore, SDIPC and SDIHC proce-
dure also control (Eq. (2)). However, if the means are not monotone, then only
SD2PC controls this requirement as shown by Bauer (1997).

TEST PROCEDURES
Both SDIPC and SD2PC are based on pairwise contrasts and are described in

SDI1PC and SD2PC. But SDIHC is based on Helmert contrasts and is described
in SDIHC procedure.

SD1PC and SD2PC
Define the r-statistics for pairwise contrasts as

Yi — Ao
\/s2/ni+ 2253 /no

The SD1PC procedure tests Hy; using the statistic

I =

(1<i<k). (5)

fimax = Max 1, (6)
i< j<k

whereas SD2PC uses ordinary #-tests based on the ;. Each procedure tests Ho; if Ho;
for j=1,...,i— 1 have been rejected and rejects Hy; if the observed test statistic
exceeds the upper « critical point of its null distribution. Equivalently, these tests
can be applied in terms of the p-values. If p; denotes the marginal p-value associated
with ¢;, then SD2PC rejects Hy; if p; < o.. To apply SDIPC, one needs to calculate the
adjusted p-value, denoted by p;, which is-the probability that under Hy,, the statistic
limax 15 at least at large as its observed value. To calculate p;, we need to know the
joint distribution of #; (i < j < k).

- IR
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The exact joint distributions of the #; are intractable and depend on the unknown
variances o7. Therefore, we must use approximations to the critical points of these
distributions. The marginal distribution of each r; can be approximated by Student’s
t-distribution with degrees of freedom (d.f.) obtained by using the Welch-
Satterthwaite approximation

B (225%/% + Siz/n,»)2
Wb ind(ng — 1) + st/n3(n; — 1) '

i

(7)

For SDIPC we need the upper « critical point of #; m.x, Which involves the joint
distribution of #;,#;41,...,1;. This distribution can be approximated by using the
(k — i + 1)-variate ¢-distribution for i =1,2,... k. The correlation matrix of this
distribution can be estimated by using

/12.8‘(2)/71()

Pil = 75 ==
\/Ufﬁ‘a/no +53/n;) (55 / o + 53 /np)

(i<j<j<kh. (8)

These correlations have the product form p;; = y;y, where

So the computation of the desired critical point can be performed efficiently by using
the iterated integral representation given in Eq. (1.1a) in Appendix 3 of Hochberg
and Tamhane (1987). A Fortran program for this purpose based on Dunnett
(1989) is available from http://lib.stat.cmu.edu/general. The average of the p;;
can be used to yield a good approximation; see Hochberg and Tamhane (1987,
p. 146). For the d.f. of the multivariate ¢distribution, the average of the
v; (i <j<k)can be used.

SD1HC Procedure
A Helmert contrast is defined as
Cij=i+ - +y)—(U—i+1A (<j<k). (10)

The standard error of Cj; equals

5.(Cy) = | G i+ 1?23 no + S (s /mi). (11)
h==i

Define the statistic

C/f_/‘

S.€.(C,jj) ' (12)

Iy =
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Then, in analogy with Eq. (6), the test statistic for testing Hy; is

limax = Max f;;.

i< j<k

As in the case of SDIPC, Hy, is tested if H, j (J=1,...,i— 1) are rejected and if the
adjusted p-value associated with fi max» denoted by py, is less then o. To calculate Di,
we need to know the joint distribution of the 1y (i < j<k). v

The marginal distribution of ¢; can be approximated by Student’s ¢-distribution
with the Welch—Satterthwaite d.f.

- (=it 258/ + S (s/m)y
{0 =i+ %A/ (g = 1) + 2 [sh/m (ma — D]}

(13)

l/ij

The correlation matrix of the #; for i < j < j/ < k can be estimated by using

Shei(si/ma) + =i+ 1)( = i+ 1) A% /ng

VIShdsk/m) + G =i 41225 ] [SI (5 ) 4 (it )2 ]
(14)

(& _
Pij=

These correlations do not have the product structure. The SAS-IML program based
on Genz and Bretz (1999) with arbitrary correlation matrices available from http://
www.bioinf.uni-hannover.de can be used in this case. The degrees of freedom for the
multivariate ¢ can be approximated by the average of the v;; (i < j < k).

SIMULATION RESULTS

We performed Monte Carlo simulations to study the FWEs and powers of
homoscedastic and heteroiquastic versions of SD1PC, SD2PC. and SDI1HC. Here,
power is defined as p{MAXSD =MAXSD}, i, the probability that the correct
MAXSD is identified. We mainly focused our study on two types of configurations:
(1) constant coefficient of variation (CV) in which the o; are proportional to the U;
and (2) constant variance among the positive doses (which is different from the zero
dose variance). The y; configurations were chosen to be the same as those in Table 5
of Tamhane et al. (2001) except that when studying the FWE, we set ynyp equal to
Aty because it is the least favorable configuration at which the max FWE is attained.

We also studied a third configuration in which Hmaxsp Was close to p,, and
00 = 0y = --- = apmaxsp While 6; > ¢ for i > MAXSD. This configuration was cho-
sen because the FWEs of the procedures designed for homoscedastic settings were
most likely to be exceeded in this case. This occurs for two reasons, First, there is
greater separation between the mean at the MAXSD and the mean at the MINUD,
resulting in Type I error rate closer to its maximum. Second, the homoscedastic pro-
cedures use a biased pooled variance estimate, which results in a biased (but lower
variance) estimate of the SE. This bias is more problematic for configuration (3) than
for the first two configurations because the bias is in the liberal direction, resulting in
greater Type I error rates for the homoscedastic procedures. In contrast, the first two
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configurations generally have conservatively biased SE estimates. The results for the
constant CV case are given in Table 1 (FWE) and Table 2 (Power). The results for
the constant variance among the positive doses case are given in Table 3 (FWE) and
Table 4 (Power). The FWE results for the third configuration are given in Table 5.
All estimates are based on 10,000 simulation runs.

It is seen from Tables 1 and 3 that both the homoscedastic and heteroscedastic
SDIPC, SD2PC, and SDIHC procedures control the FWE at or below o = 0.05 for
almost all the configurations studied. The FWE exceeds the nominal o = 0.05 at the
5% significance level if the estimated FWE exceeds

(0.05)(0.95)

0.05+1.96 10000

= 0.054.

Only in a few cases the estimated FWE is >0.054, and the excess is not practi-
cally significant in these cases. In many linear configurations, the FWEs of
SDI1PC and SD2PC are quite small and zero in several cases. This is because
those configurations are not least favorable in terms of maximizing the FWE.
However, quite a different picture emerges when we look at Table 5. Here we see
that even the heteroscedastic procedures fail to control the FWE in about half the
cases, but the maximum FWE is only 0.064. The performance of homoscedastic

Table 1. Simulated Type I error rates of SDIPC and SD2PC under constant CV for
A=10.85, gy =20, upmaxsp =18, oo =1, ng =16, ny =---=ns =§, and o = 0.05.

Heteroscedastic procedures  Homoscedastic procedures
Function

shape  MAXSD (i, jts, s, pia, fis)  SDIPC SD2PC™ SDIHC SDIPC SD2PC SDIHC

Step 1 (18,17, 17, 17,17)  0.053 0.045 0.054 0.048  0.050 0.054
2 (18,18, 17, 17,17)  0.054  0.041 0.051 0.045  0.047 0.052
2 (20,18, 17, 17, 17)  0.048  0.048 0.053 0.040  0.042 0.044
3 (18,18, 18,17, 17)  0.046  0.039  0.050 0.040  0.041 0.044
3 (20, 18, 18,17, 17)  0.046  0.042  0.053 0.044  0.041 0.045
3 (20,20, 18,17, 17)  0.047  0.046  0.053 0.039  0.039 0.043
4 (18,18, 18, 18, 17)  0.044  0.036  0.048 0.026  0.037 0.033
4 (20, 18, 18, 18, 17)  0.047  0.041 0.051 0.025  0.037 0.031
4 (20, 20, 18, 18, 17)  0.047  0.045  0.050 0.019  0.033 0.025
4 (20, 20, 20, 18, 17)  0.044  0.044  0.048 0.024  0.037 0.029
Linear 1 (18, 14, 10, 6, 2) 0.000  0.000 0.000 0.000  0.000 0.000
1 (18,17, 15,13, 11)  0.014  0.044  0.028 0.018  0.062"  0.030
2 (19, 18,17, 15, 13)  0.018  0.047 0.031 0.019  0.052 0.029
2 (19, 18, 14, 10, 6) ~ 0.000  0.000 0.000 0.000  0.000 0.000
3 (19,19, 18, 17, 15)  0.027  0.044  0.038 0.025  0.048 0.032
3 (19, 19, 18, 14, 10)  0.000  0.000 0.000 0.000  0.000 0.000
4 (19,19, 19, 18, 17)  0.045  0.044  0.046 0.025  0.039 0.031
4 (19,19, 19, 18, 14)  0.000  0.000 0.000 0.000  0.000 0.000

*Indicates that the corresponding estimated FWE significantly exceeds the nominal 5% level.
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Table 2. Simulated powers of SDIPC and SD2PC under constant CV for 2 = 0.85,
to = 20, pmaxsp = 18, ao =1, np =16, ny = --- = ns =8, and o = 0.05.

Heteroscedastic procedures  Homoscedastic procedures
Function

shape  MAXSD (i, ity fts. e its)  SDIPC SD2PC SDIHC SDIPC SD2PC SDIHC

Step 1 (18,17, 17. 17, 17) 0519 0.753"  0.653 0.584  0.785"  0.673
2 (18,18, 17, 17, 17) 0530 0.615  0.657° 0594  0.673"  0.671
2 (20, 18. 17, 17, 17)  0.544  0.745"  0.673 0.599°  0.785"  0.678
3 (18,18, 18,17, 17)  0.563  0.516  0.661°  0.622  0.577 0.690"
3 (20, 18, 18,17, 17)  0.571 0.615 0.672°  0.618  0.666 0.683"
3 (20,20, 18,17, 17)  0.393  0.750°  0.686 0.626  0.781"  0.689
4 (18, 18, 18,18, 17)  0.602 0436  0.681"  0.672  0.517 0.717
4 (20, 18, 18, 18, 17)  0.616  0.509  0.686"  0.661  0.573 0.706"
4 (20, 20, 18,18, 17)  0.625 ~ 0.610  0.692°  0.680  0.657 0.719*
4 (20, 20, 20, 18, 17)  0.649  0.744"  0.709 0.691  0.772°  0.722
5 (18, 18, 18, 18, 18) 0.727 0417 0.764" 0719 0485 0.766"
5 (20, 18, 18, 18, 18)  0.740 0490  0.766"  0.718  0.542 0.762*
5 (20, 20, 18, 18, 18) 0.741 0.561 0.765* 0713 0.596 0.748"
5 (20, 20, 20, 18, 18) 0.757  0.657 0.780° 0714  0.672 0.749"
5 (20, 20, 20, 20, 18)  0.801" 0.800  0.797 0.725  0.796"  0.757

Linear 1 (18, 14, 10, 6, 2) 0.593  0.799° 0.717 0.775  0.901"  0.834
1 (18,17, 15,13, 11)  0.555  0.748"  0.683 0.676  0.800*  0.748
2 (19,18, 17, 15, 13)  0.575  0.738"  0.692 0.662  0.794"  0.730
2 (19, 18, 14, 10, 6)  0.615  0.793"  0.726 0.736  0.877°  0.799
3 (19,19, 18, 17, 15)  0.619  0.749*  0.702 0.659  0.779"  0.714
3 (19, 19, 18, 14, 10)  0.651 0.798"  0.736 0.717  0.845°  0.769
4 (19,19, 19, 18, 17)  0.649  0.749"  0.705 0.701  0.780"  0.731
4 (19,19, 19, 18, 14)  0.694  0.791"  0.755 0.738  0.826" 0.769

*Indicates that the corresponding estimated power is the highest among the three procedures for the
given configuration.

procedures is considerably worse with the maximum FWE as high as 0.142. This
shows that the heteroscedastic procedures are much more robust, although not
completely fool-proof.

We now turn to Tables 2 and 4 for the powers of SD1PC, SD2PC and SD1HC
(both their homoscedastic and heteroscedastic versions). The highest of the three
powers for each version is marked with an asterisk in each case. We see that for
step-shaped response functions SDIHC generally has the highest power, whereas
for linear-shaped response functions SD2PC has the highest power. Therefore,
SDIPC is not a contender. However, note that for step-shaped response functions,
SD2PC has a higher power than SD1PC when MAXSD is low (doses 1-3), whereas
the opposite is true when MAXSD is high (doses 4 and 5). These results are in agree-
ment with those in Tamhane et al. (2001). What is surprising is that in almost all
cases, the power of a homoscedastic procedure (SDI1PC, SD2PC, or SDIHC) is
higher than that of its heteroscedastic version. As mentioned above, this is because
a pooled variance estimate is used, which is biased but has substantially less variance
(and greater d.f.) for the small sample sizes used here. As long as the bias is negligible
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Table 3. Simulated Type I error rates of SDIPC and SD2PC for 1 =0.85, ;= 20,
Umaxsp = 18, a9 =05 01=-=05=1, np=16, ny=---=ns =8, and o = 0.05.

Heteroscedastic procedures  Homoscedastic procedures

Function
shape MAXSD (i, i, thay Hay fis)  SDIPC SD2PC SDIHC SDIPC SD2PC SDIHC

Step 1 (18,17, 17. 17, 17) - 0.050  0.043  0.054  0.056"  0.050 0.045
2 (18. 18,17, 17, 17)  0.051 0.036  0.053 0.055"  0.044 0.048
2 (20, 18,17, 17.17)  0.054  0.041  0.050 0.056"  0.049 0.048
3 (18, 18, 18,17, 17)  0.048  0.033  0.048 0.053 0.041 0.052
3 (20, 18, 18,17, 17)  0.050  0.036  0.056"  0.054 0.045 0.052
3 (20. 20,18, 17.17)  0.046  0.044  0.055° 0.054 0.051 0.052
4 (18,18, 18,18, 17)  0.039  0.025  0.053 0.032 0.037 0.042
4 (20, 18, 18, 18, 17)  0.041 0.030  0.054  0.032 0.040 0.042
4 (20, 20, 18,18, 17)  0.042  0.033  0.047 0.032 0.044 0.042
4 (20, 20, 20, 18, 17)  0.049  0.045  0.046 0.033 0.049 0.042
Linear 1 (18, 14, 10, 6, 2) 0.000  0.000  0.000 0.000 0.000 0.000
1 (18, 17. 15,13, 11)  0.014  0.040  0.030 0.015 0.050 0.026
2 (19, 18,17, 15, 13)  0.019  0.047  0.030 0.020 0.049 0.028
2 (19,18, 14,10, 6) ~ 0.000  0.000  0.000 0.000 0.000 0.000
3 (19,19, 18, 17, 15)  0.028  0.045  0.039 0.030 0.051 0.037
3 (19, 19. 18, 14, 10)  0.000  0.000  0.000  0.000 0.000  0.000
4 (19,19, 19, 18, 17)  0.046  0.044  0.049 0.033 0.049 0.042
4 (19, 19,19, 18, 14)  0.000  0.000  0.000 0.000 0.000 0.000

“Indicates that the corresponding estimated FWE significantly exceeds the nominal 5% level.

or is in the conservative direction (SE estimate is too high), the Type I error will still
be approximately controlled and the power will be substantially higher for homo-
scedastic procedures due to the reduced variance of the SE estimate and the result-
ing increase in d.f. This is the case for most of the configurations (1) and (2).
However, in configuration (3), the pooled estimate is liberally biased (too low),
and the homoscedastic procedures no longer control the FWE. This would seem
to suggest that although the homoscedastic procedures appear to do better, they
do not control the FWE for all situations, and so one should consider anticipated
variance vs. dose mean patterns in deciding whether a homoscedastic procedures is
appropriate. Also note that these results are likely to be sensitive to the samples
sizes in the groups. Larger sample sizes will emphasize the importance of bias in
the MSE much more, and so the pooled variance used in the homoscedastic pro-
cedures will be less beneficial.

EXAMPLE

A 90-day routine rat study was conducted to evaluate the toxicity of a crop
protection compound. Test substance was added directly to the rodent diet and
was thoroughly mixed to ensure homogeneous distribution. Three doses of the com-
pound were compared with a zero dose control. The sample sizes in the four groups
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Table 4. Simulated powers of SDIPC and SD2PC for 7 = 0.85, py = 20, pyaxsp = 18,
60 =05, 0y =---=06s=1,ng=16, m =---=ns =38, and o = 0.05.

Heteroscedastic procedurecs  Homoscedastic procedures
Function
shape MAXSD (g, fto, i, pha- 1s)  SDIPC SD2PC SDIHC SD1PC SD2PC SDIHC

Step 1 (18, 17,17, 17,17) 0486  0.756"  0.632 0.614  0.807"  0.720
2 (18. 18, 17. 17, 17)  0.497  0.602  0.682"  0.631  0.699 0.712~
2 (20, 18, 17,17, 17)  0.518  0.757°  0.688 0.641-  0.810" 0.724
3 (18,18, 18, 17.17) 0.539 0482 0.693°  0.656  0.603 0.723~
3 (20, 18, 18,17, 17) 0552  0.594  0.6917  0.662  0.694 0.725”
3 (20, 20, 18, 17.17)  0.579  0.750°  0.692 0.674  0.802"  0.735
4 (18. 18, 18, 18, 17) 0.593  0.395 0.701*  0.725  0.532 0.761"
4 (20,18, 18,18, 17)  0.609 0494 07177 0727  0.608 0.761"
4 (20, 20, 18, 18. 17)  0.613 0.598 0.7117  0.733  0.697 0.763*
4 (20, 20, 20, 18, 17)  0.642  0.746"  0.726 0.750  0.808"  0.775
5 (18, 18, 18, 18, 18) 0.725  0.345 0.799"  0.779  0.499 0.808"
5 (20, 18, 18, 18. 18)  0.733 0421 0.785" 0780  0.567 0.809"
5 (20,20, 18,18, 18) 0.749  0.514  0.783"  0.784  0.643 0.809"
5 (20, 20, 20, 18, 18) 0.765 0.647  0.794° 0790  0.739 0.812"
5 (20. 20, 20, 20, 18)  0.804  0.801 0.804°  0.795  0.850" 0.821

Linear 1 (18, 14, 10. 6, 2) 0.531 0.797"  0.705 0.659 0857  0.752
1 (18,17, 15,13, 11)  0.504  0.750"  0.697 0.647 0807 0.736
2 (19, 18, 17, 15, 13)  0.551 0.756*  0.712 0.672  0.810"  0.740
2 (19, 18, 14, 10, 6)  0.567  0.802"  0.718 0.688  0.859"  0.757
3 (19,19, 18, 17, 15)  0.594  0.752*  0.715 0.696  0.802"  0.746
3 (19, 19, 18, 14, 10)  0.620  0.804"  0.724 0.721  0.852*  0.775
4 (19, 19,19, 18, 17)  0.643  0.751"  0.719 0.750  0.808"  0.775
4 (19, 19, 19, 18, 14)  0.681 0.799"  0.744 0.778 0857 0.806

*Indicates that the corresponding estimated power is the highest among the three procedures for the
P g .
given configuration. -

were ng = 18, n; = 20,1, = 19, and n3 = 18. The variable of interest was the kidney
weight to the body weight ratio. A large value of this ratio is regarded as unsafe with
a threshold of a 15% average increase over its value for the zero dose. Thus, we
specify 4 = 1.15.

The data are given in Table 6. The box plot of the data is shown in Fig. 1. The
dose means seem to increase quadratically. The mean differences are highly signifi-
cant (F = 52.82 with p = 0.000). The within group variances also appear to be
different across the dose groups (Bartlett’s 32 = 10.446 with p = 0.015, Levene’s
F = 3.115 with p = 0.030). However. the normality of the data does not seem to
be in serious doubt as can be seen from the normal plot of the residuals in Fig. 2.
There appear to be a few outliers in this plot, but they are not identified as such
by outlier tests; therefore, we did not delete them. Thus, the assumptions necessary
to apply the proposed methods seem to be satisfied.

The inequalities in the hypotheses in Eq. (3) are reversed as follows:

Hoi o p; > g vse Hyopy < A (1 <i<k).
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Table 5. Simulated Type 1 error rates of SDIPC and SD2PC for 1 =0.85,
Ho =20, tymaxsp = 19, 0; = 0.5 for 0<i<MAXSD, ;=1 for i > MAXSD, ng = 16,
ny=--=ns=8, and x = 0.05.

Heteroscedastic procedures  Homoscedastic procedures
Function

shape MAXSD  (wy, fto, 3, g, ts)  SDIPC SD2PC SDIHC SDIPC SD2PC SDIHC

Step 0 (17.17, 17,17, 17)  0.064*  0.053 0.060"  0.062"  0.059"  0.047
1 (19.17, 17, 17, 17)  0.059*  0.052 0.056"  0.085"  0.069"  0.063"
2 (19,19, 17, 17, 17)  0.055"  0.056*  0.059*  0.114* 0.083"  0.085"
3 (19,19, 19,17, 17)  0.056*  0.049 0.053 0.136* 0.110° 0.117*
4 (19.19, 19, 19, 17)  0.047  0.046 0.047 0.112"  0.142*  0.125"

“Indicates that the corresponding estimated FWE significantly exceeds the nominal 5% level.

Also, the sign of the test statistic (Eq. (5)) must be reversed. In other words, the
pairwise contrast f-statistics are defined as

130 — 3
= 0 (1<i<k)

VAo mo + s/ n,

Similarly, the signs on the Helmert contrasts defined in Eq. (10) must also be
reversed. After making these minor modifications, we are now ready to apply the
procedures.

SD1PC And SD2PC Procedures

Table 7 lists the z-statistics and their d.f. computed by using Egs. (5) and (7),
respectively, and their marginal p-values. We first apply SD2PC. Because
p1=0.003 <o =0.05 we reject Hy; and conclude that dose 1 is safe. But
p2=0.751 >0 =0.05, so Hp cannot be rejected and testing stops with
MAXSD = 1. '

To apply SDIPC, we need to calculate p; corresponding to maxj<jc3 lj =
! max = 2.899 for which we need the correlation matrix of #{, 1, 73. This matrix is
as follows [calculated by using Eq. (8)]:

1 0552 0.537
1 0.520

1

The average d.f. = 32.58, which is rounded down to 32. Using these values we get
1 =0.009 <o =0.05, so we reject Hy; and conclude that dose 1 is safe. There is
no need to calculate p, because it will be greater than p, = 0.751 and, hence, greater
than o = 0.05, so testing stops with MAXSD = 1.
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Table 6. Kidney Wt./body Wt. x 10°.

Dose
0 1 2 3
6.593 7.062 7.006 9.569
7.480 7.347 8.70 9.362
6.930 7.733 7.257 . 10911
5.662 7.396 7.743 9.961
6.789 8.173 7.026 9.497
7.268 6.938 8.561 9.911
6.647 6.988 7.674 8.544
6.443 6.621 7.450 10.404
6.713 7.508 8.188 10.421
6.057 6.657 8.150 10.065
6.253 7.787 7.619 9.670
7.045 6.537 8.722 8.194
6.552 7.369 7.387 §.989
5.668 6.623 6.798 7.347
6.354 6.456 7.617 7.260
6.511 6.507 8.071 9.017
7.111 6.154 7.020 8.847
6.015 5.934 7.821 8.723
6.909 7.063
7.252

n; 18 20 19 18

Mean 6.56006 6.9975 7.6778 9.2606

SD 0.5094 0.5755 0.5949 1.0052

SD1HC Procedure

We begin by testing Hy;. The three Helmert contrast r-statistics with their d.f. are
computed by using Egs. (12) and (13):

t1 =2.899, 1= 1.240, t3 = —2.539,
vy = 3544, Vip = 3305, Vi3 = 35.43.

The average d.f. = 34.64, which is rounded down to 34. The correlation matrix
[computed using Eq. (14)] is

I 0.868 0.762
1 0.874
1

Notice that these correlations are higher than those for pairwise contrasts. As a
result, the adjusted p-value, pi, corresponding to max;<j<3?i; = fjmax = 2.899 is
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Figure 1. Box plot of kidney data.

smaller, namely, p; = 0.007 < & = 0.05. Thus, Hy; is rejected. The r-statistics and
-their d.f. for testing Hy, are

fy = —0.686, 1y = —*4758, Vpy = 3494, vy = 41.72.

Clearly, 15 m,y is nonsignificant, so testing stops with MAXSD = 1.
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Figure 2. Normal plot of the residuals for kidney data.
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Table 7. t-Statistics for pairwise contrasts, their degrees of freedom, and

p-values.

Dose
i ] 2 3
t 2.899 —0.686 ~6.257
Vi 35.44 ’ 34.94 .27.35
Di 0.003 0.751 1.00

It is worth noting that if we use, A= 1.10 then p;=0.121 for SD2PC,
p1 = 0.254 for SDIPC and p; = 0.196 for SD1HC. Thus, dose 1 is not found to
be safe by any of the procedures.

CONCLUDING REMARKS

We have given heteroscedastic extensions of SD1PC, SD2PC, and SDIHC for
identifying MAXSD in dose-response studies for safety testing. All three procedures
control the Type I error rates. However, in terms of power, SD1PC is dominated by
either SD2PC or SDIHC as in the homoscedastic case considered in Tamhane et al.
(2001). So either SD2PC or SDIHC is preferred, the former in the linear dose
response case and the latter in the step dose response case. SD2PC has the advantage
of being simpler and more generally applicable, but its power can be quite low for the
step dose response case if MAXSD is a high dose.

ACKNOWLEDGMENTS

This research was partially supported by an educational grant from DuPont. We
thank Dr. John Green of DuPont Safety, Health and Environmental Excellence
Center, Haskell Laboratory for Toxicology and Industrial Medicine for providing
the data for the problem and helpful discussions. We also thank two referees for
useful suggestions.

REFERENCES

Bauer, P. (1997). A note on multiple testing procedure in dose finding. Biometrics
53:1125-1128.

Dunnett, C. W. (1989). Multivariate normal probability integrals with product
correlation structure. Appl. Statist. 38:564-579. Algorithm AS251.

Genz, A., Bretz, F. (1999). Numerical computation of multivariate r-probabilities
with application to power calculation of multiple contrasts. J. Statist. Comput.
Simul. 63:361-378.




856 \ Tamhane and Logan

Hochberg, Y., Tamhane, A. C. (1987). Multiple Comparison Procedures. New Y ork:
Wiley.

Tamhane, A. C,, Dunnett, C. W., Green, J. W., Wetherington, J. F. (2001). Multiple
test procedures for identifying a safe dose. J Am. Statist. Assoc. 96:
835-843.

Received May 2003
Accepted August 2003




