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In this paper we develop a theory of optimal incomplete block designs for comparing several 
treatments with a control. This class of designs is appropriate for comparing simultaneously 
p > 2 test treatments with a control treatment (the so-called multiple comparisons with a 
control (MCC) problem) when the observations are taken in incomplete blocks of common size 
k < p + 1. For this problem we propose a new general class of incomplete block designs that 
are balanced with respect to (wrt) test treatments. We shall use the abbreviation BTIB to refer to 
such designs. We study their structure and give some methods of construction. A procedure for 
making exact joint confidence statements for this multiple comparisons problem is described. 
By using a new concept of admissibility of designs, it is shown how "inferior" designs can be 
eliminated from consideration, and attention limited to a small class of BTIB designs that can 
be constructed from so-called generator designs in the minimal complete class of such designs. 
Some open problems concerning construction of BTIB designs are posed. 

KEY WORDS: Multiple comparisons with a control; Balanced treatment incomplete block 
(BTIB) designs; Generator designs; Admissible designs; Optimal designs. 

1. INTRODUCTION 

In many industrial, agricultural, and biological ex- 
periments, it is often desired to compare simultan- 
eously several test treatments with a control 
treatment. The earliest correct work on this problem 
was carried out by Dunnett (1955, 1964). Dunnett 
(1955) also posed (but did not solve) the problem of 
optimally allocating experimental units to control 
and test treatments so as to maximize the probability 
associated with the joint confidence statement con- 
cerning the many-to-one comparisons between the 
mean of the control treatment and the means of the 
test treatments. This optimal allocation problem was 
solved by Bechhofer and his coworkers (1969, 1970, 
1971). 

In all of the aforementioned papers it was tacitly 
assumed that a completely randomized (CR) design 
was used. However, many practical situations may 
require the blocking of experimental units in order to 
cut down on bias and improve the precision of the 
experiment. If the block size is large enough to 
accommodate one replication of all of the test treat- 
ments and additional control treatments as well, then 

the design and analysis of replications of the experi- 
ment can be carried out using the optimal allocations 
described in Bechhofer (1969) and Bechhofer and 
Nocturne (1970) with only the usual modifications. 

We shall study the multiple comparisons problem 
in the situation that commonly occurs in practice, 
that is, when all of the blocks have a common size but 
the block size is less than the total number of treat- 
ments. Robson (1961) pointed out that Dunnett's 
procedure can be extended to the case in which a 
balanced incomplete block (BIB) design between all 
of the treatments (including the control treatment) is 
used. Cox (1958, p. 238) noted that BIB designs are 
perhaps not appropriate for the multiple comparisons 
with the control (MCC) problem because of the 
special role played by the control treatment. He sug- 
gested a design that employs the control treatment an 
equal number of times (once, twice, etc.) in each 
block, the test treatments forming a BIB design in the 
remaining plots of the blocks; no analytical details 
were given for this proposed design. Pesek (1974) has 
given analytical details for a special case of Cox's 
design (i.e., the control treatment is employed once in 
each block); he shows that this design is more 
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efficient than a BIB design for comparisons with a 
control, but it is less efficient for pairwise compari- 
sons between the test treatments. It should be noted 
that even Cox's more general design is quite 
restrictive. 

In this paper we propose a new general class of 
incomplete block designs that is appropriate for the 
MCC problem. We give the basic theory underlying 
these designs, and include as well some methods of 
construction. The method of analysis is described. 
Admissibility and optimality considerations are dis- 
cussed in some detail. 

2. PRELIMINARIES 
Let the treatments be indexed by 0, 1,..., p with 0 

denoting the control treatment and 1, 2, ..., p deno- 
ting the p > 2 test treatments. Let k < p + 1 denote 
the common size of each block, and let b denote the 
number of blocks available for experimentation. Thus 
N = kb is the total number of experimental units. If 
treatment i is assigned to the hth plot of the jth block 
(O<i<p, 1 <h<k k, 1 <j<b), let Yh denote the 
corresponding random variable; we assume the usual 
additive linear model (no treatment x block 
interaction) 

Yih = + oi + ai + eiih (2.1) 
with Ep=o a = z=1 fij = 0; the eijh are assumed to 
be iid N(O, a2) random variables. It is desired to make 
an exact joint confidence statement (employing one- 
sided or two-sided intervals) concerning the p differ- 
ences ao - ai based on their BLUE's o - a 
(1 <i<p). 

3. CHOICE OF THE CLASS OF DESIGNS 

3.1 BTIB Designs 
Since it is desired to make a confidence statement 

that applies simultaneously to all of the p differences 
ao - ci (1 < i < p), we shall regard our problem as 
being symmetric in these differences. To this end, we 
consider a class of designs for which 
var{&o - &i = T2a2 (1 < i < p) and corr{&o - &, 
& - &i2} = (iPl # i2; 1 < i1, i2 < p); the parameters 
T and p depend on the design employed. We shall 
refer to such designs as BTIB designs since they are 
balanced with respect to the test treatments. The fol- 
lowing theorem states the necessary and sufficient 
conditions that a design must satisfy in order to be a 
BTIB design. The proof of this theorem is given in the 
Appendix; in the process we also derive expressions 
for var{&o - &} and p. These quantities play a crucial 
role in our later considerations. 

Theorem 3.1: For given (p, k, b) consider a design 
with the incidence matrix {rij} where rij is the number 

of replications of the ith treatment in the jth block. 
Let ?AiO2 = = I ri j ri2 denote the total number of 
times that the i1th treatment appears with the i2th 
treatment in the same block over the whole design 
(il i2; 0 ?< il, i2 <p). Then the necessary and 
sufficient conditions for a design to be BTIB are 

'01 = 
AO2 

= *-* = AOp 
= 

AO (say) 
and (3.1) 

In other words, each test treatment must appear 
with (i.e., in the same block as) the control treatment 
the same total number of times (Ao) over the design, 
and each test treatment must appear with every other 
test treatment the same total number of times (Al) 
over the design. 

Examples of some selected BTIB designs are given 
in (3.2) through (3.9) and in Section 5. Expressions for 
var{ao - &} and corr{&a - il, &o - a2} (i1 - i2) are 
given in terms of Ao and AI by (4.2) and (4.4), 
respectively. 

Remark 3.1: We note that Theorem 3.1 places no 
restriction on ri = jb= r, (1 < i < p), the number of 
replications of the ith test treatment, and hence a 
design can be BTIB without the ri (1 < i < p) being 
equal. Such a design for which (p, k, b) = (4, 3, 7) and 
Ao = 2, A, = 2 with r1 = r2 = r3 = 4, r4 = 5 is given 
by 

0000 1 1 3 
1 1 2 2 2 2 4 . 
3434344 

3.2 Construction of BTIB Designs 
At this point, we indicate several methods of con- 

structing BTIB designs. For a starting point, we intro- 
duce the concept of a generator design. 

Definition 3.1: For given (p, k) a generator design 
is a BTIB design no proper subset of whose blocks 
forms a BTIB design, and no block of which contains 
only one of the p + 1 treatments. 

Thus 

Do 01 - 2 D-= , 0 0 1 2 
1i 24 Di=12f^ - i 2 2 (3.3) 

are BTIB designs with (Ao, 1) = (1, 0), (0, 1), (1, 1), 
respectively; however, only Do and D1 are generator 
designs (as is the design given by (3.2)). Design D of 
(3.3) suggests the role of generator designs. For given 
(p, k) there are several (often many) generator de- 
signs; for example, for each p > 2, k = 2 there are 
exactly two generator designs. (See (3.4).) By taking 
unions of replications of these generator designs, at 
least one of which has Ao > 0, we obtain an implement- 
able BTIB design. The problem of determining how 
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many generator designs exist for arbitrary given (p, k) 
is an open problem (it can be shown that there are a 
finite number), which appears to be very formidable; 
we comment on this problem in Section 6. In the 
sequel we consider only implementable BTIB designs. 

Suppose that for given (p, k) there are n generator 
designs Di (1 < i < n). Let A'), A() be the design par- 
ameters associated with Di, and let b, be the number 
of blocks required by Di (1 < i < n). Then a BTIB 
design D = UJ= 1 i Di obtained by forming unions of 
fi > 0 replications of Di has the design parameters 
Ao = ?=1 fi), 2i = Z "=i fiAi and requires 
b = I= fi bi blocks. The set of Di withfi > 0 will be 
referred to as the support of D. 

The following is another example of generator de- 
signs (generalizing (3.3)). As noted before, for each 
p > 2, k = 2 there are exactly two generator designs. 
They are 

Do-<? ? ?0 0 =1 D P- (3.4) 01 2pf' D 12 3 p t' 
From these generator designs, implementable BTIB 
designs of the type D =foDo u f D can be con- 
structed for fo > 1, f1 > 0; the corresponding design 
parameters for D are o = fo, 1 =f, 
b =fo P +f p(p - 1)/2. 

We now consider several methods of constructing 
generator designs for k > 3; this list is not exhaustive. 

Method I: The preceding example suggests the 
following method of constructing a class of generator 
designs: For given (p, k), a generator design Dm will 
have m + 1 plots in each block assigned to the control 
treatment; the p test treatments are assigned to the 
remaining k - m - 1 plots of the bm blocks (0 < m < 
k - 2) in such a way as to form a BIB design. 
The generator design Dk- 1 contains no control treat- 
ments; it consists of a RB (BIB) design between the p 
test treatments if p = k(p > k). Thus for (p, k) = (3, 3) 
we have the following three generator designs in this 
class. 

0 0 0 
Do= 1 1 2 , 

2 3 3 

D2= 2 . 
3 

0 0 0 D= 0 023 
1 2 3 

(3.5) 

the support of the resulting BTIB design, one obtains 
the desired generator design(s). For example, we con- 
sider the following BIB design for (t, k, b) = (7, 3, 7): 

1234 5 6 7 
7 1 234 5 6 
34 567 1 2 

(3.6) 

By replacing the sevens by zeros, one obtains a gener- 
ator design for (p, k, b) = (6, 3, 7) with Ao = 1, 
Ai = 1. This process can be continued by then replac- 
ing the sixes by zeros to obtain a generator design for 
(p, k, b) = (5, 3, 7) with Ao = 2, Al = 1; continuing, 
one can then replace the fives by zeros to obtain a 
generator design for (p, k, b)= (4, 3, 7) with Ao = 3, 
Al = 1. Finally, replacing the fours by zeros, one 
obtains the union of the two generator designs Do and 
D1 of (3.5) with a block containing all zeros. The 
BTIB designs obtained in this way for k = 3, b = 7 
are 

p = 6, b = 7 (Ao = 1, Al = 1): 

0 
1 
3 

0 
2 
6 

0 
4 
5 

1 
2 
4 

1 
5 
6 

2 
3 
5 

3 
4 
6 

(3.7a) 

p= 5, b= 7 ( = 2, = 1): 

0 
1 
3 

0 
1 
5 

0 
3 
4 

0 
4 
5 

0 
0 
2 

1 
2 
4 

p = 4, b = 7 ( = 3, = 1): 

0 
1 
3 

0 
2 
3 

0 
3 
4 

0 
0 
1 

0 
0 
2 

0 
0 
4 

1 
1 
2 
4 

(3.7b) 

(3.7c) 

Remark 3.2: From (3.7a) it is clear that every BIB 
design involving t treatments yields a BTIB design 
with p = t - 1 test treatments. 

Remark 3.3: It is well known (e.g., John 1964) 
that unequal replicate designs having the same 
properties as BIB designs can be constructed. Such 
designs are therefore BTIB designs. An example of 
such a generator design for (p, k, b) = (5, 3, 8) with 
Ao = 0, Al = 2 is given by 

1 1 1 2 
223 3 
3444 

1 2 3 4 
55 5 5 
5 5 5 5 

(3.8) 

2 
3 
5 

Method II: Starting with a BIB design between 
t > p treatments in b blocks, one can relabel the treat- 
ments p+ 1, p + 2, ...., t zeros to obtain a new 
BTIB design with possibly an additional block or 
blocks, each one of the latter containing only one test 
treatment or only the control treatment. After delet- 
ing all of these one-treatment blocks, and identifying 

Method III: Consider a group-divisible partially 
balanced incomplete block (GD-PBIB) design with 
two associate classes between t treatments in blocks 
of size k. The association scheme of such a GD-PBIB 
design can be represented in the form of an m x n 
array (with mn = t). Any two treatments in the same 
row of the array are first associates, and those in 
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different rows are second associates. Suppose that 
m > k; one can then take p = m and relabel the 
entries in n1 > 0 columns of the array by 1, 2, ..., p 
and the entries in the remaining n2 = n - n1 > 0 col- 
umns by zeros, thus obtaining a BTIB design. As with 
Method II, such a design may not be a generator 
design and may contain some blocks that must be 
deleted. After deleting such blocks, a BTIB design is 
obtained. By identifying the support of this resulting 
design, the desired generator design(s) are obtained; 
some (or all) of these can usually be obtained by the 
previous two methods. If n > k, one can take p = n 
and then relabel the entries in m1 > 0 rows of the 
array by 1, 2, ..., p and the entries in 
m2 = m - m > 0 rows by zeros, thus obtaining a 
BTIB design, possibly with blocks that must be 
deleted. 

To see the use of this method, consider the 
GD-PBIB design #R20 (for k = 3, t = 12, m = 4, 
n = 3, b = 36) in the monograph by Bose, 
Clatworthy, and Shrikhande (1954), which has the 
following association scheme: 

1 5 9 
2 6 10 
3 7 11 
4 8 12 

By relabeling the treatments 5 through 8 by 1 
through 4, and 9 through 12 by zeros, one obtains the 
union of a BTIB design with a design containing one 
block with only zeros. After that block has been 
deleted, the support of the remaining BTIB design 
consists of the following: 

000 
2 replications of 1 1 1 

2 3 4 

0 
2 replications of O 

1 

1 
2 replications of 2 

3 

1 replication of 1 1 2 0 
2 4 4 3 

0 
2 
3 

0 
0 
2 

1 
2 
4 

1 
2 
3 

0 
2 
4 

0 
0 
3 

1 
3 
4 

1 
3 
4 

Thus the designs given by (3.9a) through (3.9d) are 
generator designs for p = 4, k = 3; the first three de- 
signs are obtainable by Method I, while the fourth is 
not. Using the definition of inadmissibility of a design 
as given in Section 5, we shall see that the design of 
(3.7c) obtained for (p, k, b) = (4, 3, 7) by Method II is 
inadmissible wrt the design of (3.9d), which has 
Ao = 2, Al = 2. 

0 
3 , (3.9a) 
4 

?0 (3.9b) 
4 

2 
34, 
4 

2 
3 . 
4 

(3.9c) 

Method IV: Suppose that for given (p, k) we have 
a generator design D1 with Ao > 0. Then a new gener- 
ator design D2 for the same (p, k) can be obtained by 
taking a "complement" of D1 in the following way: 
Separate the blocks of D1 in different sets so that each 
block in a given set has zero assigned in an equal 
number of plots (0 times, 1 time, etc.). For example, 
consider the design (3.7c) the blocks of which can be 
separated into three sets as follows: 

0 
1 
3 

00 
2 3 
3 4 

0 00 
0 0 0 . 
1 2 4 

For each set of D write its "complementary" set 
(with zero assigned in the same number of plots) so 
that the union of that set with its complementary set 
forms a generator design; if rij = 0 or 1 (1 < i < p) 
then that union is simply a generator design that can 
be constructed by Method I. These complementary 
sets in the present example are 

1 1 2 0 0 0f 0 
2 3 3 , 1 1 2 , 0 , 
3 44 2 44 3 

by taking their union we obtain the generator design 
D2 given by (3.9d). The b-values for D1 and its com- 
plement D2 are not in general equal, although in the 
present example they are. 

4. JOINT CONFIDENCE STATEMENTS 

4.1 Expressions for Estimates 
We first give the expressions for the BLUE &o - a& 

of ao - ci (1 < i < p). Let 7; denote the sum of all 
observations obtained with the ith treatment 
(0 < i < p), and let Bj denote the sum of all observa- 
tions in the jth block (< j < b). Define 
B* = Jb=71 rijBj and let Qi = kT - B* (0 < i p). 

Then 

ao - 'i = ,1 Qo (1ip). 
Ao(;o + PAl) 

(I 1 <i < p). (4.1) 

Also, 

(3.9d) var{& - ai} = T2o2 (1 < i < p) (4.2) 
where 

T2 = k(;o + P2) 
Ao(Ao + PN)' (4.3) 

and 

p = corr{ao - ai,, o - ai, = Ao , 

1(il i2; 1 <' il, i2 < P). (4.4) 
TECHNOMETRICS ?, VOL. 23, NO. 1, FEBRUARY 1981 
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Table 1. 
Designs 

Analysis of Variance Table for BTIB 

Source of Sum of Squares d.f. 
Variation 

Treatments QO{(P-1)(O+X1)+(p2 +3)AX01} . i Q i 

(adjusted) 2k(p+) 2( ) k(+ p k( p+l ) 2 0XO( o+pX1 ) k X( +p1 

Blocks B - N b-1 
1'= J N 

Error (by subtraction) N-p-b 

G2 Total H - -- N-1 

The expressions for (4.1) through (4.4) are derived in 
the Appendix. 

An unbiased estimate s2 of a2 based on 
v = N - p - b degrees of freedom (df) can be 
computed as SSerror/(N - p - b) where SSerror can be 
obtained by subtraction (as in BIB designs) from 
Table 1. The expressions in the table are derived in 
the Appendix; G and H denote the sum and sum of 
squares, respectively, of all observations. We note 
that if AO = ;A = A (say), then SStreatments (adjusted) re- 
duces to Z?=o Q2/kA(p + 1) (i.e., the same expression 
as for a BIB design); this latter expression thus holds 
for any completely balanced design (such as (3.2), 
which is not a BIB design). 

Remark 4.1: For many BTIB designs we have 
rj > 1, and thus within-block replication occurs. For 
such designs the sum of squares (SS) for error can be 
partitioned into SS due to "pure error" and SS due to 
"interaction," and this decomposition can be used in 
testing the additivity assumption or the assumption of 
block-to-block variance homogeneity. Such tests are 
not pursued in this paper. 

Remark 4.2: It is easily shown for BTIB designs 
that the &a (1 < i< p) have a constant 
variance = rl2a2 (say), a common correlation = y 
(say), and we have the relationship 

var{a,- aj} = 2(1 - y)2a2 

= 2(1 - p)t2a2 (i j; 1 < i,j < p). (4.5) 
Thus the relative precision of the estimators ao - a, 
(1 < i < p) for the MCC problem wrt the estimators 

- &aj (i = j, 1 < i, j < p) for the pairwise compari- 
sons among the p test treatments is given by 

var{a-& _} - = 2(1 - p). (4.6) 
var(&o - &i 

Note that the relative precision is < 1 depending on 
whether p > 1/2. 

4.2 Confidence Statements 
Joint 100(1 - a) percent confidence intervals for 

the ao - ac (1 < i < p) and for the a, - j, (i 4j, 1 < i, 
j < p) are given below. 

I. One-sided confidence intervals. When a2 is un- 
known, the joint one-sided confidence intervals are 
given by 

ao- i > ao -a i-t pTS, (1 < i < p). (4.7) 

In (4.7) t(v)pIp denotes the upper equicoordinate a 
point of the p-variate equicorrelated central t distrib- 
ution with common correlation p, and with df v (as 
defined by Dunnett and Sobel 1954); for tables of 
tp,)p see Krishnaiah and Armitage (1966). 

When a2 is known, the joint one-sided confidence 
intervals are obtained by replacing t()p TS in (4.7) 
by z(a) TO where z()p (= t(), p for v = oo) denotes the 
upper equicoordinate a point of the p-variate equicor- 
related standard normal distribution with common 
correlation p. For tables of z(a see Gupta, Nagel and 
Panchapakesan (1973). Two other relevant references 
are Gupta (1963) and Milton (1963). 

II. Two-sided confidence intervals. When a2 is 
unknown the joint two-sided confidence intervals are 
given by 

ao - , e [&o - ?, + ), pTsT] (1 < i < p). (4.8) 

In (4.8) t'vp), p denotes the upper a point of the distrib- 
ution of max{ | ti 1 (1 < i < p)} where (t1, ..., tp) has a 
p-variate equicorrelated central t distribution with 
common correlation p, and with df v (Dunnett and 
Sobel 1954); for tables of tv(,) p see Hahn and Hen- 
drickson (1971). See also, Krishnaiah, and Armitage 
(1970), who have tabled (Vta), p)2. 

When a2 is known, the joint two-sided confidence 
intervals are obtained by replacing t'v], ps in (4.8) 
by z() Toa where z'() (= ), p for v = oo) denotes the 
upper a point of the distribution of 
max(IZ | (1 < i < p)} and (Z1, ..., Zp) has a p-variate 
equicorrelated standard normal distribution with 
common correlation p. Hahn and Hendrickson's 
tables with v = 60 can be used here to obtain a con- 
servative approximation to v = oo. 

III. Pairwise comparisons between test treatments. 
In Remark 4.2 we noted that the a& (1 < i <p) 
have a constant variance and equal correlation when 
BTIB designs are used. Thus Tukey's procedure can 
be easily modified as described in Miller (1966, 
pp. 41-42) to provide 100(1 - a) percent confidence 
intervals for - cj (i (i j, 1 < i, j < p). These are 
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given by 

a-aEE -a[Ai+ _Aj l-p)12] 

(ij; 1 i,j j<p) (4.9) 

where q()p denotes the upper a point of the 
Studentized range distribution with parameter p and 
v df. In (4.9) we made use of the fact that 
r(1 - y7)/2 = T(l - p)1/2 from (4.5). Of course, our 
principal objective when designing the experiment 
was to estimate the ao - ca (1 < i < p) optimally; the 
preceding result is a useful by-product if the exper- 
imenter is interested as well in estimating the ai - a 
(ij; 1 < i,j < p). 

5. THE CLASS OF ADMISSIBLE DESIGNS 

5.1 Optimal and Admissible Designs 
In this section we propose a rationale for choosing 

a design from a set of competing BTIB designs. For 
simplicity of exposition we consider here the case of 
one-sided confidence intervals; a2 is assumed to be 
known. In Remark 5.2 we point out how our results 
extend to the case of two-sided confidence intervals 
and/or to a2 unknown. 

We limit consideration to confidence intervals of 
the form {a o - , > ao - a - d (1 < i < p)} where 
d > 0 is a specified "yardstick" associated with the 
common width of the confidence intervals. The prob- 
ability P associated with this joint confidence state- 
ment can be written as 

P = Pr{ac - ai ? ao - - d (1 < i < p)} 
= Pr{Zi < d/Ta (1 < i < p)} 

-= | (DP 
/I ) dD(x) (5.1) 

where (Zl, ..., Zp) has a p-variate equicorrelated 
standard normal distribution with common correla- 
tion p, and 0(.) denotes the standard univariate 
normal distribution function. Note that for given p 
and specified d/a the probability P of (5.1) depends on 
the BTIB design employed only through T and p. This 
fact will facilitate comparisons between BTIB designs. 
In these comparisons we mainly restrict considera- 
tion to BTIB designs with possibly unequal b values 
for given (p, k); however, as pointed out in Remark 
5.1, our results can be extended to the comparison of 
BTIB designs with unequal k values. We start by 
making the following definition: 

Definition 5.1: For given (p, k) and specified d/a 
the BTIB design that achieves a joint confidence 
coefficient P > 1 - a with the smallest b is said to be 
optimal for that value of 1 - a. 

To determine the optimal BTIB design for given 

(p, k), 1 - c and specified d/a, one would proceed as 
follows: Find the design that for given (p, k, b) and 
d/l maximizes P, and then vary b to find the smallest 
b for which the maximum P is > 1 - a. 

In the search for the optimal design for given (p, k), 
it is desirable to eliminate from consideration certain 
designs that are uniformly dominated by other de- 
signs and hence cannot be optimal for any d/a or 
1 -a. The definition of such an inadmissible design 
follows. 

Definition 5.2: If for given (p, k) we have two 
BTIB designs D1 and D2 with parameters (b1, T2, Pt) 
and (b2, T2, P2) with b1 < b2, and if for every d and a, 
D1 yields a confidence coefficient P at least as large as 
(larger than) that yielded by D2 when b1 < b2 
(b1 = b2), then we say that D2 is inadmissible wrt D1. 
If a design is not inadmissible, then it is admissible. If 
bl = b2, Tr2 = T, and pI = P2, then we say that D1 
and D2 are equivalent. 

For given (p, k) one would limit consideration to 
all admissible designs in the search for optimal de- 
signs. Furthermore, if for given (p, k) we have two or 
more equivalent designs, then only one of such de- 
signs need be considered. It is easy to verify that a 
necessary and sufficient condition for BTIB designs 
D1 and D2 to be equivalent is that (4m1), At), 
bl) = (i(), A?l), b2) where ('), A(), bi) corresponds to 
Di (i = 1, 2). For an example of equivalent designs for 
(p, k, b) = (4, 3, 7) we have the designs of (3.2) and 
(3.9d), both of which have Ao = l = 2. Equivalent 
designs can sometimes provide flexibility to the exper- 
imenter without changing the confidence coefficient. 
For example, the experimenter might prefer the design 
of (3.9d) to the design of (3.2) if (say) the control 
treatments are more readily available than any of the 
test treatments. (See also the example of D1 u D2 vs. 
D3 in the beginning of Section 5.2.) 

The following theorem gives a characterization of 
inadmissibility that is easy to verify. 

Theorem 5.1: For given (p, k) consider two BTIB 
designs D1 and D2 with parameters (bl, i, Pl) and 
(b2, T2, P2), respectively. Design D2 is inadmissible 
wrt design D1 if and only if bl < b2, T2 < Tr2 and 
PI > P2 with at least one inequality strict. 

Proof of sufficiency: From (5.1) we see that as T 

decreases for fixed d, a and p (p increases for fixed d, 
a, and T), the confidence coefficient P increases. The 
monotonicity wrt p follows from Slepian's inequality. 

Proof of necessity: Suppose that the confidence 
coefficient associated with D1 is larger than the 
confidence coefficient associated with D, for every d 
and a. Then Tz < T2 (PI > P2) follows from letting 
d t oo (d I 0). 
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For an application of this theorem consider the 
following two BTIB designs for (p, k) = (4, 3): 

0 
1 
2 

0 
1 
2 

0 
1 
4 

0 
1 
3 

0 
2 
4 

0 
2 
3 

0 
0 
3 

0 
4 
4 

1 
2 
3 

1 
2 
3 

1 
3 
4 

1 
4 
4 

2 
3 , 
4 

2 3 
4 4 
4 4 

For these designs A(1) = A(2) = 2, A) = A2) = 2, and 
b = 7 < b2 = 8. Hence 'T2 = T2 = 3 and p = p2= , 
and thus both D1 and D2 yield the same P for every d 
and a; however, D2 is inadmissible wrt D1 because D2 
requires a larger total number of observations than 
does D1. 

Remark 5.1: Definitions 5.1 and 5.2 can be ex- 
tended to permit comparison of BTIB designs having 
unequal k values. Such comparisons would be of 
interest to the experimenter who is faced with the 
choice of block size, subject to the restriction that the 
common block size k < p + 1. In this case, for given p 
and specified d/a the BTIB design that achieves a 
joint confidence coefficient P > 1 - c with the smal- 
lest N = kb is said to be optimal for that value of 
1 - a. If this more general definition of optimality is 
used, the characterization of inadmissibility given by 
Theorem 5.1 would be modified as follows: For given 
p consider two BTIB designs DI and D2 with par- 
ameters (b1, k1, Tr, Pi) and (b2, k2, T2, P2), respec- 
tively. Design D2 is inadmissible wrt D1 if and only if 
N1 = kl bl < N2 = k2b2, T 2< T2, and Pi > P2 with 
at least one inequality strict. 

For an interesting application of this more general 
definition see Remark 2.3 in Bechhofer and Tamhane 
(1980a). It was shown there that if one considers 
designs that are admissible for (p, k) = (4, 3) and de- 
signs that are admissible for (p, k)= (4, 4), and then 
makes comparisons between the two sets of admis- 
sible designs, in general only designs with k = 3 can 
be inadmissible wrt designs with k = 4, and not vice 
versa. In fact, by means of a computer search for 
(p, k) = (4, 3) and (p, k) = (4, 4), we were able to find 
only one counterexample, namely, 

0 
DI= 1 

2 

0 

D2= . ? 2 1 

1 

0 
1 
3 

0 
0 
2 
2 

0 
1 
4 

0 
0 
3 
3 

0 
2 
3 

0 
0 
4 
4 

0 
2 
4 

1 
2 
3 
4 

0 
3 
4 

1 
2 
3 
4 

1 
2 
3 

1 
2 
3 
4 

1 
2 
4 

1 
3 
4 

2 
3 , 
4 

1 
2 
3 4 
4 

Both D1 and D2 have T2 = -, p = ? and therefore 
achieve the same P. However, D2 for k = 4 has 
N=32, while D1 for k=3 has N=30. Thus 

although each design is admissible for its own k value, 
D2 is inadmissible wrt D1. 

Remark 5.2: The inadmissibility characterization 
given in Theorem 5.1 applies equally well to the case 
of joint two-sided confidence intervals; then the mon- 
otonicity wrt p follows from Sidak's (1968) results. 
(Of course, the optimal designs might be different in 
the one-sided and two-sided cases for the same (p, k) 
and dia.) The same general ideas carry over for un- 
known a2, epcept that then one would have to specify 
the expected common "width" of the confidence 
intervals. 

5.2 Strongly (S-) Inadmissible and Combination 
(C-) Inadmissible Designs 

The candidates for an optimal design for given (p, k) 
will be all admissible BTIB designs that can be con- 
structed by forming unions of replications of all 
known generator designs for that given (p, k). In this 
section we give three rules that can be used to reduce 
further the number of generator designs that must be 
used for given (p, k) and arbitrary b to construct all 
admissible BTIB designs; this set of generator designs 
is called the minimal complete class of generator de- 
signs, and is formally characterized in Definition 5.6. 

If the union of two or more generator designs yields 
an equivalent generator design, then we choose to 
eliminate the latter design from consideration and 
thereby maintain more flexibility for our construction 
of designs involving larger numbers of blocks. Thus, 
for example, for p = 4, k = 4 the designs 

0 

I 
0 
1 
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0 

3- 1 
2 
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0 
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0 
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3 , 
4 

0 
1 
3 
4 

D2 = 

1 
2 
3 ' 

4 

0 

2 
3 
4 

are all generator designs, but D3 is equivalent to 
D1 u D2; hence we choose to retain only D1 and D2 
but not D3. This leads us to the following definition. 

Definition 5.3: Suppose that for given (p, k) we 
have n > 2 BTIB generator designs Di (1 < i < n), no 
two of which are equivalent, and no one of which is 
equivalent to the union of replications of one or more 
of the other generator designs. Then {Di (1 < i < n)} is 
referred to as the set of nonequivalent generator 
designs. 

It would be tempting to eliminate any inadmissible 
generator designs from the set of nonequivalent gen- 
erator designs. However, it is not in general true for 
given (p, k) that if design D is inadmissible, then every 
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design D u D' is also inadmissible. Thus, for example, 
for p = 4, k = 4 the BTIB designs 

0 
D1= 0 

1 

0 
D2= 0 

1 

0 
0 
2 

0 
0 
2 

0 
0 
3 

0 
0 
3 

0 
0 
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0 
0 
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0 
0 
3 

2 
3 
4 

0 
0 
4 

1~ 

V 
which are unions of generator designs, have A) = 2, 
?}1 = 2, A(2) = 4, A(2) = 0, and b, = b2, and it is easy 

to verify that D2 is inadmissible wrt D1. However, 
D2 u D3 is admissible wrt DI u D3 where 

1 1 1 2 
D3= 2 2 3 3. 

Hence in this case it would not be desirable to elimin- 
ate D2 from our set of admissible designs. 

In some cases it is possible to identify those genera- 
tor designs that always yield inadmissible or equiva- 
lent designs when unions of them are taken with other 
designs. This can be done using the concept of strong 
(S-) inadmissibility and combination (C-) inadmissib- 
ility, which are defined as follows. 

Definition 5.4: If for given (p, k) we have two 
BTIB designs DI and D2 (not necessarily generator 
designs), we say that D2 is S-inadmissible wrt D1 if D2 
is inadmissible wrt DI, and if for any arbitrary BTIB 
design D3 we have that D2 u D3 is inadmissible wrt 
D1 u D3. 

Thus S-inadmissibility implies inadmissibility but 
not vice versa. An easily verifiable sufficient condition 
for S-inadmissibility of a BTIB design is given in the 
following theorem. 

Theorem 5.2: A sufficient condition for a BTIB 
design D2 to be S-inadmissible wrt a BTIB design D1 
with the same (p, k) is that b1 < b2, Ao1) = A 
AM > A(2) with at least one inequality being strict; 
here (A('), A('), bi) is associated with D, (i = 1, 2). 

Proof: If A1) = A2) and b1 < b2, then the result is 
obvious. If AM7 > (2), then the result follows from the 
fact that for fixed Ao the parameter T2 of (4.3) is a 
decreasing function of 2I, and p of (4.4) is an increas- 
ing function of A,. 

As an illustration of the use of Theorem 5.1 we note 
that for p = 3, k = 3 the designs Do and D1 of (3.5) 
have Ao?) = 2. A() = 1, bo = 3, and , 1) = 2, A, = 0, 
b, = 3, respectively. Hence, D1 is S-inadmissible wrt 
Do. 

There are certain BTIB designs that are not S- 
inadmissible as defined before but that can be deleted 
without any loss from our set of generator designs. 

The identification of such designs requires the con- 
cept of combination (C-) inadmissibility, which is 
more general than S-inadmissibility. 

Definition 5.5: Suppose that for given (p, k) we 
have n > 2 generator designs Di (1 < i < n), which are 
nonequivalent, and none of which is S-inadmissible. 
The designs D, D', D" described later are constructed 
from the designs in the set {Di (1 < i < n)}. Consider a 
BTIB design D, and an arbitrary BTIB design D'. If 
for every D' there exists a BTIB design D" such that 
D u D' is either inadmissible wrt D" or equivalent to 
D", and D is not included in D", then we say that D is 
C-inadmissible wrt the set {Di (1 < i < n)}. 

Remark 5.3: If a design Di is a member of a set 
{D1, ..., D,} that contains only generator designs that 
are nonequivalent and none of which is S- 
inadmissible, and if Di is C-inadmissible wrt that set, 
then Di can be deleted from the set, and we shall say 
that Di is C-inadmissible wrt the set {Dj (j # i, 
1 < i < n)}. 

Remark 5.4: We point out some critical distinc- 
tions between S-inadmissible and C-inadmissible de- 
signs. First, we note that Theorem 5.2 provides an easy 
way of checking whether certain BTIB designs are 
S-inadmissible wrt certain other BTIB designs for 
that (p, k). On the other hand, in order to identify a 
C-inadmissible design it is necessary to examine every 
different elementary combination of generator de- 
signs, and in some cases higher order combinations, 
and show that each such combination leads to inad- 
missible or equivalent designs. Examples of C- 
inadmissible designs and proofs of their 
C-inadmissibility are given in Bechhofer and Tam- 
hane (1979b, 1980a,b), and Bechhofer, Tamhane, and 
Mykytyn (1980). 

We also note that unions of certain designs with 
C-inadmissible designs may be admissible, but each 
such admissible design is equivalent to some other 
design not involving that C-inadmissible design. Such 
a possibility cannot arise with an S-inadmissible 
design. 

Finally we point out that if a design is identified as 
being S-inadmissible using the sufficient condition of 
Theorem 5.2, then that design can be permanently 
deleted without loss, even if it is not known whether 
the set {Di (1 < i < n)} contains all generator designs 
for given (p, k). This is in contrast to the situation 
concerning a C-inadmissible design, which is defined 
wrt the set {Di (1 < i < n)}. A design can be C- 
inadmissible wrt {D (1 < i <_ n)}, but not so wrt 
{Di (1 < i < n + 1)} where this new set contains the n 
original designs plus one additional one and consists 
of n + 1 designs that are nonequivalent, none of 
which is S-inadmissible. Thus a C-inadmissible design 
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cannot be eliminated unless it is known that {Di 
(1 < i < n)} contains all nonequivalent and non-S- 
inadmissible generator designs for the particular 
(p, k) of interest. For p > 2, k = 2 and p = 3, k = 3 
these sets are given by (3.4) and Do, D2 of (3.5), 
respectively. For (p, k) = (4, 3) and (5, 3), and 
(p, k) = (4, 4) this problem is considered in Bechhofer 
and Tamhane (1979b) and (1980a), respectively; for 
these cases we do not know whether we have 
enumerated all the required generator designs in each 
set, but we conjecture that we have done so. 

We are now led to our final definition. 

Definition 5.6: If the set {D1, ..., D"} contains all 
generator designs for given (p, k), and if {Di, ..., DiJ 
with m < n is the subset that contains all nonequiva- 
lent, non-S-inadmissible and non-C-inadmissible gen- 
erator designs, then the latter set will be referred to as 
a minimal complete class of generator designs for given 
(p, k). (This class will not be unique if one or more of 
the generator designs in the class can be replaced by 
an equivalent generator design; if this happens, the 
resulting class will serve equally well in the search for 
an optimal design.) The designs in the minimal com- 
plete class will serve as building blocks for all BTIB 
designs which will be of interest to us in our search for 
the optimal design. 

We illustrate Definition 5.6 by giving in Table 2 our 
conjectured minimal complete class of generator de- 
signs for p = 4, k = 3. We have prepared correspond- 
ing tables for (p, k) = (5, 3), (6, 3), (4, 4), (5, 4), and 
(6, 4), and using these tables we have computed cata- 
logs of admissible designs for each b and also optimal 
designs for selected d/i and 1 - a. These will appear 
elsewhere. 

Note added in proof: When this paper was in 
galley proof the authors received a personal com- 
munication from William I. Notz of the Department 
of Statistics, Purdue University. Notz has proved 
analytically that the five generator designs in Table 2 
do not constitute a minimal complete class for p = 4, 
k = 3, but that these five along with a sixth generator 
design that he has constructed (with parameters 
b = 8, Ao = 1, A, = 3) do constitute a minimal com- 
plete class; he has also proved that the conjectured 
minimal complete class of generator designs for p = 6, 
k = 3 (given in Bechhofer and Tamhane 1980b) is 
indeed a minimal complete class. Proofs of these 
results and other related ones will be given elsewhere. 

5.3 Relationship to Other Optimality Criteria 
Kiefer (along with many others) has studied exten- 

sively the problem of optimal design in a series of 
papers starting with Kiefer (1958). The three main 
criteria considered by Kiefer are D-, A-, and E-opti- 
mality, which correspond, respectively, to minimizing 

Table 2. Conjectured Minimal Complete Class 
of Generator Designs for p= 4, k = 3 

Label! Design b i A(i) 
i 0 1 

(0 0 0 0 0 0 00 

D1 0 0 , 1 2 3 4 4 2 0 

L1 23 4 t1 2 3 4 

0 
00000o 

D2 1 1 1 2 2 3 6 3 1 

2 3 4 3 4 4 

(000011 2 (0 00 01133 

D3 1 2 0 2 3 , 1 1 2 2 2 2 4 7 2 2 

2 4 4 3 3 4 4 3 4 3 4 3 4 4 

0 0 0 0 0 0 0 0 1 2) 

D4 1 1 1 1 2 2 0 0 33 10 4 2 

! 2 2 3 4 3 4 3 4 4 4 

D5 /2 2 3 3 4 0 2 

the determinant, trace, and the maximum eigen value 
of the variance-covariance matrix of the BLUE of the 
parameter vector of interest which in our case is 
(ao - al, ..., ao - ap)'. The eigen values (neglecting 
constant proportionality factors) of the variance- 
covariance matrix of (ao - &l, ..., ao - ap)' can be 
obtained from (4.2) through (4.4); they are 
(Ao + pA )- 1 of multiplicity p - 1, and Ao 1 of multi- 
plicity 1. Thus for given (p, k, b) the three criteria can 
be stated as (a) D-optimality: minimize 
{Ao(Ao + pAl)- 1}- , that is, maximize 

{Ao(Ao + p y- 1}; 

(b) A-optimality: minimize 

{A-1 + (p- 1)(Ao + pA)-1}; 

(c) E-optimality: minimize Ao 1, that is, maximize Ao. 
Although these criteria are simpler than ours, it 

should be kept in mind that they refer to an ellipsoidal 
joint confidence region for (ao - a1, ..., ao - ap)'. In 
the case of MCC such a confidence region is of less 
interest than the "rectangular" confidence regions 
that we have proposed, and are commonly used. 
Hence we do not consider the Kiefer criteria further 
here. 

6. CONCLUDING REMARKS AND 
DIRECTIONS OF FUTURE RESEARCH 

In this paper we introduced a new general class of 
incomplete block designs that are appropriate for use 
in the MCC problem. We refer to these as balanced 
treatment incomplete block (BTIB) designs. The 
basic results concerning the structure of such designs 
are derived, and the properties of the relevant esti- 
mates obtained with such designs are given. Admis- 
sibility and inadmissibility of these designs are 
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defined, and these criteria are used to eliminate infer- 
ior designs. In the search for optimal designs it 
suffices to restrict consideration to admissible de- 
signs. It is shown how the concepts of S-inadmissibility 
and C-inadmissibility can be used to obtain a mini- 
mal complete class of generator designs from which 
catalogs of admissible designs can be constructed. 

The combinatorial problem of constructing all 
BTIB designs for given (p, k, b), and the procedure for 
choosing an optimal design from such a set, are not 
solved in the present paper. However, some methods 
of design construction are given. The aforementioned 
problems are related in the sense that to solve the 
optimization part completely one must have con- 
structed most, if not all, generator designs for given 
(p, k); the problem of determining how many genera- 
tor designs exist for arbitrary (p, k), and then enumer- 
ating them, appears to be a very formidable one. 
Alternatively, the problem of construction of BTIB 
designs for arbitrary (p, k, b) can be set up in the 
manner of Foody and Hedayat (1977, Lemma 4.1), 
which is suitable for a solution on a computer. 
However, there is no guarantee that all BTIB designs 
can be generated in this way. Also, the magnitude 
of difficulty of our problem is substantially greater 
than theirs, and therefore a solution by way of this 
route looks rather remote at this stage. 

For p > 2, k = 2 and p = 3, k = 3 the situation is 
very simple since it is necessary to consider essentially 
only two generator designs for each (p, k) case; these 
cases are considered in detail in Bechhofer and Tam- 
hane (1979a) and the optimal design is given for a 
large range of the useful (p, k, b)- and d/a-values. For 
p = 4, 5, 6 and k = 3, 4 it is possible to enumerate 
most of the generator designs; these cases are con- 
sidered in Bechhofer and Tamhane (1979b, 1980a, 
1980b), Bechhofer, Tamhane, and Mykytyn (1980) 
along with the associated optimal designs. 
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8. APPENDIX 

Proof of Theorem 3.1. For given (p, k, b) consider 
an arbitrary design with the incidence matrix {rij}. 
Then it is well known (see Eq. (3.1) of Kiefer 1958) 
that the information matrix M = {miij2} of a = (ao, 
ol, ..., ap)' is given by 

m'ii2 = < 

'I 
ili2 

1 k 

(il = i2) 

(A.1) 

(i1 + i2). 

Note that M: (p + 1) x (p + 1) is a singular matrix 
and 2,=o mi1/2 = 0 for each i1. We require the infor- 
mation matrix of Ua = (ao - ac1, ..., o - ap)' where 
U = {ui,i,}:p x (p + 1) is given by 

Uili2 = 

1 
-1 

0 

(i2= 1, i = 1, ..., p) 

(i2 = il + 1, il = 1, ...,p) 
otherwise. 

To avoid computing the generalized inverse of M, we 
shall employ the following method given to obtain the 
desired information matrix. Let Q: p x (p + 1) be 
any matrix the rows of which form p orthogonal 
contrasts. Then we can write U as U = PQ where 
P: p x p is a nonsingular matrix. The information 
matrix of Qa is given by QMQ'. Therefore, the 
variance-covariance matrix (except for the common 
factor a2) of U& is given by P(QMQ')- 1p. Hence the 
information matrix M* of Ua is given by 

M* = [P(QMQ')- 'P']- 

= (P) (QMQ)P- 
= V'MV (A.2) 

where V = Q'P-' satisfies UV = I, with I being the 
p x p identity matrix. It can be easily verified that 
V = {v,li2}: (p + 1) x p is given by 

V. . = 10 (i, = i2 + 1, i2 = 1, ..., p), 
-1;2 1l otherwise. 

Substituting for V in (A.2), the information matrix 
M* = {m*j2} of Ua can be written as 

p p 

mii2 = mh 
g=0 h=O 
g*il h*i2 

= mili2 (i0, i2 = 1, ..., P) (A.3) 

where (A.3) follows from the fact that the rows and 
columns of M sum to zero. For a design to be BTIB, 
the matrix M* must be completely symmetric (i.e., all 
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diagonal elements of M* must be equal, and all off- 
diagonal elements must be equal). Therefore, we have 

mll = m22= '" = mpp 

and (A.4) 

m12= m13= *= mp_ 1, p- 

Using expression (A.1) for m~i,2 in (A.4) implies (3.1). 
Denoting the common value of the Aoi (1 < i < p) by 
Ao, and the common value of the Ajj2 (i1 : i2; 1 < il, 
i2 < p) by Al, we see that 

Using the fact that ^ &h= -&o and that 
ro - 1/k> 2E=I r2j = moo = P.o/k, from (A. 11) we 
obtain 

Qo 
o = 

(p + )o (A.12a) 

In the same way we obtain 

i = (QA t)0 (1 <i < p). (A.12b) 
= ). + PAJ1 

m =ii2 = -Al/k (il i2; 1 < i1, i2 < P) 

and 

mii = {Ao + (p-1)AI}/k (1 < i < p). 

Thus 

M* = {(Ao + pA1)I - l J}/k (A.5) 

where J: p x p is a matrix consisting only of l's. The 
inverse of M* is the desired variance-covariance 
matrix of U&; the expressions for (4.2) and (4.4) are 
then easily obtained from (M*)-1. 

Derivation of the expressionsfor the estimates. The 
normal equations for the least squares estimates 
(BLUE) i, a&, ,j of j , j, , respectively, (0 < i < p, 
1 < j< b) are 

p b 

NA + riai + k j 
i=O j=l 

b 

riA + r&ii + E rijj= Ti 
j=l 

p 
kj + Z rij&i + kj = Bj 

i=o 

j = G (A.6) 

(0<i< p) (A.7) 

(l<j<b) (A.8) 

where 7; and Bj are defined in Section 4.1, and 
G = Ef=o T = = I Bj. Substituting 

Combining (A.12a) and (A.12b), we obtain (4.1). 

Derivation of the formula for the adjusted treatment 
sum of squares in the analysis of variance table (Table 
1). Following the Scheffe (1959) notation, let Yn 
denote the minimum error sum of squares (SS) under 
the assumptions fl of Section 2, and let Y,, denote the 
minimum error SS under co = H rn f2 where the 
hypothesis is H: ai = 0 (0 < i < p). Then the SS of 
treatments adjusted for blocks is given by 

SStreat(adj.) -Y ~ f (A.13) 

Now 

YO = SSerror 

p b k 

-= Z Z E(Yij-h --ij) Iih (A.14) 
i=O j=1 h=1 

where ijh = 1 if the ith treatment is assigned to the 
hth plot of the jth block (O < i <p, l<j<b, 
1 < h < k) and = 0 otherwise. Substituting fj from 
(A.9) into (A.14) and expanding and simplifying the 
resulting square, we obtain 

1b p 
% = H-k EZB + Eri&2 

kj=l i=O 

(A.9) 1 b (p \2 - 
E rijo'i - Q k j=l \i=O 

(A.15) 
+j= Bj- rijor&i ,)/k 

from (A.8) into (A.7), we obtain 

A 
b b 

ri&i + k rijBj &hrhjrj = 
j= 1 h=O j= 1 

Now I=l riBj = B* and for h ? i we have that 
=1 rhj rij = Ao(Ai) if only one of h and i = 0 (if both 

h and i = 0). From (A.10) for i = 0 we obtain 

~ro- - - ~ &o ro2 + Ao 1 a& = To. (A.11) k k I j=' h = I 

where H = Ef= _ =1 =1 YjhIjh and i1 . --Y Ijh and 

(A.10) 
2 p 

Q=k =oa 

Under o, we have , = GIN and Aj = Bj/k - ; hence 

(A.16) , = H-k E j. 
k j=l 
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Subtracting (A.15) from (A.16), we have from (A.13) 
that 

1 
b 

SStreat(adj.) = Q + - E 
j=l 

( rij2i) 
i=o 

p 

-- - ri& ' 

i=O 

2 p p 

+_ 
j1 = aL iai2ili2 
il=O i2=il+1 

Q-PA 2 

{o + (p - l)} 
k i=1 

22Aoao PA 
+ k I 

i=li 

+2A k E E 
i 

&Ii2 
il=l i2=il+1 

Q (p + 2) o0o 
k 

_Q(o+pA1) "2 

iP 
= 1 

[(p + 2)Ao -AdO 
= - 

PQ-k 

Mi= . (A.17) k i=1 

In the preceding equations we have used the rela- 
tions ri - 1/k =I r = mi (from (A.1)) where 
moo = P2o/k, m,, = {20 + (p - 1)AI}/k (1 < i < p), 
and f=1 a =-ao. Substituting in (A.17) for &o 
from (A.12a) and for a& (1 < i < p) from (A.12b) and 
after some tedious algebra, we obtain the expression 
for SStreat(adj.) as given in Table 1. The other SS ex- 
pressions and the df in the table are obtained in a 
straightforward way. 

[Received April 1979. Revised April 1980.] 
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