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A Step-Up Multiple Test Procedure 
CHARLES W. DUNNETT and AJIT C. TAMHANE* 

We consider the problem of simultaneously testing k 2 2 hypotheses on parameters 01 . ok. In a typical application the O's 
may be a set of contrasts, for instance, a set of orthogonal contrasts among population means or a set of differences between 
k treatment means and a standard treatment mean. It is assumed that least squares estimators 01, ..., ok are available that are 
jointly normally distributed with a common variance (known up to a scalar, namely the error variance ao2) and a common known 
correlation. An independent x2-distributed unbiased estimator of a-2 is also assumed to be available. We propose a step-up 
multiple test procedure for this problem which tests the t statistics for the k hypotheses in order starting with the least significant 
one and continues as long as an acceptance occurs. (By contrast, the step-down approach, which is usually used, starts with 
the most significant and continues as long as a rejection occurs.) Critical constants required by this step-up procedure to control 
the type I familywise error rate at or below a specified level a are computed for both one-sided and two-sided testing problems. 
Power comparisons are made for one-sided testing problems with the well-known normal theory based single-step and step-down 
test procedures, and also with a step-up test procedure proposed for a wider class of problems by Hochberg. (Two improvements 
over Hochberg's procedure by Hommel and Rom provide at best marginal increases in power, with the former being also more 
difficult to apply, and hence they are not included here.) Two different definitions of power are considered-the probability of 
rejecting all false hypotheses and the probability of rejecting at least one false hypothesis; the results are found to be qualitatively 
similar. The proposed step-up procedure is more powerful than the single-step procedure except when only one hypothesis is 
false, in which case it is slightly less powerful. Similarly, it is slightly less powerful than the step-down procedure when a few 
hypotheses are false, but it is more powerful when most or all hypotheses are false, and this power advantage increases with 
the number of such hypotheses under test. The proposed step-up procedure is uniformly more powerful than the Hochberg 
procedure and its improvements. A disadvantage of the proposed step-up procedure is the greater difficulty of computing its 
critical points. These are given for one-sided and two-sided tests for 5% level of significance. 

KEY WORDS: Comparisonwise approach; Experimentwise approach; Familywise error rate; Joint p-values; Multiple com- 
parison procedures; Multivariate t distribution; Power; Single-step procedure; Step-down procedure. 

1. INTRODUCTION 

The purpose of many empirical studies is to compare sev- 
eral treatment groups by estimating differences or by per- 
forming tests of significance on relevant parameters. Such 
multiple comparisons in the same study are the rule rather 
than the exception. There has been much debate and con- 
troversy as to whether statistical adjustments are necessary 
for taking into account the multiplicity of inferences. One 
school of thought, as advanced by Miller (1966), Scheff6 
(1953), Tukey (1953), and others, is that such adjustments 
should be made by requiring the inference procedures to 
satisfy the condition that the probability of at least one wrong 
inference (e.g., at least one type I error in a multiple hy- 
pothesis testing problem) is controlled at or below a spec- 
ified level a. This is called the "experimentwise" or the 
"familywise" error rate (FWE) control approach. The op- 
posite school of thought, as represented, for example, by 
Carmer and Walker (1982), Nelder and some other discus- 
sants of O'Neill and Wetherill (1971), O'Brien (1983), Perry 
(1986), and Rothman (1990), maintains that such adjust- 
ments are not needed and that each inference should be dealt 
with separately, which is referred to as the "comparison- 
wise" error rate control approach. A third school of thought, 
led by Duncan [e.g., Duncan (1965), Waller and Duncan 
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(1969), Duncan and Dixon (1983)] adopts a Bayesian de- 
cision-theoretic approach to multiple comparisons problems 
assuming prior distributions on the unknown parameters, 
linear loss functions for type I and type II errors for indi- 
vidual significance tests, and an additive loss function for 
the overall loss. For the pairwise comparison problem, the 
resulting test procedure has the nature of a comparisonwise 
procedure in the sense that the critical constant it uses does 
not depend on the number of comparisons (as do the critical 
constants used by the familywise procedures); however, it 
does differ from the customary comparisonwise procedures 
[e.g., the unprotected least significant difference (LSD) test] 
by making this constant depend in an inverse way on the 
analysis of variance F statistic, which is a sample measure 
of the disparity between the treatment means being compared. 

The use of the experimentwise approach is called for in 
the following situations: (1) when a conclusion is reached 
that requires the simultaneous correctness of several infer- 
ences and (2) when a conclusion is reached that hinges on 
the correctness of an inference that has been selected in 
light of the data. For example, consider a pharmaceutical 
company that compares several drugs with a standard in the 
same study for the purpose of determining which ones give 
the most improvement, with the goal of selecting one of 
them to recommend for further developmental work. If the 
drug that happens to be selected for this purpose is, in fact, 
inferior to the standard, then a serious error would be made. 
Therefore, it is necessary to control the probability of mak- 
ing such an error, which is achieved by using the experi- 
mentwise approach. On the other hand, if several treat- 
ments are included in the same experiment solely for the 
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purpose of economy and efficiency, and the comparisons 
of interest are inherently separate from each other and could 
logically have been examined in separate experiments were 
it not for the inefficiency of doing this, then the compari- 
sonwise approach is appropriate (O'Brien 1983). Duncan's 
approach offers an alternative solution to multiple compar- 
isons if the underlying assumptions, particularly the one 
concerning the additive form of the overall loss function 
(which is the reason for the comparisonwise nature of the 
procedure), are satisfied. 

A criticism of the experimentwise approach sometimes 
made is that it lowers the power of detecting real effects 
due to the stricter requirement on the type I error rate. One 
way of increasing power, when inferences are in the form 
of hypotheses tests, is to employ stepwise tests. The pur- 
pose of this article is to develop a new stepwise procedure 
of the step-up type for testing multiple hypotheses under 
the framework of the experimentwise approach and com- 
pare its performance with a step-down procedure. We con- 
sider the problem of simultaneously testing k ' 2 hy- 
potheses, H1, H2, ..., Hk, subject to the requirement that 
the type I FWE, which is the probability of rejecting any 
true hypothesis, be kept at or below a specified level a 
(referred to as the overall significance level). All proce- 
dures considered in this article satisfy this requirement. Some 
assume specific parametric distributional models, while others 
are more general. The prime example in this latter class is 
the well-known Bonferroni procedure, which rejects any Hi 
with pi ' a/k, where pi is the p value computed from the 
observed value ti of some test statistic Ti for Hi (1 ' i ' 
k). For large k, the Bonferroni procedure becomes increas- 
ingly conservative, and hence modifications of it with im- 
proved powers have been proposed. One procedure due to 
Holm (1979) proceeds as follows: Order the p values, P(1) 
2 >** p(k), and denote the corresponding hypotheses, H(l), 

H(k). Start with the smallest p value, P(k). If p(k) > a/k, 
then stop testing and accept all the hypotheses; otherwise 
reject H(k) and go to the next step. In general, if testing has 
continued to the ith step (1 ' i ' k) and if P(k-i+l) > a/ 
(k - i + 1), then stop testing and accept all the remaining 
hypotheses, H(k1i+l), . . ., H(1); otherwise reject H(k.i+l) and 
go to the next step. Another procedure due to Hochberg 
(1988) proceeds as follows: Start with the largest p value, 
P(1). If P(1) ' a then stop testing and reject all the hy- 
potheses; otherwise accept H(I) and go to the next step. In 
general, if testing has continued to the ith step (1 ' i ' k) 
and if P(i) 'c a/i, then reject all the remaining hypotheses, 
H(i), . . ., H(k); otherwise accept H(i) and go to the next step. 
It is readily seen that the Holm procedure is uniformly less 
powerful than the Hochberg procedure, since the latter al- 
ways rejects any hypothesis rejected by the former. This 
results from the fact that both use the same critical values 
for the P(i), but the Holm procedure uses a step-down al- 
gorithm, while the Hochberg procedure uses a step-up al- 
gorithm for making accept or reject decisions. Also note 
that the Holm procedure, in turn, is uniformly more pow- 
erful than the Bonferroni procedure, which is said to be of 
the single-step type (Hochberg and Tamhane 1987, chap. 
2). 

In the parametric case, normal theory based single-step 
and step-down procedures have been developed (described 
in Section 2.2), but hardly any attention has been paid to 
the step-up approach (the only exception to our knowledge 
being one proposed by Welsch (1977) for the pairwise com- 
parisons problem). In this article, we introduce a new step- 
up procedure for the problem of testing a nonhierarchical 
family of hypotheses (Hochberg and Tamhane 1987, chap. 
2) on k > 2 linear parametric functions (e.g., contrasts) and 
compare its performance with a competing step-down pro- 
cedure. The development is restricted to balanced data sit- 
uations, but extensions to unbalanced cases are covered 
briefly in Section 8. 

2. PRELIMINARIES 

2.1 Distributional Setup 

We assume the standard normal theory linear model set- 
ting. Thus consider k ? 2 parameters 01, ., ok, and let 

A A 

their unbiased least squares estimators 01, . . k be jointly 
normally distributed with var (0i) = O2T2 and corr (0i, Oj) 
= p, where r2 and p are known constants depending on the 
design and OC2 iS the unknown error variance. Let S2 be an 
unbiased estimator of OC2 having v df such that vS2/r-2 has 
a x2 distribution independent of the Oi. Finally, let 0 denote 
the vector (01, ..., Ok)- 

Typically the Oi are contrasts among some population 
means. Three examples of this setting are: (1) orthogonal 
contrasts in a balanced design for which we have T2 =I 
ci2, where the cij are the contrast coefficients for the ith con- 
trast Oi (1 ' i ' k) and p = 0; (2) comparisons of k treat- 
ment means with a control mean in a one-way layout with 
no observations on the control and n observations on each 
treatment, which leads to T2 = l/no + 1/n and p = nl(no 
+ n); and (3) comparisons of k treatment means with a 
control mean in a balanced treatments incomplete block 
(BTIB) design, where the formulas for r2 and p are given 
by (4.3) and (4.4), respectively, of Bechhofer and Tam- 
hane (1981). 

2.2 Hypotheses and Test Procedures 
Consider k ? 2 upper one-sided hypothesis testing prob- 

lems, Hi : Oi = 0 versus Ki : Oi > 0 (1 ? i ' k). Suppose 
that the type I FWE is to be controlled at a specified level 
a. In other words, if Om is any parameter configuration 0 
with Oi = O, fori = 1, ...,mand Oi > fori = m + 1, 
... k, then we require 

Pom{Accept H1, . . ., Hm} 1 - a, 

m1= ,...,k. (2.1) 

Let ti = oi/sT (where s is the observed value of S) be the 
usual t statistic for testing Hi (1 ' i ? k). If H1, * .., H, 
are true, then the corresponding random variables T1, 
Tm have Student's m-variate central t distribution with v df 
and associated common correlation coefficient p (m = 1, 

k). Let cm = t ()p be the upper a point of maxl5i,m 
T1, for m = 1, ..., k. Bechhofer and Dunnett (1988) have 
given extensive tables of cm' values. For m =1, we have 
cl= 4(v, the upper az point of Student's univariate t dis- 

tribution with vi df. 
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The usual single-step test procedure (SS) rejects any Hi 
with ti ' c', for example, Dunnett's (1955) procedure for 
the comparisons with a control problem. For the same prob- 
lem, the usual step-down test procedure (SD), as proposed 
originally by Miller (1966, pp. 78 and 85-86) and later 
studied by Naik (1975) and Marcus, Peritz, and Gabriel 
(1976), first orders the statistics as t(1) s*- c t(k) (and the 
corresponding hypotheses as H(l), ..., H(k)), and then re- 
jects any H(i) iff H(j) is rejected for j = k, . . ., i + 1 and 
t(i) >' c'. Both of these procedures control the type I FWE 
at level a; see Hochberg and Tamhane (1987, chap. 2, Secs. 
2.1.1 and 4.2). Since c,' < c' for i < k, it is clear that SD 
is uniformly more powerful than SS. 

Our proposed step-up procedure (SU) will be based on 
another set of critical constants cl ? c2 ? ... ? ck (to be 
defined shortly). It will accept H(i) iff H(j) is accepted for j 
= 1, ..., i-l and t(i) < ci. Thus SU will begin by testing 
the smallest t statistic and work upward, accepting one hy- 
pothesis at a time and stopping by rejecting H(), H(i+1)9 .... 
H(k) when t(i) ? ci. 

3. DETERMINATION OF CRITICAL CONSTANTS 

3.1 Maximum Type I Familywise Error Rate 

The critical constants of the SU procedure are to be de- 
termined so that the type I FWE requirement (2.1) is sat- 
isfied. Therefore, we first need to determine the maximum 
type I FWE or, equivalently, the minimum of the left side 
of (2.1), the minimum being taken over all Hm, for each m 
- 1, ..., k. This is done in the following theorem. 

Theorem 3.1. Suppose that H1, ..., Hm are true and 
that Hm+i, . . ., Hk are false (m = 1, ..., k). Then, for the 
SU procedure, the left side of (2.1) is minimized over Om 
when Oi -> oo, for i = m + 1, ..., k. 

The proof of this theorem is given in Dunnett and Tam- 
hane (1990) (hereafter abbreviated as DT), and is similar 
to the first part of the proof of Theorem 1 in Hayter and 
Tamhane (1990). In fact, using ideas similar to those in the 
second part of that proof, we can show that the left side of 
(2.1) is minimized over Oi < 0, for i = 1, ..., m, when 
they are all equal to zero. In other words, we can consider 
the hypotheses Hi: Oi < 0 (1 i ? k) instead of Hi: O 
- 0 (1 ? i ? k) as considered here for convenience. 

3.2 Properties of Critical Constants 

To satisfy (2.1), the critical constants of the SU proce- 
dure must be determined so that the minimum found in 
Theorem 3.1 is at least 1 - a for each m = 1, 2, .... The 
smallest possible value for each cm is found by solving the 
following equation, obtained by setting this minimum equal 
to 1 - a: 

PJ(T19 *--,Tm) < (C1, ..., cm1)} = 1 -Ca; (3.1) 

here T1, ..., Tm are as defined in Section 2.2, and (xl,... 
Xm) < (Yi,. .,Ym) denotes that Xism < Yi,m X2,m < Y2,m,* 

Xm,m K Ym,m where the Xi,m and Yi are the ordered xi and 
yi. 

Although we have not been able to show analytically that 
solutions cl, c2, ..., cm satisfying the monotonicity con- 
dition cl ' C2 ' .. c? m < Xo exist for arbitrary m, we 
have been able to show this for m = 2; see DT. Moreover, 
our computational experience for m ' 8 and a = .05 in- 
dicates that they probably exist for the values of m likely 
to be encountered in practice. (In the case of independent 
test statistics, we have verified this for m as large as 1,000.) 
Finner, Roters, and Hayter (1991) have recently addressed 
this problem. 

We next compare the critical constants used by the SU, 
SD, and Hochberg's (1988) step-up procedure (henceforth 
referred to as the HC procedure). 

Proposition 3.]. Let cm, c', and cm = t (/m) (m = 1, 2, 
...) denote the critical constants used by the SU, SD, and 
HC procedures, respectively. We have 

cl = c ' = tc(a) and Cm < Cm < C, m > 1. (3.2) 

Proof. The first part of (3.2) is obvious. The inequality 
cm < cm for m > 1 follows by comparing Equation (3.1) 
for cm with the following equation for c': 

P{Tm,m < c } = 1 -a, m = 1, ..., k, 

where Tm,m = max(TI, ..., Tm). 
We have proved the inequality cm < cm only for m = 2 

in DT, and we conjecture it to be true for m > 2. 

Since the critical constants used by SU are larger than 
those used by SD, except for m = 1, when they are equal, 
we cannot say that SU will be uniformly more powerful 
than SD, as was the case between Hochberg's step-up pro- 
cedure and Holm's step-down procedure. SU will, how- 
ever, be uniformly more powerful than HC because of the 
inequality cm < cm for m > 2. This is, of course, not sur- 
prising since HC does not exploit the correlation structure 
between the test statistics as does SU. 

As noted before, the critical constants c,' are extensively 
tabulated by Bechhofer and Dunnett (1988). The critical 
constants cm, being the percentiles of the univariate Stu- 
dent's t distribution, can also be readily obtained. Exact 
computations show that cm is much closer to c' than to 
cm; see Table 5. 

3.3 Computation of Critical Constants 

From (3.1) we see that the critical constants must be 
computed recursively; to determine cm, one must first know 
the values of cl, ..., cm-,. This is in contrast to the com- 
putation of the critical constants c' = t- 

( for the SD pro- 
cedure which, for different values of m, can be computed 
independently of each other. To compute cm, for m > 1, we 
now derive a general expression for the left side of (3.1) 
that can be evaluated efficiently on a computer. 

Let Zi, for i = 0, 1, . . ., k, be independent N(O, 1) ran- 
dom variables, and let U be a y/v random variable 
independent of the Z,. Then we can express Ti - 

{A/1 - pZ, - \/7Z0}/U (1 ? i ? m) and write the desired 
probability as 
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f P{(Z1 .* . . zm) 

< (dig ... * dm)}4(zo) dzofv(u) du, (3.3) 
where di = (ciu + \/pzO)/\/I7p (1 ' i ' in), m fq(zo) is 
the standard normal density function, and f,(u) is the den- 
sity function of U. A recursive formula for the probability 
term in the integrand of (3.3) is obtained in the following 
lemma. 

Lemma 3.1. Let '(1 ) denote the standard normal dis- 
tribution function. We have 

P{(V1 9 . .. 9 Zm) < (di, d * * * dm)} 

= P{(Z1, i.., Zm_1) < (d2, ..., dm)}ti(di) 

+ P{(Z1, ., Z m_) < (dl, d3, ..., dm)}{4>(d2) - (di)} 

+ P{(Z1, ..., Zm_1) < (di, ..., dm_i)}{4>(dm) - 'I(dm,)}. 

(3.4) 

Proof. The result follows by successively conditioning 
Zm to lie in the intervals (-oo, d1), [dl, d2), ..., [dmili dm). 
Note that we do not condition Zm to lie in the interval [dm, 
oo) because, in that case, the event {(Z1, ... , Zm) < (d, * * I 
dm)} is not satisfied. 

Let (12 m denote the expression in (3.4). An algorithm 
for computing (12 m is as follows. 

Step 1. Calculate (h = 'F(dh), for h = 1, ..., m, a total 
of m terms. 

Step 2. Calculate 'Dhi = (i)h + I'h['I'i - (h], for 1 I 
h < i ? mi, a total of (m) terms. 

Step 3. Calculate 'Dhij = sijsh + -hj[?i h] + (hi[?j 
- D)i], for 1 ' h < i < j _ mi, a total of (m) terms. 

Step m. Calculate 412 m = 4>'2 m4>'1 + (P13 m[(P2 - (DI] 
+ + (Pi.* m-I [(DMm 4 \m-1] - 

This algorithm was programmed and incorporated into a 
numerical integration routine to evaluate (3.3) and solve for 
the values of the constants cm. The computational details 
can be found in DT. Due to the increasingly long comput- 
ing times required as m increases, computations were re- 
stricted to m ' 8. The values of the critical constants cm 
for a = .05, df = 10, 20, 30, and oo, p = 0, .1 (.2) .5, 
and m = 2 (1) 8 are provided in Table 1 for one-sided tests 
discussed here, and in Table 2 for two-sided tests discussed 
in Section 6. For m > 8, we expect the cm values to be 
very close to the cm values, and hence the latter may be 
used as good approximations (a bit on the liberal side, 
though). 

4. POWER COMPARISONS WITH 
COMPETING PROCEDURES 

4.1 Competing Procedures 

The SU procedure was compared in terms of power with 
three other competing procedures, that meet the same type 
I FWE requirement (2.1). Two of these competing proce- 
dures were SS and SD, described in Section 2.2. The third 
one was Hochberg's (1988) step-up (HC) procedure, de- 
scribed in Section 1. As noted in Section 3.2, HC can be 
thought of as a conservative version of SU, and hence is 
uniformly less powerful than SU. It was included in the 
comparison to assess the loss in power due to the use of 
the conservative upper bounds cm rather than the exact crit- 
ical constants cm. 

Two improvements of HC were also included in the power 
comparisons. One was by Rom (1990), who proposed a 
method [analogous to our equation (3.1)] for determining 
the exact critical values for HC; he also gave a recursive 
formula for computing these critical values, which are sharper 
than the conservative Bonferroni critical values cm used by 

Table 1. Critical Constants Cm for the Step-Up Procedure (One-Sided Tests)* 

p df m= 1 m= 2 m= 3 m = 4 m= 5 m= 6 m= 7 m= 8 

0 10 1.813 2.220 2.44$ 2.600 2.722 2.821 2.904 2.977 
20 1.725 2.083 2.273 2.406 2.508 2.590 2.659 2.718 
30 1.697 2.040 2.221 2.347 2.443 2.520 2.584 2.639 
00 1.645 1.960 2.123 2.235 2.319 2.386 2.442 2.490 

.1 10 1.813 2.216 2.432 2.585 2.703 2.799 2.879 2.949 
20 1.725 2.080 2.266 2.396 2.496 2.576 2.644 2.701 
30 1.697 2.038 2.215 2.338 2.432 2.508 2.571 2.625 
00 1.645 1.958 2.119 2.229 2.312 2.379 2.434 2.482 

.3 10 1.813 2.201 2.401 2.541 2.649 2.736 2.810 2.873 
20 1.725 2.069 2.243 2.364 2.457 2.532 2.594 2.648 
30 1.697 2.028 2.194 2.310 2.398 2.469 2.528 2.579 
00 1.645 1.950 2.102 2.207 2.286 2.350 2.403 2.448 

.5 10 1.813 2.174 2.351 2.473 2.567 2.643 2.706 2.761 
20 1.725 2.047 2.203 2.310 2.392 2.458 2.513 2.561 
30 1.697 2.008 2.157 2.260 2.339 2.402 2.454 2.499 
00 1.645 1.933 2.071 2.165 2.237 2.294 2.342 2.382 

*a .05. 
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Table 2. Critical Constants Cm for the Step-Up Procedure (Two-Sided Tests)* 

p df m= 1 m= 2 m= 3 m= 4 m= 5 m= 6 m= 7 m= 8 

0 10 2.228 2.620 2.834 2.986 3.104 3.201 3.282 3.352 
20 2.086 2.419 2.597 2.723 2.820 2.898 2.964 3.020 
30 2.042 2.357 2.525 2.643 2.733 2.805 2.866 2.919 
X0 1.960 2.241 2.389 2.492 2.569 2.631 2.683 2.727 

.1 10 2.228 2.619 2.832 2.983 3.100 3.195 3.275 3.345 
20 2.086 2.418 2.595 2.720 2.817 2.894 2.960 3.016 
30 2.042 2.356 2.523 2.640 2.730 2.802 2.863 2.915 
00 1.960 p.241 2.388 2.490 2.567 2.629 2.681 2.725 

.3 10 2.228 2.610 2.812 2.955 3.065 3.154 3.229 3.294 
20 2.086 2.410 2.581 2.700 2.791 2.865 2.927 2.980 
30 2.042 2.350 2.510 2.622 2.708 2.777 2.834 2.883 
00 1.960 2.236 2.378 2.477 2.551 2.611 2.661 2.703 

.5 10 2.228 2.587 2.770 2.897 2.994 3.073 3.139 3.196 
20 2.086 2.393 2.548 2.655 2.737 2.803 2.859 2.906 
30 2.042 2.334 2.481 2.582 2.659 2.721 2.773 2.818 
00 1.960 2.223 2.355 2.445 2.513 2.568 2.614 2.653 

HC. The other one by Hommel (1988) also uses the critical 
values cm, but with a more complicated decision rule. Our 
results showed that the power increases for both of these 
procedures over HC were marginal at best, with Rom's pro- 
cedure being slightly superior to Hommel's. Hence their 
results are not reported here. 

4.2 Definition of Power 

Let 8i = Oi/o-r for 1 ' i ' k, and let 8m = (I/orT)Om 

denote the vector of the 8i's whose first m components are 
0 and the last k - m components are positive; that is, the 
first m hypotheses are true and the remaining k - m are 
false. For any test procedure R based on the ti-statistics, the 
power, as defined in (4. 1), depends on the Oi's only through 
the 8i's. For 0 ' m ' k- land 1 ' t ' k-m, we define 
the power of any procedure R under 8m as 

HIk,m,t(R I 8m) = PJm{R rejects at least t of the 

k - m false hypotheses}. (4.1) 

Our focus will be primarily on the t = k - m case since, 
in most situations, one would be interested in detecting all 
false hypotheses; for instance, in drug development studies 
one would usually want to detect all the active drugs. To 
ensure that our comparisons are not biased by the choice 
of t, however, we will also consider the t = 1 case, which 
gives the probability of rejecting at least one false hypothesis. 

4.3 Power Expressions 

To derive expressions for (4.1) for various competing 
procedures R under consideration, we use the representa- 
tion T, = {I77pZ, - \?Z0}/U (1 ' i ' k), where the 
Zi are mutually independent normal random variables with 
unit variance, E(Zi) = 0, for i = 0, 1, . . ., m, and E(Zi) = 
8 i/VTT7, for i = m + 1, ..., k. For convenience, we 
will confine ourselves to the case 8i 8 for i = m + 1, 
... k. It is easy to extend the results to the general case 

where the Si are unequal; see DT. For the special case con- 
sidered here, we denote the power expression in (4. 1) simply 
by ['k,m,t(R I 5) and the probability of an event Z computed 
under such 8m by Ps,m(%); we also put A = //V 7. 

SU Procedure. For the SU procedure we get 
k-m-t m\ 

llk,m,t(SU I 8) = I E k k-mr ( m 

s=O r=O 

x P8,m{accept H1, . . ., Hm+, . . Hm+s; 

reject Hr?, . . ., Hm, Hm+s+i, * * H} 

k-m-t m / k- (k-m ( ) 
s=O r=O 

x P8,sm{(TI, 9 . Trg Tm+l I 9 9 TM+S) < (C,, *S Cr+s); 

min (Tr+i, . . ., Tm, Tm+s+l, * *, Tk) ? Cr+s+l}. (4.2) 

Now use the representation for the Ti's defined in the pre- 
ceding paragraph, condition on U = u and ZO = zo, and let 
di = (ciu + \/pzo)//1 - p (1 ' i ' k). Then, using the 
independence of the Zi's (1 ' i < k), unconditioning on U 
and ZO, and interchanging the order of summiation and in- 
tegration, (4.2) can be written as 

r?? r?? k-m-t m\ \ 

[Ik,m,t(SU I 8) = t r kfr=O (k - m m) 
JO -- s=0 r=0 \ r 

x PIVZ1 . . Zr9 ZM+19 .. * Zm+s) 

< (di, ... , dr+s)}[1 - 4>(dr+s+i)]m-r 

X [1 _- (dr+s+i _- )]k-m-S (zo) dzof,(u) du. (4.3) 

The probability term in (4.3) can be evaluated using a re- 
cursive formula similar to that derived in Lemma 3.1 after 
taking account of the fact that here the Zi, for i ? m + 1, 
have a nonzero mean A. 
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SD Procedure. For the SD procedure we get 
k-m-t m 

rk,t(SD|8) = _ E k-m m 
s=O r=O\/ 

x P,,m{accept H1, . . ., Hr, Hm+, 1 . * ** Hm,s; 

rejectHr+ 1, Hm, Hm+s+ ** Hkl 
k-m-tm 

E Ek-m)(rn 
s=O r=O s 

x P8,m{max(T19 ... 9 Trg Tm+lg . . TM+S) 

<ICr+sg (Tr+19 . . Tmg Tm+s+l 1 . . TO) 

(Cr+S+9 19** CkW9(44 

where (xl, ..., pxm) 2 (Yl, . ., ym) denotes that xl,m ? Yl,rn 
...X, xm 2 ym,m. Using the same method as that used in 
deriving (4.3), we can express (4.4) as 

Hk,m,t(SD 1 8) = f j k - m) (m) 

xPf(Zr+ 1 . .11 .m Z Zm+s+ 1 * .. * Zk) 2- (dr++' *9 * d) 

X bT(d +s),Is(d +s- A)4(zo) dzof,(u) du, (4.5) 

where the d' are defined analogous to the di. The proba- 
bility term in (4.5) can be computed by using a recursive 
formula similar to that derived in Lemma 3.1 after taking 
account of the facts that the Zi have a nonzero mean A, for 
i 2 m + 1, and the direction of inequality is reversed here, 
making the formulas slightly different; the details can be 
found in DT. 

SS Procedure. For the SS procedure we get 

k-m-t 

[Ik,m,t(SS I 8) = E k m)pmIT < Ck, i m + 1 * 
s=O 

m +s; Ti 2 Ck'i = m +s+ 1,. ..., k} 

rX 00 k-m-t 

, _ A)k-ms {?(Z d k_ f} 

X {1 - I(dk -)}kms 4 (Zo) dz0fv(U) du. (4.6) 

An alternative way of computing (4.6) would be to set d' 
kd, for 1 s i s k, in (4.5). 

HC Procedure. The power of the HC procedure is given 
by (4.3) with ci replaced by c' = t (cvi) (1 s i s k). 

4.4 Power Results and Discussion 

Proposition 4.1. When all k hypotheses are false (i.e., 
m = 0) and t = k, under any arbitrary configuration 80 (i.e., 
when the Si's for 1 s i s k are nonzero and not necessarily 
equal), we have 

[Ik,O,k(SU | 80) = [Ik,ok(HC | 8o) > [Iko,k(SD | 80). 

Proof. First note that [Ik,o,k(SU | 80) = P^0{min(T1, .. 
Tk) ? c1} and [Ik,ok(HC | 80) = P^0{min(T1, ..., Tk) ? 

c%}, and the two are equal because cl = c7. Next, using 
cl = cl, we get 

Hk,O,k(SU I ao) = P8J{min(T1, ..., Tk) 2 c1} 

> P,6{(TI, . . ., Tk) 2 (c, ... * C)} 

= Hk,o,k(SD I 80), 

which completes the proof. 

We conjecture that, if exactly one hypothesis is false and 
t = 1, then SD is uniformly more powerful than SU, that 
is, Hkk-1 1(SD I 8k-1) > Hk,k-,1 (SU I 8k-1), for all 8k-1 'We 
have not been able to prove this conjecture, although nu- 
merical results support it (see Tables 3 and 5). 

We studied the powers ['k,m,t of the four procedures, 
namely, SU, SD, SS, and HC, for t = k - m, 1, and for 
various values of m = 0, 1, ..., k- 1 and k = 2 (1) 6. 
The results for k = 5 are shown in Table 3 when k - m 
= 1, 3, 5; the complete results are given in DT. First let 
us consider the results for t = k - m, which gives the prob- 
ability of rejecting all false hypotheses. As shown in Prop- 
osition 4.1, we see that SU dominates SD uniformly when 
all hypotheses are false. On the other hand, when only one 
hypothesis is false, SD dominates SU uniformly. We fur- 
ther see that when an intermediate number of hypothese are 
false, SU is more powerful than SD for small departures 
from the null values, while SD is more powerful in the 
other case. It is worth noting that the differences in power 
between SU and SD are quite small except when all (or 
most) hypotheses are false and the departures from the null 
values are not too large, in which case SU is more powerful 
than SD. 

Turning to the comparison of SU with SS, we see that 
SS is more powerful than SU only when one hypothesis is 
false, and that, too, by a very small amount. In all other 
cases SU dominates SS by a wide margin. As noted in Sec- 
tion 3.2, HC is a conservative version of SU. It is much 
less powerful than SU when only a few hypotheses are false 
(but more powerful than SS except when exactly one hy- 
pothesis is false). 

Next consider the power results for t = 1 and k-m - 
3.5, which give the probabilities of rejecting at least one 
false hypothesis. Again SU dominates SD uniformly when 
all hypotheses are false. SD and SS have identical powers, 
which fact can be easily proved analytically. HC is the least 
powerful procedure using this definition of power, except 
when all hyptheses are false and 8 is large. 

The power comparison (using t = k - m) between SU 
and SD when either all hypotheses are false or exactly 
one hypothesis is false is made in more detail in Tables 4 
and 5, respectively, for k = 2 (1) 6. In these tables 8 
values are so chosen as to make the power of SU equal 
to .50, .80, and .95. From Table 4 we see that, when 
all hypotheses are false, the advantage of SU increases 
with k and becomes relatively large particularly at low 
levels of power. On the other hand, from Table 5 we see 
that when exactly one hypothesis is false, the advantage 
of SD decreases with k and is in most cases negligibly 
small. 
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Table 3. Probability of Rejecting At Least t of the k - m False Hypotheses [Power 
Ilk,m,t(R 86)] for Competing Procedures 

Number of false Hi Procedure 
k- m t 8 SU SD SS HC 

1 1 2 .408 .408 .408 .373 
3 .777 .778 .778 .750 
4 .961 .961 .961 .953 

3 3 2 .228 .227 .173 .210 
3 .649 .650 .578 .625 
4 .933 .934 .906 .924 

5 5 2 .293 .262 .106 .293 
3 .736 .715 .477 .736 
4 .963 .959 .866 .963 

3 1 2 .659 .658 .658 .622 
3 .941 .940 .940 .928 
4 .997 .997 .997 .996 

5 1 2 .775 .754 .754 .749 
3 982 .971 .971 .979 
4 1.000 .999 .999 1.000 

NOTE: k = 5, v= ,p = .5, and a .05. 

5. p VALUES FOR MULTIPLE TEST PROCEDURES 

For a multiple hypotheses testing problem, we define the 
p value for any hypothesis as the smallest overall signifi- 
cance level a at which that hypothesis can be rejected using 
a given multiple test procedure and the observed test sta- 
tistics for all the hypotheses. We refer to such a p value as 
a joint p value, and, to distinguish from the so-called sep- 
arate p value for each Hi that we used in Section 1, we will 
denote it by ,. Such joint (sometimes referred to as ad- 
justed) p values have been used before by Westfall and Young 
(1989) among others. Once p3 values are computed for a 
given procedure, they can be used with any fixed a to de- 
cide which hypotheses to reject. 

We now give formulas for computing the f values for 
the SS, SD, and SU procedures. In the following, Tl, 
Tm have an m-variate central t distribution with v df and 
associated common correlation p. For the SS procedure we 
have 

P(r) = P{max(Tl, ..., Tk) ? t(m)}, form = 1, ..., k. 

For the SD procedure, a formula for i(m) was given in 
Dunnett and Tamhane (1991) (denoted there simply by pm), 
which is as follows: 

P(nm) = Pfi form = k, 

= max(p (m)I P(m+l)), form = 1, ..., k- 1, 

where fi ) is given by 

P(m) = P{max(TI, ..., Tm) - t(m)}. 

Table 4. Power Differences in Favor of SU Over SD, lTk,m,k-m (SU I 
8) - llk,m,k-m(SD I 8), When All Hypotheses Are False (m = 0) 

Power of Number of Hi, k 
SU 2 3 4 5 6 

.50 .013 .021 .027 .032 .036 

.80 .007 .011 .014 .017 .020 

.95 .002 .003 .004 .004 .005 

NOTE: v , p = .5, and a = .05. 

For the SU procedure fi(m) is given by 

P(mW = P (l), for m = 1, 

= min(fi(m), I(m-l)), form = 2, ... ., k 

where the computation of fl ' involves evaluating the con- 
stants cl c *. s cm with cm = t(m) such that the following 
set of equations is satisfied: 

PI(T1 9 * * *9 Ti) < (c19 . .. ci )I = 1Pm i ='f 1 9 * * m. 

Note that this set of equations is similar to (3.1). In both 
cases cl, ..., cm-, have to be evaluated, but here cm = t(m) 
is given and 1 - a = 1 - p(m) has to be evaluated, while 
in (3.1), 1 - a is given and cm (in addition to, .c.., cm-,) 
has to be evaluated. The recursive formula derived in Lemma 
3.1 can be used in this case, but the computations need to 
be done in an iterative manner starting with an initial guess 
at p) calculating cl, ..., Cicm, and then finding a new 
value of p(m) from the last equation with cm = t(m). 

6. TWO-SIDED TESTS 

All of the above theory can be extended in a straight- 
forward manner to two-sided tests, where the alternatives 
to the H: 6, = 0 are now K,: Oi # 0 (1 s i ' k). The 
test statistics are 1til, and hence the determination of the 
critical constants and other analytical results involve the joint 
distribution of the random variables |Ti|. The critical con- 
stants for the SD procedure are given by c' - , namely 
the upper a point of maxli?m |Ti|, for m = 1, ..., k. The 

Table 5. Power Differences in Favor of SD Over SU, IHk,m,k-m(SD I 
8) - I1k,m,k-m(SU I 8), When Exactly One Hypothesis Is False 

(m = k- 1) 

Power of Number of Hi, k 
SU 2 3 4 5 6 

.50 .005 .003 .001 .000 .000 

.80 .004 .002 .001 .000 .000 

.95 .002 .001 .000 .000 .000 

NOTE: v =o,p= .5, and a = .05. 
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Table 6. Critical Constants for One-Sided Tests for Different Procedures Used in Examples 

m 

Procedure Constant 1 2 3 4 5 6 

SU cm 1.697 2.008 2.157 2.260 2.339 2.402 
SD cm 1.697 1.989 2.147 2.255 2.335 2.399 
Ss ck 2.399 2.399 2.399 2.399 2.399 2.399 
HC Cm 1.697 2.042 2.231 2.360 2.457 2.536 

NOTE: v = 30, p = 0.5, and a = 0.05. 

common critical constant used by SS is ck = ItI(a),. These 
constants have been tabulated by Bechhofer and Dunnett 
(1988). For the two-sided SU procedure, the critical con- 
stants cm satisfy the relation [analogous to (3.1)]: 

P{(1T11, ..., I'mI) < (C1, . ., Cm)} = 1 - a, 

where (T1, ..., Tm) have a joint m-variate central t distri- 
bution with v df and a common associated correlation coef- 
ficient p. The critical constants cm for the two-sided case 
are given in Table 2. 

7. EXAMPLES 

We now give two examples to illustrate how the results 
of the procedures considered here compare on the same data. 
Suppose k = 6, p = .5, v = 30, and one-sided tests are to 
be done at an overall significance level a = .05. The crit- 
ical constants used by different procedures are listed in Ta- 
ble 6. The data for the two examples, namely the tm sta- 
tistics (labeled according to their ordered values) and the 
corresponding separate pm values, are listed in Table 7. The 
joint Pm values for the multiple test procedures SS, SD, and 
SU are also listed in this table (as well as the intermediate 
calculations of Pmi' values for SD and SU). Note that, be- 
cause the tm are assumed to be already ordered, that is m 
= (m), we do not use the (m) notation in the following 
discussion and in Tables 6 and 7. 

Example 1. First we see that SS rejects only H6 since 
only t6 > Ck = 2.399. Next we see that SD rejects H6 but 
accepts H5 and hence, by implication, also all the remaining 
hypotheses. (This can be deduced by noting that t5 = 2.320 

<c' = 2.335 or by noting that im > .05 for m s 5.) SU 

accepts H1 but rejects H2 and hence, by implication, also 
all the remaining hypotheses. (This can be deduced by not- 
ing that t2 2.020> c2 = 2.008 or by noting that Pm s 
.05 for m 2 2.) HC can be applied in a step-up manner 
either by comparing the ordered pm values with a/rm or, 
equivalently, by comparing the ordererd tm statistics with 
the critical constants c"; it accepts H1 and H2 but rejects 
H3, and hence, by implication, also all the remaining hy- 
potheses. Thus, in this example, SU rejects most hy- 
potheses (H2 through H6) followed by HC; both SD and SS 
reject only H6. 

Example 2. First we see that SS rejects H5 and H6 and 
accepts the rest. Next we see that SD rejects H2 through H6 
and only accepts H1. SU accepts H1 through H3 but rejects 
H4, and hence, by implication, also all the remaining hy- 
potheses. HC accepts H1 ftrough H4 but rejects H5 and hence, 
by implication, also H6. Thus, in this example, SD rejects 
most hypotheses, followed by SU, followed by HC and SS. 

8. EXTENSIONS AND CONCLUDING REMARKS 

Although in this article we have confined our attention 
to the case of equicorrelated and equivariance estimates 
Oi, it would be useful to extend SU to the case where 
var(6) = (2 v and corr(61, 6) = P1j; here the ?i- and pij are 
known constants depending on the design. An important 
special case is the problem of comparing treatments with a 
control in an unbalanced one-way lay-out, for which Ti = 
1/no + 1/ni and pij = AiAj, where Ai = V/ni/(no + n1), 
no and ni denoting the sample sizes for the control and the 
ith treatment, respectively (1 s i ' k). The proof of Theo- 
rem 3.1 makes crucial use of the equal correlation as- 

Table 7. Statistics and p Values for Two Examples 

Statistic and m 
Example Procedure p value 1 2 3 4 5 6 

tm 1.50 2.02 2.25 2.28 2.32 2.50 
Pm .072 .026 .016 .015 .014 .009 

SU Pm .072 .049 .041 .048 .052 .041 
PAm .072 .049 .041 .041 .041 .041 

SD Pm .072 .047 .041 .048 .052 .041 
Pm .072 .052 .052 .052 .052 .041 

SS Pm .245 .105 .068 .064 .059 .041 

2 tm 1.50 2.00 2.15 2.30 2.47 2.50 
Pm .072 .027 .020 .014 .010 .009 

SU Pm ~ .072 .051 .051 .046 .038 .041 
uPm .072 .051 .051 .046 .038 .038 

SD Pm .072 .049 .050 .046 .038 .041 
Pm .072 .050 .050 .046 .041 .041 

SS Am .245 .109 .082 .061 .043 .041 
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sumption. If the theorem is true in the unequal correlation 
case, then a different proof must be found. The computing 
of the ci for this case would have to be done specifically 
for each problem. The probability expression to be com- 
puted would be as in Equation (3.3) but with di = (ci + 
Aizo)/I1 - Ai2 (1 ? i ? k). Alternatively, approximate val- 
ues of the ci could be computed by using the arithmetic 
average of the Pij between the Oi still left to be tested. Whether 
the resulting approximation is conservative would require 
investigation. 

Finally we note that, whereas the uniform improvement 
in power that was found to occur when the step-up modi- 
fication of the Bonferroni procedure due to Hochberg (1988) 
was used instead of the step-down modiflcation due to Holm 
(1979) may have suggested that step-up procedures have 
some inherent power advantage, we have found from our 
comparison of the two approaches under normal theory that 
the step-up testing has a nonnegligible power advantage only 
in those situations where most hypotheses are false and it 
is desired to reject all of them. This power advantage in- 
creases with the number of false hypotheses. But our com- 
parison under normal theory also has revealed that even in 
situations where only a few hypotheses are false, the step- 
up test procedure stands at only a negligible power disad- 
vantage with respect to the step-down test procedure. 

[Received May 1990. Revised December 1990.] 
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