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Summary

We consider the problem of comparing a set of p, test treatments with a control treatment. This is
to be accomplished in twostages as follows: In the first stage, Ny observations are allocated among
the p, treatments and the control, and the subset selection procedure of GurTa and SoBEL (1958) is
employed to eliminate “inferior” treatments. In the second stage, N, observations are allocated
among the (randomly) selected subset of p,(=p,) treatments and the control, and joint confidence
interval estimates of the treatment versus control differences are calculated using DUNNETT’S (1955)
procedure. Here both N and N, are assumed to be fixed in advance, and the so-called square root
rule is used to allocate observations among the treatments and the control in each stage.

Dunnett’s procedure is applied using two different types of estimates of the treatment versus
control mean differences: The unpooled estimates are based on only the data obtained in the second
stage, while the pooled estimates are based on the data obtained in both stages. The procedure
based on unpooled estimates uses the critical point from a py-variate Student t-distribution, while
that based on pooled estimates uses the critical point from a py-variate Student {-distribution. The
two procedures and a composite of the two are compared via Monte Carlo simulation. It is shown
that the expected value of p, determines which procedure yields shorter confidence intervals on
the average. Extensions of the procedures to the case of unequal sample sizes are given. Appli-
cability of the proposed two-stage procedures to a drug screening problem is discussed.’

Key words: Subset selection; Joint confidence interval estimation; Multiple
comparisons with a control; Drug screening; Gupta-Sobel procedure;
Dunnett procedure; Pooled estimates; Unpooled estimates.

1. Introduction

Two types of inferential goals have been proposed in the literature for use in prob-
lems involving test treatments versus control comparisons. One of these pertains
to the elimination of test treatments that are “inferior” to the control treatment.
The test treatments that are selected as being ‘‘superior’”” (or “equal”) to the con-
trol treatment can then be studied more intensively in later experimentation. The
other goal pertains to the joint cstimation of the test treatment versus control
differences with stated precision. The reasons for employing joint rather than
separate estimation are explained in BECHHOFER and TAMHANE (1988); also see
Hocuserg and TaMHANE (1987, Chapter 1).
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These two inferential goals have been treated separately in the literature. For
the first goal, Guera and SoBEL (1958) proposed a subset selection procedure
(referred to herein as the GS-procedure), while for the second goal, DUNNET.T (1955)
proposed a joint confidence interval estimation procedure (referred to herein as the
D-procedure). In this paper we study a two-stage approach: The first stage uses
the GS-procedure to eliminate the apparently inferior test treatments, while the
second stage uses the D-procedure to estimate by joint confidence intervals (one-
sided or two-sided) the performances of the retained test treatments relative to the
control or placebo. In fact, we study two different procedures for second stage esti-
mation. The first uses only the data obtained in the second stage for constructing
the joint confidence intervals, and is referred to as the Not Pool D- (N.D-) proce-
dure. The second pools the data obtained in both stages, and is referred to as
the Pool D- (PD-) procedure. Relative performances of the two procedures are
studied via simulation.

The outline of the paper is as follows: Section 2 introduces the notation and
states the basic assumptions. Section 3 provides descriptions of the two two-stage
procedures. Section 4 discusses the so-called square root rule for allocating the
total number of observations in each stage among the test treatments and the
control treatment. Section 5 gives a numerical example to illustrate the procedures.
Section 6 compares of the ND- and PD-procedures, and two of their variants,
using numerical and simulation results. Section 7 describes extensions of
the procedures to the case of arbitrary, unequal sample sizes on the test treat-
ments. Section 8 discusses the application of the proposed two-stage procedures in
a problem of drug screening.

2. Notation and Assumptions

We.assume that at the first (elimination) s'tage of experimentation there are
available py =2 test treatments labelled 1, 2, ..., p1 and a control treatment label-

led 0. Let { ¥y (1 =5 =nq)} denote a random sample of size n;; on the ith treatment
7

(0=1=p,) with N; = Z:o n41 being the given total sample size used at the first stage.

As in the u'sual fixed-effects one-way layout model, the random sample on the ith
treatment is assumed to be drawn from an N (11, 02) distribution (0 =i=g,). Here

‘ . my
the y; and o2 are unknown parameters. Let Y= 3 Yi1/ny denote the first stage

. j=1
sample mean for the ith treatment (0 =i = 1) and let

" ng

2 2 (Yip—Yy)

g =0 j=1
' Ni—(p1+1)
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denote the first stage pooled sample variance based on »; = N1~ (p1+1) degrees of
freedom (d.f.).

The corresponding quantities in the second (estimation) stage are denoted by
substituting subseript 2 in place of 1 in the above. Thus pz denotes the (random)
number of test treatments retained for experimentation in the second stage. (If
p2=0 then there is no second stage experiment.) Without loss of generality we .
assume that the test treatments are labelled so that the first ps test treatments are
retained. The total sample size N for the second stage is assumed to be fized in
advance; this is allocated among the ps test treatments and the control treatment

. : ]
80 that ns> observations are taken on the ith treatment (0 =i =ps) with No= 2, 74a.
no i=0
Let Yi2=> Yy/nee denote thosecond stage sample mean for the ith treatment
j=1
(0s=i=ps) and let
Py fyg2
> D (Yi— Yio)2
Sz e =0 1-1

27 Np—(p2+1)
denote the second stage pooled sample variance based on pa=Nz—(p2+1) d.f.
P2

Note that both the 7 and vs are random variables, although Ng= >, mys is fixed.
=0

We will assume in Sections 3 through 6 that, based on symmetry considerations,
n=mny (say) fori=1, ..., p1 and npp=ns (say) for i=1, ..., p2. Thus Ni=noa+p1m
and No=ng2+ panz. In Section 7 we will show how our procedures can be imple-
mented when the sample sizes on the test treatments are not equal.

3. Two-Stage Procedures

In this section we describe our two two-stage procedures. Both procedures have
the same goals for Stage 1 and for Stage 2. The goal for Stage 1 (Goal 1) is to select
a subset of the p; test treatments which contains all of the treatments having
means u; = ug. (These test treatments are referred to as “‘superior.”) If this goal is
achieved then a correct selection (CS) is said to have been made. The goal for Stage 2
(Goal 2) is to estimate by means of joint confidence intervals the pg differences
B~ o (1=i=ps). For one-sided intervals this latter goal is referred to as Goal
2-I and for two-sided intervals it is referred to as Goal 2-IL.
The probability requirement for Goal 1 is:

(3.1) P(CS)=1—ay forall (uo, pi1, «oes tipy3 0%)
and that for Goal 2 is: _ _
(3.2) Joint Confidence Coefficient =1—az for all (g, g1, -+ Hipy3 a?) .
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Here 1—a; and 1—ap are prespecified numbers between 0 and 1. Notice that
{1, --o» iy} is & random subset of {1, ..., tp,}; and the requirement (3.2) must be
guaranteed unconditionally. This can be achieved by guaranteeing (3.2) condition-
ally for every possible subset.

Both two-stage procedures use the GS-procedure in Stage 1 to guarantee (3.1).
The @GS-procedure retains the test treatment ¢ in the selected subset for second
stage experimentation iff

1 1\
(3.3) Yu'-==-Yo1—g,18vl(—-+-—-) (1=1=m).

niy no

Here g, =4,.p,.0.s i the 100a; equicoordinate percentage point of the py-variate
Student ¢-distribution with » d.f. and associated common correlation coefficient
or=n1/(n1+np1). We refer to the quantity g“S,,!(lfnl+1/n01)1"2 as the allowance
associated with the GS-procedure.

The ND-procedure employs the following joint one-sided and two-sided confi-
dence intervals, respectively, in the second stage:

1 1/2
(3.4a) {p{— po=Yio— Yog—guS,,z (—*l-—*—) (1 éi‘-‘épg)} (for Goal 2-I)
Nz Moz
and
i 1\1/2
(3.4b) {m— o€ [ Yio— Yo2th, 8, (—+ —) ] (1=14 épz)}
N2 MNo2

(for Goal 2-I1) .

Here g,,=9,, p,.00, a0d h,=h, , . . are the upper 100xs equicoordinate per-
centage points of the ps-variate Student ¢- and |¢|-distributions, respectively, with
v d.f. and associated common correlation coefficient ps =n2/(ns +noz). The quanti-
ties g,,S,, (1/n2+1/ne2)'® and h,8,, (1/n2+1/ng2)"/? are referred to as the allow-
ances associated with the joint confidence intervals (3.4a) and (3.4b), respec-
tively. To date the most complete and accurate tables of the critical points g, and k,
have been given by BecanOFER and DUNNETT (1988). | ‘

We now describe the PD-procedure. The pooled estimates on which the PD-
procedure is based are calculated as follows: Let

(3.5) Dy Durﬁ +D¢2r%
T+ 75
denote the pooled estimate of y;— po (1 =1=p;) where
(3.6) Du=Yu—Yo (1=ispy, k=1, 2)
and
(3.7) 12=i+j— (k=1,2).

NE  Nog
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Also let

o 1S 1Sy
(3.8) Oy =—""T——"
v+ V2

be a pooled estimator of o2 based on v=v+; d.f.
Finally let

(3.9) 2= (1/73+1/73)!
and

2 2
T3+ ety

3.10) -
: 5+

The PD-procedure employs the following joint confidence intervals at the second
stage:

B.41a)  {pi—po=Di—9, p 00,57 (1=i=p2)}  (for Goal 2-T)

and

(3.11b)  {pe—pio€[Dikhy . 0uiSy7] (1=i=p2)}  (for Goal 2-IT) .

The quantities g, ;0657 aNd A,y . S,7 are referred to as the allowances
associated with the joint confidence intervals (3.11a) and (3.11b), respectively.

The intuitive reasoning behind these “pooled” intervals is as follows: If the
random nature of p» (and hence that of 29z, 72 and ) is ignored, then D; given by
(8.5) is the “best” (minimum variance unbiased) pooled estimator of u;— po among
all linear combinations of Di and Dyz; this minimum variance is equal to o272
where 72 is given by (3.9). Also note that in this case the D; are equicorrelated with
common correlation coefficient ¢ given by (3.10).

We now turn to the question of whether or not the joint confidence intervals
(3.4) and (3.11) associated with the ND- and PD-procedures, respectively, guaran-
tee the probability requirement (3.2) for Goal 2. We can restrict the discussion to
the one-sided intervals in each case since the same arguments apply to the two-sided
intervals. For the joint one-sided confidence intervals (3.4a) associated with the
ND-procedure, it is easy to see that they have an unconditional joint confidence
coefficient =1—as. This is so because conditional on the subset selected (assum-
ing it is nonempty), p2 and hence nz, %oz are fixed. Therefore conditionally, the

random variables »

Yio— Yoo — (e — po)

1 1 1/2
. (24
T \nz Np2

cave a joint ps-variate Student ¢-distribution with »2 d.f. and common correlation
hoefﬁ(}iel’lt=gg:ﬂgf(?lz-{-ﬂog). Hence the conditional joint confidence coefficient
for the intervals (3.4a) is 1—az if p2=1, and it may be taken to be unity if an

(1=1=p2)
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empty subset is selected, i.e., if p2=0. Therefore the unconditional joint confidence
coefficient is =1 —a2.

No such rigorous argument can be given for the joint one-sided confidence
intervals (3.11a) associated with the PD-procedure. The reason for this is that
conditional on the subset selected (assuming it is nonempty), the random variables

Dy —(ps— po)
07

do not have a ps-variate Student ¢-distribution even though p2 and hence nz, no:
are fixed. This is so because conditioning on a subset selected using (3.3) restricts
_ the Di; to be greater than or equal to — ¢, S, (1/n1+ 1/n01)Y? for 1=1=ps, and
hence the conditional distribution of the D; is not pe-variate normal. In fact, the
individual D; are not even conditionally univariate normal. It should also be noted
that in (3.11a) we use the percentage point from the p;-variate Student ¢-distribu-
tion even though the joint confidence statement is made concerning only pa( =)
differences u;— po (1 =i=p2). This is needed to compensate for the fact that the
pooled estimates D; are based in part on the first stage data, which have already
been used to select the treatments for the first stage. Note that this compensation
tends to make the procedure conservative. In the simulation experiment describ-
ed in Section 6, we will examine the effect of using the percentage point from the
pe-variate Student ¢-distribution instead of one from the p;-variate.

(1=i=p2)

4. Allocation of Observations

In this section we discuss the choice of (nox, nz) to be used in each stage k=1, 2.

The particular choice that we recommend is based on the well-known square root
allocation rule (DUNNETT (1955)) which yields

(4.1) ﬂ-ok:n3k=~L, Np=ng = Ne =
1+ Vpe Vpi (1+Vpe)
As discussed below, for stage k this choice approximately minimizes the expected
allowance associated with (3.3) (for k=1) and (3.4) (for £ =2) and exactly minimizes
(ignoring the integer restrictions on ngr and nx) the common value of var (Y-
— Yor) =7{? subject to given Ny and p; and specified 1~ (k=1, 2).
The expected allowance associated with the GS-procedure is given by

(k=1,2);

1 1/2
(4‘2} g"t 1Dy ,00501 (;,!_ + —_) E(S"l)
01

m
=Guipuens {r1+p1) (r1+ DIr} Y2 B(S, )Y Ny

wherfa we have let r1=ng1/n and gy =1/(1 +r1). Note that the minimizing value
of r; is independent of o. 1f the ND-procedure for one-sided comparisons is used in
the second stage then the criterion to be minimized is the same as (4.2) but with
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subscript 1 changed to 2 everywhere. If the N D-procedure for two-sided compari-
sons is used in the second stage then, in addition, the critical constant g,, must be
replaced by %,,. For the PD-procedure the corresponding criteria can be stated in
an analogous manner, but they are functions of the first stage quantities as well.
We shall indicate later in this section how the allocation (4.1) can be justified for -
the PD-procedure. )

Minimization of the expected allowance criterion has a clear interpretation for
the joint confidence interval estimation problem. For the subset selection problem
we use the same criterion because decreasing the expected allowance has the effect
of decreasing the expected number of “‘inferior’”” test treatments (i.e., those having
means ;< jip) included in the selected subset.

In BECcHIHOFER, DUNNETT and TAMHANE (1987) we demonstrated by extensive

numerical calculations that the choice rk:r}ff:]/p?;, which gives the square root
allocation (+4.1), approximately minimizes the criterion (4.2) (as well as the crite-
rion obtained by replacing g, with A, ). For this allocation rule, ok equals 1/(1 4+ px).
~ The corresponding critical constants g, and A, for p=1/( 1,+}p) needed to imple-
ment the GS- and N D-procedures were tabulated for selected values of p, » and «
in the aforementioned article. (A subset of these tables may also be found in
Becunorkr and DuNNETT (1988).) The asymptotic (as Ny —~eo) optimality of (4.1)
for joint confidence interval estimation was shown by BECHHOFER (1969) for
one-sided comparisons and by BECHHOFER and NoCTURNE (1972) for two-sided
comparisons. K g

As we pointed out, the square root allocation rule (4.1) exactly minimizes
var (Y — Yor) =-r‘f.a2 subject to given Ni and pi (k=1, 2). (This results in only
approxzimate minimization of the expected allowance criterion because the critical
constants g, and A, , which also are functions of ry =nox/nx through px=1/(1+17%),
do not vary much with g for small e (k=1, 2).) Therefore for stage k=2, (4.1)
exactly minimizes 1202 for any given 73, and N3 and pa.

The expected allowance (conditioned on ps) associated with the PD-proce-
dure (3.11) is proportional to 7; moreover, the critical constants g, o and

voues, are relatively insensitive to the choice of ra. Therefore it follows that (4.1)

also approximately minimizes the expected allowance associated with the PD-pro-
cedure. '

In practice, the (ng;, ny) values given by (4.1) must be rounded to one of the
nearest integer values, which are

(432) (Ne—pilng), [nf) )
(4.3b) (nox, Nt):{(i\rk-_pk [n2 +1], [nf +1)) (k=1, 2),

where [2] denotes the integer part of x. The choice between (4.3a) and (4.3b)
should be based on the minimum expected allowance criterion. To make this
comparison, the critical constants associated with the two allocations (4.3 a) and
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(4.3b) with their respective p-values are needed. Linear interpolation with respect
to 1/(1—p) in the tables of BECHHOFER and DuxnerT (1988) is recommended for
this purpose if the exact values are not readily available.

5. Numerical Example
L]

Suppose that a pharmaceutical laboratory has identified 20 chemical compounds
which it wishes to test against an existing standard drug (or placebo). The testing
is to be done in two stages. The purpose of the first stage is to eliminate those
compounds which are indicated as being “‘inferior” to the control compound so
that more observations can be allocated in the second stage to the compounds
retained which are presumably the “superior’” ones. Suppose that 70 animals are
available for each stage of testing.

For the first stage it is desired to design an efficient experiment so that with
probability at least 0.90 the selected subset will contain all test compounds at
least as good as the control compound; thus 1 —e;=0.90. Here p; =20, N1="170:
hence there will be »=N1—(p1+1)=70221=49 d.f. available for estimating ¢°.
From (4.1) we see that the asymptotically optimal allocation is

N 70 | N - 10
- —=12.79 and nf=————t ——2.86.

(+7p  1+V20 Vo (1+Vp1) V20 (1+720)

”’31 =

From (4.3) the corresponding rounded pairs of integers are given by (no1, n1)=
=(30,2) and (10,3) ; the associated p;-values are 0.0625 and 0.2308, respectively. The
corresponding critical constants are g49 9, 0625,10=2.633 and g9 50, 2 308,.10 = 2.572.
The expected allowance is proportional to 2.633 (1/30+ 1/2)!2 =1.9283 if (ne1, n1) =
=(30,2), and 2.572 (1/10+1/3)"2=1.693 if (ng, n1) =(10,3). Thus the latter choice
is preferred. (In fact, the only other choice for (ng;, 71) is (50,1) which leads to
01==0.0196 and g,9,99, 0196, 10 =2.644. This choice is clearly inferior to either of the
other two. Hence the square root rule indeed yields the overall optimum allocation
in this case.)

Thus in the first stage, 10 observations will be taken on the control compound
and 3 observations on each of the 20 test compounds. Then those test compounds
whose sample means ¥ are no less than Y — 1.693S, will be retained for further
experimentation.

Now suppose that 15 compounds are eliminated in the first
retained in the selected subset. In the second stage it is desir
joint one-sided confidence interval estimates of the five
thus 1—22=0.95. Here p,=5, Np=

stage, and 5 are
ed to obtain, say, 95 9,
differences pi— o (1 =1=5);
70; hence there will be », =No—( =
. . 2=10; = p2t+1)=
=70—-6=64 d.f. available for estimating o2 from the second sta ge. From (4.1)
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we obtain

N 70 N 0
Ny = = ————=21.63 and n}= 2 7

— —— == — —=9.67.
1+Vp: 1+V5 Voo (1+Vp2) V5 (1+75)

Using (4.3) we find that the corresponding rounded pairs of integers are (nez, n2) =
=(25,9) and (20,10); the associated pe-values are 0.2647 and 1/3, respectively.
Following the same steps as taken earlier, we find that (noz, nz) =(20, 10) is the
preferred choice for the one-sided N D-procedure, the necessary critical constant
in this case being gg4.5.1/3,.05=2.329. This same choice (no2, n2)=(20, 10) is also
preferred for the two-sided N D-procedure, the necessary critical constant in this
case being hgy 5.1/3,.05 = 2.616.

Now suppose that it is desired to employ the PD-procedure at the second stage.
Using the square root allocation rule we are again led to choosing between (noz,
n2) = (25,9) or (20,10). The corresponding 73-values are 0.1511 and 0.1500, respec-
tively, and the ps-values are 0.2647 and 1/3, respectively. Assuming that (no1, 71) =
=(10,3) is used in the first stage, we have 77 =(1/10+1/3)=0.4333 and g1 =0.2308.
Applving (3.9) and (3.10) we obtain (7%, ¢)=(0.1120, 0.2558) for (noz, n2) =(25,9)
and (12, 0) =(0.1114, 0.3070) for (noz2, n2) =(20,10). Since the latter choice yields a
smaller 72 and larger p, it is clear that it will yield the smaller expected allowance.
The critical constants needed to implement the PD-procedure for this choice of
(02, M2) ATC Gy13 00, 3070,.05 = 2.784 and hyy3 90, 3070,.05 =3-039 for one-sided and two-
sided joint intervals, respectively; here the pooled d.f. are =49+ 64 =113.

-

6. A Comparison of Procedureg

In this section we compare the performances of the ND- and PD-procedures via
Monte Carlo simulation. We also study two variants of these two procedures for
making joint confidence statements at the second stage. The rationale behind
these variants will become clear after we make a preliminary comparison between
the ND- and PD-procedures. For convenience, in this section we will refer to
these two procedures as & and s, respectively. '

It is clear from the description of §: that it will tend to be conservative if the
true number, say ¢ (=p1), of “superior” test treatments is small relative to pi.
This is so because §» uses the critical point from the p;-variate Student ¢-distribu-
tion when, in fact, only p: (=p1) joint confidence statements about apparently
“Superior” test treatments are made. A natural question to ask is whether a pro-
cedure that uses g, ,, .., in place of g, p 5., 1N (3.11a) will still guarantee the prob-
ability requirement (3.2) for Goal 2—1. We refer to such a procedure as §3. We
will show by simulation that &3 does not guarantee (3.2) in all cases, i.e., it can be
liberal.
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Based on the above discussion we can surmise that &, will yield a wider allow-
ance than 81 if p2/p1 is small and vice versa. We now compare the one-sided
allowances for the two procedures for p; =20, p2=1(1) 10(2) 20, N; =70, N2="70,
(no1, 1) =(10,3) and thus ('rf, 01) =(0.4333, 0.2308), 7, =49, v2=T0—(p2+1) and
1—a2=0.95. In this comparison, for each given ps, (nos2, n2) is chosen using the
square root allocation rule given in Section 4. Furthermore, the sampling varia-
tions in S,, and S, are ignored because v; and »=y, +v; are large; both S, and S,
are taken to be equal to unity, which is the assumed value of o. The results are
presented in Table I. The §3-allowances also are included in this table for addi-
tional information, |

From Table I we see that among the three procedures, &3 yields the smallest
allowance for all values of ps; however, this is at the expense of not gruaranteeing
(3.2) in all cases, as noted above. Between & and &5, the former yields the smaller
allowance for p2=5 and the latter yields the smaller allowance for ps=>5. This
observation suggests an adaptive composite procedure &4 which uses § for mak-
ing the joint confidence statements at the second stage if p2 =5 and which uses
8, if p2=5. (More generally, the precise value of pz at which the §;-allowance be-
comes smaller than the §;-allowance will depend on the values of p;, N3, N2 and
whether the square root or some other allocation rule is employed at each stage.)

In summary, the following four procedures, all of which use the GS-procedure
for subset selection in the first stage, were compared in our simulation study:

§1: N D-procedure.

§2: PD-procedure.

§3: PD-procedure which uses g, 5, ..., instead of g, ;, , .. in (3. 11&)
§4: Uses 8 if p2=5 and & if p2>5.

The procedures were simulated under seven different u;- confxguratxons for
p1=20. The u;-configurations were chosen to cover three different values of
¢, the true number of “superior” test treatments (=5, 10 and 20). Without loss of
generality, throughout we assumed po=0 and o2=1. The pi-values for “superior”
test treatments were taken to be equal touo, but the us-values for * ‘inferior’’ test
treatments were varied over the range —1 to —4 in different cnmbmatlons The
seven configurations are listed below

Config. 1: p1=...=u20=0 (g=20)

Config. 2: m=..=up=-1, p11=---=.uzo=0 (g=10)

Config. s P15 = U10= -2, P11=---=P20=0 (q=10)

C'onfig.4: ‘u1=,_.:‘([15=-—2, pls=...=yzu=0 (q=5)

Config. 5: m=...=pug =—4, Yo =..=ps=—2, p6=...=p20=0 (g=>5)
Config. 6: m=..=ps=-3, p16="...=p20=0 (g=3) ‘

Config. 7: =..=mg=—4, pe=...=p20=0 (¢=35) .

For each configuration a total of 50,000 independent simulation runs were per-
formed. Each run consisted of two stages: In the first stage the mutually indepen-
dent random variables Yor~N(uo, 02/nor), Ya~N(ui, 0®/m) (1=i=p1) and
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§% ~ o [n were generated and the GS-procedure (3.3.) was applie(:*l to select a
subset of ps test treatments. Here we used N1="170 with the assoma?;ed S.quul'c
root allocation (ne1, 71)=(10,3) and 1 — e =0.90. Asnoted in Section 5, in this case
we have »; =49, p1 =0.2308 and ¢49 20, 2308,.10 = 2-633. In the second stage the mutu-
ally independent random variables (which are independent of the first stage ran-
dom variables) Yoz~ N(uo, 0%/noz), Yiz~N(w, 02/ns) (1=i=pz) and 82 ~ 022 [
were generated and each of the four procedures was applied to the resulting data
to construct one-sided joint confidence intervals for u;—uo for the selected test
treatments. For a given procedure the proportion of runs that resulted in the cor-
rect coverage of all of the u;— o for the selected test treatments was used as an
estimate of the joint confidence coefficient of that procedure. In the second stage
we used 1 —as=0.95 and No="70. For each given p; (1 =p;=20) we used the square
root allocation (ngz, 72) given in Table I such that noz-+ panz = Na=T0. These allo-
cations and the associated critical constants needed to implement the four proce-
dures were determined in advance and stored in memory, so that they did not have
to be recomputed each time.

All simulation experiments were performed on McMaster University’s VAX-
8600 computer using a Fortran program. IMSL subroutines GGNPM and GGCHS
were used to generate the normal and chi-square random variables, respectively.
A single simulation experiment consisting of 50,000 runs of the four procedures
took approximately 5 minutes of CPU time at a rate of § 20 per hour. The simula-
tion results are reported in Table II.

Table 1I

Simulation Estimates of the Joint Confidence Coefficient
and Expected Subset Size

Procedures

Config.

No. E{Pz) 81 : 32 5’3 5‘4

1 10.87 9505  .9500 .9499  .9500
2 18.37 9510 .9499 9476 9499
3 13.14 9497 9489  .0311 0489
4 9.60 9507 9508 .9183 9470
5 7.22 9524 9697  .9321 9609
6 5.37 9494 9737 9278 .9437
7 4.97 9498 9843 9472 9490

The primary quantities of interest in Table IT are the estimated joint confi-
dence coefficients of the procedures &;. These are to be compared with the nominal
level 1—a2=0.95. In making this comparison it must be kept in mind that the '
standard error of each estimate is approximately (.05X.95/50,000)"22<0.0010.
?[‘hus the estimated values would be expected to lie in the interval 0.954 2—)( 0.0010
if the corresponding joint confidence coefficients are controlled at the nor;lillal
level of 0.95. Using this criterion we find that &, controls the joint confidence
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coefficient quite accurately at the nominal level; this is, of course, to be expected
in view of the proof of this fact given in Section 3.

~ We next note that for large valuesof the expected subset size, (E(pz, §2)) controls
the joint confidence coefficient accurately at the nominal level but the conserva-
tism of &3 increases with decreasing E(p2)-values. §: is extremely conservative for
configurations 5, 6 and 7, which involve small values of ¢ and large negative
pi-values for the “inferior” test treatments. These latter configurations result in
small expected subset sizes. This behavior of &, is to be anticipated in view of our
previous discussion.

Next note that §3 is liberal under all configurations except under configuration
no. 1 and possibly under configuration no. 2. Thus §3 is not an acceptable proce-
dure.

Finally §4 appears to control the joint confidence coefficient in most cases, but
under one configuration (config. no. 6) it is liberal. Thus there is some question
about its validity under all configurations.

As a matter of additional interest, in Table III we give the simulation estimates
for each P, of the probability of the joint event that a correct selection is made in
the first stage (i.e., all “‘superior” test treatments are included in the subset) and

Table I1I

Simulation Estimates of the Overall Probability
of No Error

Procedures

Config.

No. Sh 8, 83 8,

1 8574 .8536  .8536  .8536
2 8081  .8954 .8033  .8954
3 8963  .8936  .8767  .8936
4 09215 ,9207  .8800 9175
5 9243 0406  .9037  .9329
6 0196 0426 .8976  .0142
7 0201 .9529 9166  .9196

all the u; — o for the selected test treatments are covered by their respective confi-
dence intervals. We refer to this probability as the overall probability of no error.
The estimates in Table III may be compared with the nominal value (1 —a)X

X (1 —az) = 0.90% 0.95 = 0.855, which is the overall probability of making no error
under configuration no. 1 (the least favorable configuration for the GS-procedure)
if the inferences in the two stages were statistically independent. However, this
independence holds only for §1. We note that the probabilities for all the &; are
within two standard errors ( =2X (0.855X 0.145/50,000)'/*2 0.0032) of the nominal
value under configuration no. 1. For other configurations, the achieved probabili-
ties for all the §; are strictly higher than the nominal value because the first stage
GS-procedure achieves P(CS)>1-—a1=.90 under these more favorable configura-
tions,

38 Biom. J. 31 (1989) 5
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In conclusion, if the unknown proportion of “superior” test treatments (viz.
g/py) is expected to be large (say, ab least one quarter of the total number of test
treatments are expected to be “superior”) then §, is the preferred procedure;
otherwise 8; is the preferred procedure. 84 provides a compromise between the two
procedures, and is a good practical alternative. &5 is not an acceptable procedure.

In practice it would seem wasteful not to pool the data from the two stages.
Therefore, in future research it would be desirable to develop a less conservative
version of the PD-procedure for small ps-values, which can be recommended in all

gituations.

7. Extension to Unequal Sample Sizes

In the previous sections we assumed, based on symmetry considerations, that
na=ny fori=1, ..., p1and niz=ns fori=1, ..., p2. In practice, however, even if the
experiment is designed to be balanced, there are often losses of observations due to
reasons which are not fully under the experimenter’s control. Therefore the actual
sample sizes on the treatments are not always equal. In this section we show how
to implement our two-stage procedures when the sample sizes are arbitrary. We
use the notation defined in Section 2.

The following modifications are necessary in the application of the GS-procedure
used in the 1st stage and the N D-procedure if it is used in the 2nd stage: In (3.3),

ny should be n4i and g, =g, 5., «- Similarly in (3.4a), ng should be n and ¢, =
=0v3,95.Rp.0p and in (3.4b), nz should be n;; and Py =Py 09, Ro.ay Here for
IrirvinBine; PopuppoRiciey,) TOT =1, 2 is the upper 100« equicoordinate percentage

point of the p; variate Student #- (j¢|-) distribution with » d.f. and associated
correlation matrix Ex={pi;x} where

1 (1 é‘i:j =px)
(7.1) Qi = [ NixNik
(

ik + Nok) (Mg +Nox)

172
] (I1sij=pn).

Remark 7.1: As noted in HocHBERG and TAMHANE (1987, p. 141), the so-called
Pmduct structure possessed by this correlation matrix makes the task of evaluat-
ing these percentage points on a computer relatively easy because the associated
pr-variate (k=1, 2) integral can be reduced to a bivariate integral. A computer
program for this purpose has been written by DUNNETT (1984). Alternatively, a
good approximation to the exact percentage point is provided by ¢ - wh:;re
@k is the arithmetic average of the gy for Isikj=mpm, k=1 2'1’:(':?%;2113}:3(}
and TAMHANE (1987, p. 145). Extensive numerical studies b;r I’)UNNE'I‘T (1985)
show that this approximation is slightly on the conservative side l
If the PD-procedure is used in the 2nd stage than the followil;g modifications
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are necessary in its application: The pooled estimate of u;— j1o is now given by

Dyt + Dieth )
7.2 D= - 1=1=
(7.2) i Th+Ti ( P2)
where
.11 ,
(7.3) T=—+— (1=ispr, k=1,2).
Nip  Nok

0} vt

Further in (3.11a), 7 is replaced by 7; and g, ,, , .. is replaced by ;c;,.p“ Rio,s Similarly
in (3.11b), 7 is replaced by 7; and k, ,, , ,, i8 replaced by 2, 5, Ry’ Here, asin (3.9), ".‘f
we have
(7.4) =14 +1/)t (1=i=p),
and R={0;} where, as in (3.10), we have

T42T520451 + T117410452
{(th+15) (Fh+ )} .
Note that the formulae (7.1)—(7.5) reduce to the corresponding formﬁlae given in
Section 3 in the balanced case.

(7.5) 01 =

(1=ik)=p2) .

8. Application to Drug Screening

Drug screening is generally an on-going program consisting of a series of experi-
ments in each of which perhaps 20 to 30 chemical compounds are tested for some
specific type of activity. The total number of compounds tested is very large, but
the number of compounds included in each experiment depends on the available
laboratory facilities and resources. The purpose of the screening is to eliminate the
compounds which have little or no activity. A false positive is a compound which,
although not having the desired level of activity, nevertheless by chance gives a
result on the screening test that falls in the “acceptable” range. Even though the
accept/reject rule used in the screening test may be designed to have a very small
probability of such an occurrence, the actual number of false positives that accrue
over a period of time may be quite large, perhaps even exceeding the number of
true positives. Hence, before proceeding further with more definitive testing of the
“compounds that have been identified by the initial screening procedure, it may be
desirable to carry out a special experiment to eliminate the false positives and
obtain precise estimates of the biological activity of the compounds: indicated as
being true positives. .

We suggest that the two-stage approach described in this article may be appro-
priate for such an experiment. The purpose of the first stage (G'S-procedure)
would be to eliminate most of the false positives accrued in previous screening
tests, while the purpose of the second stage would be to estimate the activity levels.

of the retained treatments in the first stage relative to a reference standard. For
380 | w e



560 R. E. Becanorer, C. W. DuxyerT, A. C. TAMHANE: Two-Stage Procedures

the latter, a known active compound would be used if one were available; other-
wise an inactive control could be used. .

An important design problem now arises, namely, how to allocate a fixed total
amount of resources (e.g., a fixed total number of animals available to carry out
the entire experiment) between the two stages. In other words, what are the “opti-
mal” values of N1 and N for fixed given N =N;+ N2. This problem is not easy to
formulate mathematically. A reasonable formulation would involve the expected
number of “inferior” test treatments retained at the first stage, and errors of
estimation at the second stage as measured by the expected values of the allowan-
ces of joint confidence intervals (for specified values of 1 — e« and 1 —az). The solu-
tion would depend on unknown parameters, e.g., the actual proportion of “in-
ferior’’ test treatments. For instance, if this proportion were thought to be small,
it might be desirable to omit the first stage entirely and allocate all the available
experimental resources to the second stage.

The goal associated with the GS-procedure (Goal 1) states that all test compounds
with means p;= o be included in the selected subset. (If an active compound is
used as a reference standard then up would be its unknown mean. However, if an
inactive control is used as a reference standard then pg should be its mean plus a
specified constant 4>0; here o is the minimum threshold that the mean of the
test compound must exceed that of the inactive control in order for it to be consi-
dered “superior.”’) In practice, the number of such compounds and also the num-
ber of compounds with means ;< o is unknown. The constants necessary to im-
plement the G'S-procedure are derived under the so-called “least favorable’’ confi-
guration in which all test compounds are assumed to have means py; = po(1=1=m).
However, this assumption may be much too conservative if the experimenter has
reason to believe that a number of the compounds actually have mean values
pi < po. In this case, it may be modified as follows: Prior to the start of experimen-
tation the experimenter may be prepared to state an upper bound m; =p1 on the
number of true positive test compounds. Then the asymptotically optimal alloca-
tion is still given by (4.1) but the critical constant to be used in the associated GS-
procedure (3.3) is reduced from Ivpoonas O Gymiens, Where pp still equals

1/(1+Yp1). In particular, if m;=1 then this latter critical constant equals?, . —
the upper a;-point of the univariate Student’s t-distribution with vy d.f. Tablelé lOf
Dviymy one 10T M1=2, ..., p1—1 are not available. The case m1 =7y dealt with in the
present paper would correspond to the situation in which a series of structurall ¥
related compounds are submitted together for testing. However, even in this
situation the experimenter may not require that the selected subset contain all
“superior” compounds; i.e., he may be satisfied with selectin
fraction,

Another difficulty with the use of the GS-procedure is that since the number of
treatments in the selected subset is random, problems may arise in the second
stage (the D-procedure) if the total amount of experimentation (V;) that can be
carried out in that stage is fixed in advance, as is assumed in the present article.

g only a specified
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Therefore one may wish to use a procedure with a prespecified upper bound on the
number of test treatments in the selected subset as proposed by SANTNER (1975)
for a different problem.
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