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Abstract-Compression and trending are techniques widely used in the initial treatment of raw process
data. Two popular methods, Box Car with Backward Slope and Swinging Door, were reviewed recently
by Kennedy. In spite of their popularity, neither of these methods are designed to cope with process
variability and outliers. They also require one or more parameters to be specified based on practical
considerations. In this paper we propose a new method, Piecewise Linear Online Trending (PLOT).
which is statistically based and whichperforms significantly better. Unlike the two existing methods. it
adapts to process variability and noisy data, recognizes and eliminates outliers, and it is robust even in
the presence of outliers. It fits the data better for the same number of trends. The fidelity of its
performance may be fine-tuned with a single level of significance which may be set by the user without
requiring any expertise in statistics. It may be used in an online or a batch mode. and interfaces easily
with most existing packages.

INTRODUCTION

For more than two decades now computers have

been used to monitor and control industrial pro­

cesses. One outcome of in-plant computer appli­

cations is the availability of improved process data in

quantity and quality. At this point in time the

mechanical and electronic aspects of data acqui­

sition, organization, storage and retrieval (De Heer,

1987; Kennedy, 1993) are fairly well explored.

Large volumes of sensed data are captured and

stored in electronic devices with rapid access. How

to utilize this rich source of information continues to

be a major technological challenge. Potential uses of
process data are numerous. Examples of appli­
cations are given by Langen (1984), for instance.

They include:

1. Adverse events: diagnosing the cause of fai­

lure, tracing event path, selecting corrective
actions.

2. Normal operation: monitoring process trends

and conditions at different levels of process

operation.

3. Startup: online trending and multiple point

comparisons with test records.

4. Maintenance: detecting, diagnosing and pre­

dicting malfunctions using signatures of data

trends.

t To whom all correspondence should be addressed.

5. Innovation: improving process operation

through comparison with historical data

6. Training: systematic analysis of scenarios and

exploration of alternative operating strategies.

7. Regulations: providing a rational basis for

developing regulatory guidelines and practice.

In this paper we shalJ focus on sensed data as time

series.

Historically, the initial concern was how to cope

with large volumes of sensed data. Instead of storing

every piece of data, procedures were proposed for

storing fewer pieces of data. The term commonly

used was data compression. As the performance of
storage devices and microprocessors continues to

improve, and as their costs continue to decline . the
emphasis is increasingly shifting towards process

trending. Tn trending, the measured data are rep­
laced by a fitted trend. The trend is summarized by

an equation. Values of the parameters in the equa~

tion are stored instead of the raw data At the

present stage of the development. this shift repre­

sents a change of viewpoint rather than" change of

methodology. However, in the long run this view­

point may provide a more natural transiuon to the

rapidly developing technology of pattern recogni­
tion.

In this paper we present a new method for process

trending. We begin with a brief review ot two

existing procedures for data compression and trend­
ing commonly applied to sampled data systems
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far from satisfactory . The next algorithm tries to
address some of these issues.

Box Car and Backward Slope algorithm (Hale and

Sellars, 1981)

The Box Car algorithm (Hale and Sellars, 1981)
records a value only when the current value differs
from the last recorded value by an amount greater
than or equal to the recording limit for that variable,
specified by the user. This algorithm is extremely
simple and is quite effective for processes with long
spells of stable operation. However, it is not very
effective when the process follows a linear drift or
undergoes a transition between steady states. For
instance, in case of rapidly increasing or decreasing
trend, e.g. the level of a large vessel when it is being
filled or emptied at a large but steady rate, this
algorithm will not achieve a high data compression.
On the other hand, if the rate of change is slow, the
box car algorithm may achieve compression at the
expense of loss of information. Efforts to overcome
this shortcoming led to the development of the so­
called Black ward Slope algorithm (Hale and Sellars ,
1981).

In this algorithm, current value of a variable is
predicted based on linear extrapolation of the last
two recorded values. If the actual value differs from
the predicted value by an amount greater than the
prespecified recording limit, then the current value
is recorded. This algorithm retains the merit of
simplicity. For processes involving ramp and step
changes, this algorithm yields higher compression
for data without noise. But in practice the Backward
Slope algorithm does not always produce better
results. This is especially true for noisy data. The
noise in the data will cause the algorithm to project a
slope which is misdirected. For instance, when the
liquid level in a vessel is actually steady, the noise
may give rise to a nonzero slope resulting in a
recorded value which should not have been
recorded. In this instance the Box Car algorithm will
perform much better.

To capture the advantages of both techniques,
they were combined into a single algorithm which
dynamically selects the technique to be applied to
the next data point. The combined algorithm
records a value when an exceptional value is indi­
cated by both the Box Car and the Backward Slope
algorithms. As long as the trend continues , only one
criterion need be checked. However, as soon as this
criterion fails to be satisfied, the second criterion is
tested. If that criterion also fails, a new value is
recorded. This algorithm works better than either of
the other two algorithms , but requires more compu­
tation. For many years it was widely used in the
process industry, even though its performance was

Swinging Door algorithm (Bristol. 1990)

Swinging Door Trending (SDT) is an heuristic
straight line trending and compression technique. It
strives to give the longest straight line trend poss­
ible, given the data and the maximal error allowed .
It also attempts to minimize computation.

In essence, the algorithm replaces a sequence of
consecutive data points by a straight line, defined by
an initial point and a final point. The algorithm
specifies how long a sequence or time interval to take
and where the final point of this time interval and
the initial point of the next time interval are to be
located. The very first data point is taken as the
initial data point of the first time interval.
Thereafter, the procedure is applied sequentially to
each subsequent time interval.

With reference to Fig. 1, the initial data point is
bracketed vertically by two points, known as hinges
or pivot points, each located at a distance E from the
initial point. A door is constructed with a straight
line hinged at a pivot point. To start with we have
only one data point in the sequence , namely, the
initial data point i, and both doors are closed. That
is, each door is represented as a vertical straight line
through the pivot. As more data points are intro­
duced , the doors will swing open or remain station­
ary as the case may be. Notice the width of each
door (the straight line segment) may be extended,
but, once open, neither door will close again until
the end of the current time interval. For instance,
with reference to the data points (i, a, b, c, d, e,t,g)
in Fig. I, the movements of the doors are summar­
ized in Table 1. The swinging door operation con­
tinues with each succeeding new data point as long
as the two doors are less than parallel. In other
words, the sum of the two interior anglest between
each door and the vertical line is less than 180°. In
Fig. 1, data point d is the last point before this
condition occurs, which demarcates the end of a
time interval.

Given point d as the final point of this interval, the
initial point of the next time interval may be selected
in different ways. To avoid any offset (vertical
discontinuity) , point d may be taken also as the first

t The interior angles are the angles between each door and
the vertical line. To start with both interior angles are
zero . As each data point is processed, each interior
angle is either enlarged or remains the same. In other
words, the changes of each interior angle are monotoni­
cally increasing. The first interior angle to reach a value
of 90° determines the trend , i.e . inclining or declining.
When the sum of upper and lower interior angles
reaches 180°. the shape of the box enclosing the com­
pressed data points become fully defined.
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where to = 0, 60 = 0, 0/ is the jump or ste p change in
the process mean at time t, and {3; is the slope of the
line during the trend interval j . The model is
depicted in Fig. 2

where Jl, is the process mean at dat a samp ling time I

and e, is the measurement error. Th e measurem ent
erro rs arc assumed to be independe nt and ide nti­
cally distri but ed N(O, O' 2) rand om variables . We
further assume that the variatio n in the process
mean u, with time is well-approximated by a piece­
wise linear function as follows: let the trend of the
dat a points change at time IJ and let ()= I" < -I, < I : -:

. . . . Dur ing the jth tren ding inte rval, i .C . t , I " f <: I ,.

the form of the linear function is given by:

( \)Yr=Jl,+E" 1= 1. 2. ...point of the new time inte rval, or the first point of

the new time inter val may be offset from point d by
an amount equal to one-half of the maximum allow­
able erro r (Bristo l, 1990).

Th e above pro cedure is referred to as the basic

mode. Compression is achieved by replacing the
data points in each time interval by a straight line
segment. Other compression modes may be de vised
to handl e oth er specific trends , e .g. transients, step ,
pulse and so on . SOT algorithm switches bet ween
the basic mode and oth er compression mode s. In
SOT the parameter E is treated as the user sta ted
requ ired accuracy. It is chosen on the basis of

practical considerations exte rna l to the SOT algor­
ithm. SOT algorithm does not detect and handle
outli ers. As shown in Fig. 1, the trend and compres­
sion are critically affected by the choice of E. If E is
chosen too large, the trend may be grossly incorrect .
If E is chosen too small , ver y few data points may be
eliminated . SOT gives very poor performance in the
presence of noise and outl iers.

PIECEWISE LINEAR ONLINE TRE NDING (PW T)

Given a time series of process data measurements
y,. the aim of the proposed meth od is to determine
all majo r trends, or equivalently. to obtain maxi­
mum possible data com pression by the use of piece­
wise linear smoothing. The measurements are
assumed to be sampled at discrete and equ al time
periods and follow the model:

Based on this model a trending algorithm PLOT
was de veloped and implemented on com puter . Our
goal is to estimate the straight line , eq uatio n (2) . as
precisely as possible for any trend inte rval j and also
to detect a change in the trend, i.e . determine the
break point fi , which marks the beginning of the new
trend inte rval j+ J. as early as possible . We also
wish to detect outliers in the data and not let the
trend s be affecte d hy such outliers. Fo r th is purpose

Tab le I. Movements of swinging doors

Duor II b c rI e* f Ii

Upper closed open open up~n open ()p~n

Lower closed open open open ope n ope n

, Second point of a new sequence or time interval.
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Fig. 2. Model of piecewise linear trending.

a least squares straight line is fittedt to the sampled
data collected during the current trend interval. The
estimated straight line is updated sequentially as
each new data point becomes available. The least
squares (LS) method also provides an estimate of
the process variance 0

2 through the mean square
error (MSE). Because of the assumption of a con­
stant variance, we can pool estimates of 0

2 from
successive time periods.t Whether a break point has
occurred is determined by predicting the next data
point from the straight line fit which is obtained
using data points up to the current data point, and
by checking to see if the next data point falls within
the 100(1 - a)% prediction interval. If the next data
point falls outside the prediction interval, then this
may indicate that the trend has changed or that the
data point may be an outlier. Additional data points
are observed before deciding on the follow up
action.

Note that the width of the prediction interval
corresponds to the parameter E used in the SDT
algorithm. However, whereas E is fixed a priori, the
width of the prediction interval in the PLOT algor­
ithm depends on the estimate of the process vari­
ance among other factors. Thus the amount of data
compression adapts automatically to process varia­
bility. In SDT algorithm E is chosen by the user. If it

t Note that we could have chosen another curve fitting
method instead. But the least squares fit is attractive
because of its simplicity.

t Notice that there is some latitude in this matter. If so
desired, the estimate may be computed from the data
collected in all current and past trend intervals.
Alternatively, pooling may be limited to the current
and a certain number of past time intervals.

is chosen too small, false changes in the trend may
be indicated, and vice versa.

For the purpose of computing data compression,
it is necessary to introduce the notion of a time
horizon consisting of H time periods even though
the algorithm is applied continually online. We
define the datacompression ratio p as the number of
measured data points H over the number of trending
points to be stored. Note that our definition of data
compression ratio adapts itself to different sampling,
model and storage arrangements. In the simplest
situation for which data points are sampled at H
equal and consecutive time periods and no jumps
are present «(jj = 0) between pairs of consecutive J
trends, the data compression ratio is given by:

H

P=2T+1'

If jumps are always present, the data compression
ratio changes to:

H

P=3J+1'

For any situation in between and with unequal
sampling periods, the data compression ratio will
depend on the storage method used and whether
one can take advantage of the sparse structure.

The steps of the PLOT algorithm are as follows:

1. Set time period j = 1. Begin by sampling the
first n consecutive data points, YhYz, . . . ,Yn'
Since these measurements will be used to com­
pute an estimate of the process standard devi­
ation, 0, n should be at least 3. A larger value
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when N is the number of data points , v is the df
on which the estimate of (1 is based , (" . al2 is the
upper al2 critical point of the (-distribution

with v df , x" i= 1, 2, . . . , N are the time points

at which the data are sampled, and x is the time

point for which the prediction is to be made .

When predicting Yn+ ] based on the da ta collect­

ed at times i= I , 2, ... , n , assuming that no
outliers have been detected befor e time period

n, formula (3) simplifies to :

is preferable , if we can be sure that the trend

does not change during the sampling. The
choice should be guide d by the user' s know­

ledge of the appli cation and supported , if

necessar y, by experime ntation.
2. Fit a straight line to the n data points using the

LS method. Let a=Y MSE be the correspond­
ing estimate of a with n - 2 deg rees of freedom

(d!) .
3. Compute the predi cted value , Ya H , based on

the extr apolation of the fitte d LS line . Also

compute a lOO(l - u)% pre diction interval for

y,,+ 1 using the generi c formula :

(3)

hypothesized for the time being to be an out­

lier in the previously esta blished linear trend

up to time n + 2. Th e hypothesis will be con­

firmed in Step 8a or den ied in Step Sb .

(b) Based on extrapolating the st raight line

th rough points Y"+I,Y,,+! and using the pre­
vious estima te of (1 . Go to Step 8.

8. (a) IfYn+3 falls inside the pr ediction inte rval of

Step 7a but not of 7b , then we conclude that

Yn+I is an outlier and eliminate it from furt her
considera tion. Relabel data point n +2 as 11+
1, and the da ta point n + 3 as n + 2. Replace n

by n +2. We now have two more dat a points in

the prediction intervals of the current trend .

Re-estimate the slope and the inte rcept. Go to

Step 3.

(b) IfY"+1falls inside the predi ction inte rval of
Step 7b but not of Step 7a , then we conclude

that y". I is not an outli er. Begin a new trend at

Yn+I' Relabel Y" . ], Yn+"Yn +.1 as YI .Y2,y', · Set
n = 3, replace j by j + I, estimate the slope and
the intercept, and go to Step 3.

(c) If Y" TJ falls in both predi ction interva ls.
change time index from n to n + 1. Then go to

Step 7. That is, repeat Ste p 7 onwar d for the

next data point Yn+ ~ '

(d) If Yn+.1 falls outside both pred iction inter­
vals , change the time index from 11 to 11+ I.
Then go to Step 7, Th at is , rep eat Ste p 7

onward for the next data point Yn. J • and so on
unt il the dilemma is resolved .

4. (a) If Y,,+ I falls inside its pre diction interval ,

add this data point to the set Yl,Yl , ... , y,,,
replace n by n + 1, and go to Step 2.

(b) If y,,+] falls outside its prediction interval,

Yn +1 may be an outlier or a cha nge of trend may

be indicated. To solve the dilemma go to Step
5.

5. Co nsider the next measur em ent Y,,+2' Check
whether it falls with in its pre diction interval
using th e LS line based on the first n dat a
points. If Y,,+2 falls outside its prediction inter ­
val, go to Step 6; otherwise go to Step 7.

6. Co nclude that a new trend has sta rted .
Advance the trend index by one to j + I .

Relabel the time points n + 1, n + 2 as 1, 2 and

Yn+h Y,, +2 as Yl,j'2, and fit a stra ight line to
these two points. Use the previo us estimate of
a and its df and go to Step 3.

7. Compute the following two prediction int er­
vals using the general formula, equatio n (3) for

y"+3:
(a) Based on the LS line fitted to data points

YI, '" ,Y,,+2, i.e . by omitti ng Y,,+I, which is

A close exa mination of the above algorit hm sug­

gests that whenever a measurem ent falls outside its

pre diction inte rval, the algorithm slightly favors the

hypothesis that it is the start of a new trend An

alternative algorithm is to favor the hypothesis that

it is an out lier. Yet another alternative is to use a

votin g rule . In our experience these refinem ents do
not dr astically alte r the performance of PLOT

Performan ce eoaluation

Co mputer run s wer e made in orde r to evalua te
the effec tiveness of the PLOT algorithm and to
compare its perfor mance with the SOT algor ithm.
Table 2 summarizes the results of 5 runs using noise­

free synthetic data . These data were taken from

models of increasi ng complexity. In Ru n I the data
were taken fro m a constant st raight line with r = RO.

In Run 2 the und erl ying model was a ramp function

(y = 20 + 1.2x), In Run 3 the model combined a
ramp with a step (y =KO+ 1.2x. x ~ 2)tJ : y = 420,
x > 250) . A sinusoida l mod el was used in Run 4
(y= lO+sinx), Finally, in Run f the model com­
bined all four features listed above. These rum were



134 R. S. H. M AH et at.

Tahlc 2. Synthetic data (without noise)

Data Inte rvals H H

Run Method points SSE R' (J) 21+1 31+ 1

PLOT 150 0 1.0 1
SOT 0 1.0 1

2 PLOT 300 0 1.0 1
SOT 0 1.0 1

3 PLOT 500 0 1.0 2 10:) 71.4
SDT 0 1.0 2 100 71.4

4 PLOT 500 247.2 0.0111 2 100 71.4
SOT 504.1 - 1.0165 2 100 71.4

5 PLOT 750 3£-4 I.ooon 126 2.8 1.8
SOT 8£ - 4 i.eeoo 126 2.8 1.8

designed to verify the proper functioning of the
programs.

Runs 6-10 used the same models as Runs 1-5
except for the inclusion of noises which were taken
to be Gaussian noises with standard deviation of
one. They also differed from the earlier runs in the
number of data points. All these runs were made at
a = 0.05. The result s are shown in Table 3.

Finally, Tables 4 and 5 present some typical
results obtained on industrial plant data using PLOT
and SDT methods, respectively. These data were
taken on ten measured variables associated with one
industrial plant , sampled at one minute intervals,
over a time horizon of approxiately 4500 min.
Similar results were obtained using data from two
other plants. In these runs the outliers were recog­
nized and eliminated by PLOT, but not by SDT.
The estimated OJwere plotted (but not presented in
this paper because of the space limitations ). They
were unimodal and approx imately symmetric . A
majority of these jumps lie within the ± 30.

Analysis of industrial data and display of trend
line may be carried out in batch or online modes
depending on the applicati ons. To give the reader a
feel of the data and trend lines, the 4491 raw data
points used in Run ClO are displayed in Fig. 3a. A
window is provided for selecting any subset of con­
secutive data points for enlargement and display, as
illustrated in Fig. 3a and 3b. In this illustration 80
data points beginnin g with t = 1461 are selected.
Opt ions are provided for displaying, using color

graphics, observed and predicted data points, and
trend lines with or without data points. At appropri­
ate levels of scale up outliers are marked with a cross
(one outlier in Fig. 3b). Finally, the results are
summarized in a separate file and used to construct
Tables 4 and 5.

Discussion of results

Although noise-free data were used in Runs 1-5,
in reality random errors were almost always present
as a result of rounding off digital representations. It
is important tbat 0 be set to a small value which is of
the order of the maximum value of rounding off
errors in the computation, say 6 or 7 significant
figures in 32 bit computation. Setting 0 = 0 may
create art ificial trends and intervals and result in a
reduction of data compression rat io . Th is remark is
part icularly relevant for Runs 1-3.

The coefficient of determination , R 2, is a general
measure of how well a trend line fits the data . On
the other hand, lack of fit is indicated by SSE . An
interesting point to note is that there is a trade-off
between the data compression ratio and the coef­
ficient of determination. In order to comp are the
two method s we adjusted E in SDT so that the same
data compression ratios (column 8 in Table 3, and
column 7 in Tables 4 and 5), or the same number of
interva ls (see column 6 in Table 3, and columns 6 in
Tables 4 and 5) are obtain ed. For each set of data we
first applied the PLOT algorithm and computed the
data compression ratio . Next, we applied the SDT

Table 3. Synthetic data (with noise)

Oata H H Outliers
Run Method points SSE R' Intervals 21+ I 31+ 1 detected

6 PLOT 300 247.1 0.0283 5 27.3 18.8 8
SOT 607.8 - 1.1054 6 23. 1 15.8

7 PLOT 500 39 1.3 I .(K)()() 7 33.3 13.6 12
SOT 725.0 i.eoee 7 33.3 13.6

8 PLOT 500 384.6 0.9999 8 29.4 20 12
SOT 656.9 0.9999 8 29.4 20

9 PLOT 500 469.2 0.2575 27 9.1 6.1 19
SOT 938.6 -0 .2798 27 9.1 6.1

10 PLOT 750 664.2 0.9999 15 24.2 16.3 21
SOT 1611.4 0.9998 17 21.4 14.4
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Fig. 3. Graphical display of process data points and trends using PLOT

algorithm to achieve the same data compression
ratio by adjusting the value of E. Finally, we com­
puted and compared the value of SSE (see column 4
in Tables 3, 4 and 5) and the coefficients of determi­

nation, R 2 (see column 5 in Tables 3, 4 and 5) for the
two methods. The results in Tables 3. 4 and 5
showed PLOT to be consistently superior with the
largest discrepancy in R 2 for the two methods
(0.7292 vs 0.0855) given by Run ClO for a = 0.01.

Shrewd readers will notice the negative values of
R 2

, and wonder how such values can occur. For a
value of R 2 to be negative SSE must be greater than

SST. This can happen if the trend line is horizontal.
and the data points in the interval are all above or
below the trend line. a situation which can he readily

demonstrated with the SDT algorithm. In fact. this
is a critical flaw in the SDT algorithm. It can be

eliminated by applying LS regression to all the data

Table 4. Industrial plant data using PLOT

Outliers CPl·
Run Method (l SSE R' Intervals I' detected Is)

Cl PLOT 0.01 3.9363 09708 96 155 0 14h
PLOT 0.05 0.0037 1.()(XX) 738 2.0 i.O
PLOT 0.1 0.(Xl25 1.0000 759 211 7 .11

C2 PLOT (UII (UX)6 I.O(XXl 429 3.5 II :\.0
PLOT 0.05 0.0012 I.OO{K) 452 3.3 II 2,ZJ
PLOT 0.1 0.0012 IO(){K) 454 :\3 I '1l,

C3 PLOT 0.01 155.3 0.9985 ]lO 13.h 7 q.

PLOT 0.05 23.5 0.9998 3311 4.5 18 ), J

PLOT 0.1 8.5 0.'!'!9'! 571 23) 3'! 48
C4 PLOT 0.01 U.OOO2 0.'!863 '! 1611.4 I 041

PLOT 0.05 o.oon 0.9952 15 97.6 2 36 ...
PLOT 11.1 IU]{K)1 O.'!964 17 86.4 I 34 1

C5 PLOT 0.01 3281.5 0.9569 32 46.3 14 46.6
PLOT 0.05 686.2 O.'!'!O'! 155 9.6 60 IIi'
PLOT 0.1 404.4 0.'!'!47 295 5.1 III 7 I

C6 PLOT 0.01 7728.8 0.'!706 43 34.5
,

22-
PLOT 0.05 596.4 0.9977 469 32 22 48
PLOT 0.1 209.1 0.9992 767 2.11 44 4.'

C7 PLOT o.m 284.9 0.9990 69 21.6 13 1\.2
PLOT 0.05 107.9 0.9996 222 6.7 47 7 I I

Pl.OT 11.1 51.8 0.9998 431 '5 III ;;; -,'

C8 PLOT 0.01 999.2 0.9792 37 40.1 .' 1'!5
PLOT 0.05 77.7 11.9984 343 4.4 III 51l
PLOT U.1 27.6 11.9994 584 2.6 22 4.~

C9 PLOT O.1l1 115.5 0.9656 45 33.1l 21"
PLOT UU5 24.7 0.9926 246 6.1 24 h ..1
PLOT 0.1 11.7 11.9965 426 ,5 47 S 4

CIO PLOT 0.0] '!942.9 U7292 42 3:'>4 I
PLOT 0.05 2593.8 0.9294 174 8.6 ..
PLOT 0.1 47.2 09987 930 1.6 jJ 4.:.
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Table 5. Industrial plant data usingSOT

Run Method E SSE R2 Intervals p

C1 SOT 0.0716 8.3614 0.9381 96 15.5
SOT 0.0039 0.0032 i.ecoo 737 2.0
SOT 0.0031 0.0014 ooסס.1 759 2.0

C2 SOT 0.005 0.001 i.oon 429 3.5
SOT 0.0018 0.0002 i.coeo 452 3.3
SOT 0.0017 0.0002 t.oon 454 3.3

C3 SOT 0.5254 764.6 0.9928 110 13.6
SOT 0.1839 n.4 0.9993 330 4.5
SOT 0.1057 22.9 0.9998 570 2.6

C4 SOT 0.0006 0.0008 0.9462 9 160.4
SOT 0.0004 0.0003 0.9833 15 97.6
SOT 0.0003 0.0002 0.9845 17 86.4

C5 SOT 3.0443 11494.0 0.8508 32 46.3
SOT 1.1589 1691.7 0.9780 155 9.6
SOT 0.8340 1050.0 0.9864 295 5.1

C6 SOT 3.7882 27854.1 0.8942 43 34.5
SOT 0.8717 1650.0 0.9937 469 3.2
SOT 0.4870 443.5 0.9983 768 2.0

C7 SOT 0.7723 978.0 0.9967 70 21.3
SOT 0.4096 288.9 0.9990 222 6.7
SOT 0.2653 115.7 0.9996 435 3.4

C8 SOT 1.3117 3717.2 0.9229 37 40.1
SOT 0.3226 233.4 0.9952 343 4.4
SOT 0.1882 75.7 0.9984 584 2.6

C9 SOT 0.5182 486.8 0.8549 45 33.0
SOT 0.1874 71.2 0.9788 246 6.1
SOT 0.1259 33.5 0.9900 427 3.5

CIO SOT 4.1436 33586.6 0.0855 45 33.0
SOT 1.8375 8780.9 0.7609 174 8.6
SOT 0.2363 97.7 0.9973 930 1.6

points in each interval once the interval is deter­
mined.

Another interesting point is the sensitivity of SOT
to the assumed value of E. Figure 4 shows trend
lines obtained for two different values of E for the
same run 12 (details omitted for brevity). The
results can be strikingly different, and no guideline
is given in the literature for picking a value for E.
With PLOT the standard deviation a is a measure of
process variability and is estimated directly from
process data. Moreover, unlike SOT, the outliers

20 .0 -

QJ

-g ' 9. 5

'­
o
>

' 9 . 0

Fig. 4. Effect of E on the trends obtained using the SDT
method.

are recognized and stored separately. They are left
out of further calculations by PLOT. One conse­
quence is that the performance of PLOT is much
more robust. Inability to cope with outliers can also
give rise to negative values of R 2 for SOT.

Normally, one would expect the number of out­
liers declared by the algorithm to increase with the
increase in a . However, occasionally this is not true
for closely packed data points, especially, if there is
a regular pattern, such as step changes. See, for
instance, Run C4.

Two other observations should be made before
we close. First , although we developed the PLOT
algorithm on the basis of constant variance, a slight
modification may be made to allow for slow drift or
change of its value. Instead of pooling the data
points collected up to the current sampling period to
compute the variance , we could limit the pooling to
a certain number of preceding sampling periods or
trend intervals. In this way we can use a moving
window to capture a gradual change of process
variability. Second, the value of a, the level of
significance, may be adjusted to achieve the desired
level of data compression ratio. A small value of a
would give rise to large prediction intervals, and a
tendency to ignore the details. A large value of a
would provide the details needed in short term
analysis and applications . This is a very powerful
tool which allows a user to focus the data to be
displayed and analysed on a scale of his own choice
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while maintaining a statistical consistency. Typical
values of a would range from 0.01 to 0.1.

PLOT is designed to operate online, but is also
readily applicable to batch (historical) data. For
online applications computing time requirement is
an important consideration. The exact computing
time depends on the number of outliers as well as
the number of data points. For Runs Cl through
CIO computing times ranged from 3 to 64 CPU s to
process 4500 data points on a PC 486/33 with a math
coprocessor. These values are tabulated in the last
column of Table 4. The average CPU time per data
point is only in the order of a millisecond, which is
much smaller than the data sampling period. It is
expected that this computing time can be further
reduced, if the computation is streamlined.

CONCLUSIONS

A new computing method is proposed for online
data compression and trend recording. The method,
Piecewise Linear Online Trending (PLOT), has
been implemented on a Sun Workstation and on a
PC, and evaluated using synthetic and industrial
plant data. It performs significantly better than the
two existing methds which are commonly used. It is
based on statistics, and is readily applied sequen­
tially to real time data as well as batch historical
data. Unlike these methods, it adapts to process
variability and noisy data, recognizes and eliminates
outliers, and is robust even in the presence of
outliers. While it is slower than the SDT algorithm,
its computing time requirement is easily accommo­
dated in process applications. In addition to the
trend parameters, outliers and process data variabi­
lity (in terms of a) are also readily stored and
available for subsequent analysis.

NOMENCLATURE

H = Number of sampling periods in the time horizon
under consideration in computing the data com­
pression ratio

i = Generic index with no fixed specific connotauon
J= Index for trending interval
J = Number of trends or trend intervals in the time

horizon under consideration in computing the
data compression ratio

MSE = Mean square error, or the ratio of SSE over di
n = Index used to keep track of the number of dati

points in a trend interval
N = Generic index for the number of data points In

computing prediction interval for y
R 2 = Coefficient of multiple determination,

i.e. 1- SSE/SST

SSE = Error sum of squares =2: (y, - ,v,)'

SST = Total sum of squares = 2: (y, - .1')'

t = Index for sampling period in the time senes 1'01
process data

x = Generic index for sampling period in the regres
sion of y vs x

v = Process data measurement
); = Fitted data value or estimate of y
y=Sample average of observed values y

Greek letters

a = Level of significance
e = Measurement error
If = Expected value of y
v = Degrees of freedom
a= Standard deviation of measurement error
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