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ABSTRACT

A fixed effects one-way layout model of analysis of variance
is considered where the variances are taken to be possibly unequal.
Conservative single-stage procedures based on Baner jee's method
for the solution of the Behrens-Fisher problem are proposed- for the
following multiple comparisons problems: 1) all pairwise compari-
sons with a control population mean, and 2) all pairwise comparisons
and all linear contrasts among the means. Since these procedures
are likely to be very conservative in practice, approximate proce-
dures based on Welch's method for the solution of the Behrens-Fisher
problem are suggested as alternatives. Monte Carlo studies indicate
that the latter are much less conservative and hence may be better
in practice. Both these sets of procedures need only the tables of
the Student's t-distribution for their application and are very
simple to use. Exact two-stage procedures are proposed for the
following multiple comparisons problems: 1) all pairwise compari-
sons and all linear contrasts among the means, and 2) all linear

combinations of the means.
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1. INTRODUCTION
Consider the following one-way fixed effects model of analysis

of variance
= (1.1)
Xyg =g Toygy
where for j =1 22500050y and i = 1, N.....w. all the i are inde-

pendently distributed and ey ~ zne.q ). The main purpose of the

present paper is to give certain Ewn»mwm comparisons procedures
concerning the populations means ., which, although somewhat con-

servative in nature, are very easy to apply in practice.

When the QM are equal but the common value of the variance is
unknown, single-stage procedures have been developed for the follow-
ing multiple comparisons problems:

Pl: Joint confidence intervals for all differences Uy T oy

l<sisk 1) where we regard T the mean of the control popu-

lation.
P2: Joint confidence intervals for all pairwise differences

by - :.uﬁ. <i, j <k, i # j) and all linear comstrasts Mwl 15444

t tisfyin,
where Cpa€prmensCy are set of arbitrary real constants sa ying

a1y " O

P3: Joint confidence intervals for all linear combinations

Mrlw auy where mw.»n.....mr are set of arbitrary real constants.

i
The original work in this area is due to Dunnett (for Pl), Tukey

and Scheffé (for P2 and P3); Miller (1966) is an excellent con-

solidated reference for all these procedures.

When the ow are unequal and unknown the problem of multiple

comparisons using single-stage procedures becomes relatively diffi-

cult. In the case of two populations the problem of comparison of

wq and Ko is well-known Behrens-Fisher problem. Various approxi-

1

mate methods have been suggested as solutions to this problem; one
due to Banerjee (1961) strictly guarantees the specified confidence
level for By T ougs another due to Welch (1938) only approximately
ees the confidence level and involves Student's t with random

guarant
Both these methods are sketched

number of degrees of freedom {(d.£.):
In Section 3, we develop conservative

briefly in the next section.

= SRR H B
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single-stage procedures for Pl and P2 by making use of the method
developed by Baner jee and Slepian (1962) type bounds. As alterna-
tives to these, we propose approximate procedures based on Welch's
method in Section 4. 1In Section 5 we give some Monte Carlo results
which indicate that the procedures based on Banerjee's method are
too conservative compared to the procedures based on Welch's method.
We give some recommendations for the use of these procedures in
practice. As a bibliographical note, we mention here that for P3
single-stage procedures have been given by Banerjee (op. cit.)
(conservative), Spjétvoll (1972) (exact Scheffé type) and Hochberg
(1976) (exact Tukey type).
approximate procedure for P2 which makes use of Bonferroni bounds
and Welch's method.

It is well known that exact solutions can be obtained for the

Hochberg (op. cit.) has also given an

Behrens-Fisher problem using two-stage procedures in the spirit of
Stein (1945); see, e.g., Chapman (1950) and Ghosh (1975). These
procedures have the added advantage that the width of the confi-
dence interval for by = W, can be preassigned. A similar two-stage
procedure for Pl has been given by Dudewicz and Ramberg (1972). 1In
Section 6, we extend this work to provide two-stage procedures for
P2 and P3. It may be noted that recently Hochberg (1975) has also
given two-stage procedures for P2 and P3. Whereas his procedures
are based on sample means, our procedures are based on "generalized"
sample means. In this paper we make no attempt to compare the twe

approaches.

2. PRELIMINARIES AND NOTATION

Throughout x uMua.._. :F will denote the sample mean based

on n, observations from zﬁtw.QMu and mm

estimate of Q..w. based on v, d.f. which is distributed independently
i L

1

will denote an unbiased

of MH" usually one would use
T wl
- xwv \Ann - 1)

i l1d.f. (L=is k). Also t,,3 Will denote the upper
B point of the Student's t-distribution with v d.f.

with cH = n
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Let us first briefly sketch the two methods due to Baner jee
and Welch for the solution of the Behrens-Fisher problem.
Banerjee's Method: The confidence coefficient of the statement

nn mN _"N mw

v, ,a/2°1 cm.o.\m 2 1/2

o A @2.1)
2

is at ieast 1 - oy. The exact value of 1 - o is attained only when

aw\qw =0 or ». This method is based on the following lemma due to

Banerjee (op. cit.):

Lemma 2.l: Let U be a chi-square random variable with 1 d.f. and

let vy be chi-square random variables with vy dife (1 <1 2%,
which are distributed mutually independently and also independently
of U. Let »» 20 (1s4isk)be a set of constants such that

M_MIH»» = 1. Then

—n
plus Ze2 o0V /)l el e
— i=1 i’ .

Welch's Method: The confidence coefficient of the statement

|| N N QN
by -up € X, -X, * naﬁ.a\naw?w +55/n,)7 7] (2.2)

is approximately 1 - g. In (2.2)

2 2 2
X Amu.\aw + mn\umu

fss 2-3)

4, 2 4, 2 r
EH\nH?H - 1) + mm\nmﬁnu -]

Note that v,  is random and arbitrary (not necessarily an integer).

12
The value of t. can be found by interpolating in the t-tables.
CHN.Q\N

Wang (1971) has extensively studied Welch's intervals and found that
the actual confidence levels are fairly close to the specified value
1-a.

To develop the multiple comparisons procedures based on Baner-

jee's method we need the following additional lemmas:
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Lemma 2.2 (Slepian (op. cit.)): Let .mﬁ......m_nauu......nxv be stan-
dard normal random variables with the correlation matrix Hnﬂ #33 ..

If % = .;C l <1< j <k, then for any set of real constants

.w“_....:m.r. we have
PrlY, s aeenYy Salz Pz s 50000z S a .

Lemma 2.3 (¥iddle (1967): Let ¥),...,Y, be standard normal random
variables with an arbitrary correlation matrix mn.._”_. Then for any
i

set of nonnegative constants mHv....mx.. we have
mi. g
= =
_4_._ = mu......:w_ 1 J_L = w_l*_.mu:w‘»_ = wﬁu.

For the next lemma, we need the following definition due to
Esary, Proschan and Walkup (1967).

Definition: Random variables Am.ﬂn......mr are said to be associated
if for all real valued nondecreasing functions P and v of k argu-
ments we have

OO<AHQH-.-Mﬁv- GA%H-.-NWVV £ 0.

Nov in the following lemma we have a generalization of a result
obtained by Kimball (1951).

Lemma 2.4: Let Nu.....ﬁx be independent real valued random variables

and let eu ?H.....xwu (1 <¥zp)be nonnegative real valued functions
each of which is nondecreasing in each of its arguments
x_.Q < i < k). Then denoting J = a..uonu......x#v we have

m:m_.«.u z ﬂ—mﬂmuu.

j=1 3 j=1

Proof: By Theorem 2.1 of Esary et al. (op. cit.), xw.....w_n
are associated. Then by property P4 of Esary et al. (op. cit.)
¥y5++.,¥ are associated. Now let QQH....D‘@V = ¥, and

P
= TTP
fﬁ.... ...mmv .:..Tnd. Then # and ¥ are nondecreasing functions

o.m AH. ....M_u mnmrmunmw%nnowvocmﬂnnwonoa property P4, they are
associated. Therefore
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nodﬁu?_......ﬂuv. iQw......mu: z0
= m_..w_. z e{y, )E( j.mt_.
unw i=
Repeated use of this argument gives the final result.

3. SINGLE-STAGE PROCEDURES BASED ON BANERJEE'S METHOD

3.1 Multiple Comparisons with a Control (Problem P1)

Consider the model in (l1.1) and suppose that ™ is to be
regarded as the mean of the control population. Then the follow-

ing theorem gives the upper/lower one-sided and two-sided joint
confidence intervals for all differences ,;, - p, (1 s i sk -1).

Theorem 3.1: The joint confidence coefficient of each of the follow-
ing families of confidence intervals is at least 1 - g if

1/ (k-1
gL~y N,

(1) Upper one-sided: PFor 13 isk -1,

e =g HE =% + yus, (3.1)
: 4 k x.r. H o
(ii) Lower one-sided: For 1 i =k - 1,

nn mN nN mm

_ = du.vm i (.F.m k 1/2
W - N + ) i (3.2)
A %.W u_. .
(iii) Two-sided: For 1= isk - 1,
2 2 2 2
_ o~ SeeSi Sy 2%k g,
by T € X 2K *( a -+ o )71 (3.3)

Proof: We shall give the proof only for (3.l1); the proofs of
(3.2) and (3.3) are similar. In the proof of (3.3) we have to use
Lemma 2.3 ($iddk inequality) instead of Lemma 2.2 (Slepian inequal-
ity); the latter is used in the proof of (3.l1) below. Let P denote

the actual confidence coefficient for (3.1). Then we have
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NNNN

t S <
o v, ,871 W —ﬂ
P= wﬂﬁ.rr - F i + _Cr \

1 ) Lxd -

At n; o (1sis<k-1)
(3.4)
ﬂ”ﬁ-mmw HJNJA mmm QN QN
= Pr{z, s [¢( - - it + B2, oo .
g ng o Anu.. n.wvH (1si<k - 1)),

where for 1 < {i <k - 1,
2T X -Gy e, ::Q /n +q~\=r”_

are mnmannun :o...E.H random <b1.uvwmu which are distributed indepen-
- 2

dently om Ga.mn.....mwu. By conditioning on mn and noting

that corr mN&.Nuu b3 o for all i .1 j, we can use Lemma 2.1 to obtain

from (3.4)

2 2 2
k-1 S5 ._mmM t mmr w n
.H_._:, o, *"ar 2: e
- mﬁ.ﬁ.ﬁ Gu.....m 1} (say), 3.5y

i=1

where §(-) denotes the standard normal cdf and the expectation in

T 2 2
(3.5) is w-r n.m. . Now we note that mH.....mw are independently

distributed and f.....fwaw are nondecreasing functions of

2 2
m.._......mw. Therefore by applying Lemma 2.4 we obtain

2 2 2 2
k-1 n,:..mmw ncr.mm QN u H\ )
P= PriZ, = [¢ .
.MH. ﬁ i _”/ b.H o FF v\ﬁﬂ +
- (3.6)
= N 2 2
sz + vaeigg fah G/ A=) 5 00%)

- 2 2
where A ﬁqu..\nwv\nqu.\uw + uw\nw.v. We nota ‘that Am»\uﬁvn o s

2
Pendently distributed as xdw\eu_. for 1 <i < k. Applying Lemma 2.1
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we obtain from (3.6)
k-1 -
P= JT(l/2+ (1 -28)/2]1=(L-8) 21-a.
i=1

Hence the theorem is proved.

3.2 Pairwise comparisons and Linear Contrasts (Problem P2)

Theorem 3.2: The joint confidence coefficient of all confidence

statements for 1 < i < j <k,

= 2 2 2 2
= . (- + 2
_.._.H Fu € Unh Nu H. L& :.H u.u
2/k(k-1
is at least L ~g if g =1- (1 - @) ( v.

Proof: The proof is similar to the proof of Theorem 3.1 and

is hence omitted.
Corollary: The joint confidence coefficient of all confidence

statements,
2 2 2 2
nCH.m\NwF ncu-m\Nmu 1/2
25 T e (e +—1—)
k k iee_ jen, i i
MnHFHm _..Mnm.M.HHM K 1]
i=1 i=1 Z leyl
1=1
(3.8)

for all contrasts (Cj,..=sC; MMuwnw = 0) is at least 1 - oy if
1 - (- QVN\rmw-Hv. In the above mr o m»unu > 0} and

g =
"= munnu < 0}.
Proof: Follows from Lemma 3.l of Hochberg (1974).

4. SINGLE-STAGE PROCEDURES BASED ON WELCH'S METHOD

In view of the conservative nature of the procedures based on
Banerjee's method, we propose some approximate procedures based on

Welch's method as alternatives to the previous procedures. The
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formulae for the confidence intervals based on Welch's method are
" f rrel 2 2 2 1/2
obtained by replacing .ﬁﬁncn.mmuv\unu + Rncu.mmuv\nu_g terms in
the appropriate previous formulae ((3.1) - (3.3), (3.7) and (3.8))
by &5 [G53/ny) + (5571t
ij,p .
with obvious changes in the notation.

where mnu is obtained from (2.3)

Thus these confidence intervals are in the same spirit as the
previous ones (lower bounding a joint probability by the product
of the individual probabilities) except that Welch's method is used
for approximating the individual probabilities. Note that the joint
confidence coefficient of these confidence intervals would be only
close to the specified value of (1l - @) and in some situations may
be less than (1 - a).

5. APPLICATIONS AND MONTE CARLO RESULTS

First we shall illustrate the use of the proposed procedures
by means of an example.
Example

We consider the following data analyzed by Hochberg (1976).
We have k = 4, n = (6,6,6,6) and §° = (178,60,98,68). It is desired
to obtain 957% joint confidence intervals for all pairwise differ-
ences By ot Fuﬁw = f < = 4).
(i) Conservative intervals based on Banerjee's method: We obtain

g =1- n.QMVH\a = .0085 and nm«.oopmm = 4.20 (from Pearson and

Hartley (1956), p. 132). Thus we obtain the following intervals

for all six pairwise comparisons:

1/2

by - ny € X, -m_HI\wuap,rme ] Asi<isé). (5.1)

(ii) Approximate intervals based on Welch's method: Using (2.3)

-~

12 = 8.026, Y13 = 9.224, Yig ™ 8.328, Va3 = 9.455,

anb = 9,962 and aub = 9.692. By doing linear interpolatioms in

Table 3 of Pearson and Hartley (op. cit.) we find for

g/2 = .00425, ta. = 3.4642, ta = 3.3344, ta
(.HN- ¢HU.W\N GH}«W\N

we obtain 4

8/2 =3.4300,
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ta = 3.3145, t. = 3.2709 and ta =3.2%1. The |
...Nu_m\n ...Np.m\N ¢u&.m\u

confidence intervals are then given by the formula: _

ta
9, ,.B/2
- = 14* 2 2,1/2
g : - + lsi< j=4). (5.2)
ng -y € By - T, 2—L—gy + 5" 1 j _
For the same problem Hochberg (1976) has given the following
two sets of approximate confidence intervals: ,
€ X -X, +2 max(s,,8,)] (LS i<js4). (5.3)
(141) py - by € Xy - X, 27 1°5;
This is obtained by applying the result of Theorem 2.l of Hochberg
(1976) regarding the confidence intervals for all linear combina- _
tions of the ;'s and approximating the augmented range distributionm. )
(See Miller (op. cit.) for the definitions of these distributions.)
2,1/2

@V g -w € _mw-mh.n.ux.ﬂumam+m% ] (1si<js4). (5.4)

This is obtained by using Bonferroni bounds and the Welch approxi- ,,
mation.

In this specific example we find that (5.1) gives the widest
confidence intervals, (5.2) gives shorter confidence intervals than
(5.3) in all the comparisons and than (5.4) in 4 out of 6 compari-
sons. Also (5.4) gives shorter confidence intervals than (5.3) in
4 out of 6 comparisons. Thus it would appear that the intervals
based on Baner jee's method are most conservative. However one
must bear in mind that only for these intervals it can be rigorously
proved that the specified confidence level is guaranteed. They are
also easiest to compute and need only readily available t-tables for
their application.

Monte Carlo experiments were performed to study the actual
confidence levels attained by the multiple comparisons procedures
based on Banerjee's method and Welch's method. The problem of
constructing joint confidence intervals for all pairwise differences
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of the population means was considered for k = 4, 6, and 8, and

1 - =0.90, 0.95, and 0.99. For each combination of values of k

2

and 1 - o, various configurations of values of 9y and n, were

i
studied. For each case, for 1 - ¢ - 0.90 and 0.95, N = 1000
experiments were carried out and for 1 - o = 0.99, N = 2000 experi-
ments were carried out. 1In each experiment, k independent pairs

= 2 2 2
of values of Xy i zﬁo.n...\nwv and §; 9y

ated and the confidence intervals were computed for both the pro-

xm -H:nw - 1) were gener-
i

cedures for all pairwise differences By "oy (lL=i< js k). The
necessary values of the upper points of the t-variables were com-
puted by linear interpolation in Table 9 of Pearson and Hartley
(op. cit.). For each procedure an estimate of the actual confi-
dence level was found by calculating the fraction of the total
number of experiments in which all the confidence intervals covered
the corresponding pairwise differences by "By (1si< js k). The
results of the experiments are given in Table I.

We find that both the procedures guarantee the specified con-
fidence levels for 1 - o = 0.90 and 0.95. But the procedure based
on Welch's method fails to guarantee the specified confidence level
of 0.99 in some cases. (The estimated confidence level is less
than 0.99 by a statistically significant amount.) Apparently this
occurs vhen the configurations of QM and n, are unbalanced, i.e.,
more observations are taken on the populations having smaller vari-
ances and vice-versa. We also note that the procedure based on
Banerjee's method is highly conservative.

Based on this Monte Carlo study and previous theoretical work
we conclude that the procedures based on Welch's metnod may be
better in practice (give shorter confidence intervals having approxi-
mately the specified confidence level). The procedures based on
Baner jee's method may still be useful in practice for short cut and
quick computations and for severely unbalanced configurations of
Qm-cbu.:mm. Hochberg's procedure used in (5.4) would be unattractive

in practice because of its trial and error nature. To implement his
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TABLE I
1.2/
Resulrs of Monte Carlo Experiments——
Estimaces of confidence levels

” N - - =

k Opseeed Bpreeeoy I = .90 L= = .95 I==.39

B W B W 3 W

& 1,1,1,1 $.5:5.3 .978 .930 .992 .966 .9990 .9915
1.2.1,1 3;:7:9:11 .962 .925 .986 .959%  .99953 .9Gi5
1,2,3,4 3.5.5.3 L9710 .926 .992 .964 1.0000 .9960
1,2,3,4 5,.7.9:L1 .970 .938 .988 .970 1.0000 .9930
1,2,3,4 11.9,7,5% .950 .915 .98% .954 .9985 .9880
1,4,7,10 5,5,5.5 L9701 .927 .991 .960  .9995 .9895
1,4,7,10 5,7,9,11 .968 .930 .984 .968 L9995 .9975
1,4,7,10 11,9,7,5 .959 .925 .980 .957 .9955 .9830

8 Telalililyl e 0 Sy W 1V ¢ .981 .927 .993 .965 L9995 .9950
1,1,1,1,1,1 7,9,9,14,11,13 .961 .927 .987 .955 .9990 .9950
1,2,2,3,3,4 7 % o M .978 .933 .990 .967 L9995  .9915
1,2,2,3,3,4 7.9,9,11,11,13 .973 .923 .987 .966 .9990 .9935
1,2,2,3,3.4 13,11,11,9.9,7 L961 .928 .987 .958  .9975 .9930
1,4,4,7,7,10 7:2.2:75757 .969 .95 .988 .966 1.0000 .99%40
1,4,4,1,7,10 7.9,9,11,11,13 .973 .936 .987 .964 .9965 .92915
- 1,4,4,7,7,10 13,11,11,9,9,7 L961 .924 .943 .958 .9960 .9870

8 1,1.1,1,1,1,1.1 9,9,9,9,9,3%,9,9 L977 .935 .997 .969 - .999% .9930
1,1.1,1,1,1,1,1 9,9,11,11,13,13,15,15 .979 .%4& .990 .972 L9990 .9925
1,1,2,2,3,3,4.4 9,9,9,9,9,%9,9,9 .980 .940 .9% .974 .9980 .9935
1,1,2,2,3,3,4,4 9,9,11,11,13,13,15,15 .971 .939 .939 .962 1.0000 .9935
1,1,2,2,3,3,4,4 G 15,13,13,11,11,%9,9 .965 .925 .98% .962 L9975 .9915
1,1,4,4,7,7,10,10 +9:9,9,9,9,9 .569 .929 .987 .962 .9990 .9895
1,1,4,4,7,7,10,10 o u 11,11,13,13,15,15 .978 .%9 .988 .974 .9985 .9925
1,1,4,4,7,7,10,10 15,15,13,13,12,11,2,9 .966 .943 .98 .965 .9985 .9920

1. B = Multiple comparisons procedure based on Baner jee's method.

2. W = Multiple comparisons procedure based oo Welch's method.

procedure used in (5.3) in practice, would require tables of the
augmented range distribution (or for approximate purposes, the
range distribution) of t-variables for all possible combinations
of vy etV which are commonly encountered. The difficulty of
constructing such tables would inhibit the application of this

latter procedure.
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6. TWO-STAGE PROCEDURES

In deriving two-stage procedures we use the following basic

result,

HhuﬁﬁmH (Stein (op. cit.)): ﬁ»nN (£ = 1,2,v.:) ba £.0.d.

N(,o v random variables. Let n be a fixed nonnegative integer

2
and let S” be an _.Sgnumn_ estimate of QN. based on v d.f., distri-

buted ind
uted independently of uwlw i and x “_..x:+ yeess If a positive

integer N satisfies

NZmax fn +1, [(5/d)%])

where d > 0 is an arbitrary constant and [x] denotes the smallest

int =
eger = x then there exist real numbers >H.>~.....>z such that

N

=1 and s2 T a2 =42,

N
A, = ... = A, ZA
i

1 n i

i=1 i=]
Further ﬁM_—wnH X - p)/d has a Student's t-distribution with y d.f.

6.1 Pairwise Comparisons and Linear Contrasts (Problem P2)

In this case the experimenter may have one of the following
goals for specified values of constants d > 0 and 0 < o < 1.

Goal I: Establish joint two-sided confidence intervals for all
pairwise differences Wy T My (1 £i< j<k)of width (for each pair-

wise difference) = 2d and overall confidence coefficient = 1 - o

Goal II: Establish joint two-sided confidence intervals for all
contrasts 2, ¢, Where ¢ = (c;,..0uc)) € On_.m.m%w“ N.Hﬂwnw =0,

Mwn.lu.wnw_ = 2} with width (for each such contrast) = 2d and overall

confidence coefficient = 1
Let mn_?u......cwv denote the upper g point of the range

- max min .
Nﬁnt ——— Tkt ncu ke of k independent Student

1 % i
t-variables with Vpseeeav d.f. which are denoted by t ,...,t

Y1 Yk
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respectively. Hochberg (1976) has tabulated the values of

£ ?_......cru when vy L. = Vi =y (say), ¢ = .05, .10 and for

selected values of v. If the experiment is a designed one--which

is usually the case when using two-stage procedures, it seems

reasonable to demand that all vy be chosen equal. In such situa-

tions the difficulty of tabulating the values of mﬂ?w.....crv for
all practically encountered combinations of Ve eeavy would not be
a major obstacle in applying our two-stage procedure Ry which we

propose below. In Theorem 6.1 we show that ww guarantees the ful-

fillment of Goals I and II.

1) 1In the mwumn stage take independent observations

C. £j<n u from zo._.p.q ). Let mm denote an unbiased estimate

Om Qm based on v d.f. (1 ¢ i < k) which is distributed indepen-

ently of M‘anmﬂ: and X, L., +H.Nw a 4o 0o BEC.

Procedure m.w

2) Let N, = E_ua +1; m ?_H.....cwu\m 1}. Take man»nuonh_.

independent observations N: nn +1< 1< z ) from X Ao._.u..u.wz_.nwmwv
Choose real numbers .»E (l< =< ZHV mbnwumﬁnm

N z

A, = A o =1, and s> M.> = aN\mn? )
e e 2 3y ’ H-n.- 3
il ing .._l_. _..u i .,_l_. a

for l<ick.

and compute generalized sample means Mu.. .wwu..pﬂxwu

3) (i) Assert that Goal I is fulfilled by the set of joint confi-

dence intervals

C.H l_._.u m ﬁMP

(ii) Assert that Goal II is fulfilled by the set of joint confidence

-X.+d] (lsi<js<k).

j -

intervals 3

Mnnwm_..Nl\,nM d]
i=1 i=1

for c € @
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Theorem 6.1: Procedure wu. guarantees the fulfillment of Goals I

and II.
Proof:

Mﬂmt_ﬁur—.um —W.lm Huu_(._—..ﬂuu

_.\w

N
= ]

- Bl (&, - u /s, Am., TR U NSRS
£=1

mD.?_H.....trv Y1i<j)

- max _ min
mu:n»uh v, stk nf s mn?u.....;..r:

=1

Hence x_. m:Hm:_.u Goal I. We have made use of Lemma 6.1 in conclud-

ing that _”mH - ﬁwv:muﬁMwabwh 1/2

as nc for 1 £ i < k in the above proof. Fulfillment of Goal II now
i

follows from Lemma 1, p. 44 of Miller (op. cit.).

] are distributed independently

6.2 Linear Combinations (Problem P3)
In this case the experimenter may have the following goal:

Goal III: For specified constants d > 0, 0 < g < 1, establish joint

two-sided confidence intervals for all ﬁ.nnpu noseu.abn»onumun 13
i=1%H
where & = ?H.mw.....m#v Fa = Tu = %w -.HIH i = 13}, with width Amon
each such linear combination) = 2d and overall confidence coeffi-
cient = 1 - 4.
w.mn mn_?_......inu denote the upper g pointof the distribution of
M\anﬂf.. where nc_......ncr are independent Student t-variables with
\EEEEEA d.f. respectively. This distribution is not yet tabulated
but Spjdtvoll (op. cit.) has given the following approximation to it:
mo.n,:.....:.rv men?.amv. (6.1)
In (6.1) mo.?.auv denotes the upper g point of the F-distribution
with k and m, dsf g
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k 2 =B 2
k-2) [ Z {v;/(w;-2) 11" + 6k T Io] (v =1/ (v;-2)" (v -4) )
£t i=1
L ’ AG-NV
R k 2
_nw, V2 v~/ o0 o -0} - pASURSH
and
- 6
- (- N\amﬁmw?w\?w - ZY¥s (6.3)

Now we propose the following Scheffé-type procedure which guarantees
the fulfillment of Goal III as shown in Theorem 6.2 below.

Procedure wm 1) Same as in NH
2) Same as in Ry with £ ?_......ﬁru replaced by (g ?H.....z.w:
3) Assert that Goal HHH is fulfilled by the set om joint confidence

intervals
k ~
T au, € TM“ a X, +d]
i=1 * =1 b
for all a € 4.
Theorem 6.2: Procedure wN guarantees the fulfillment of Goal III.

Proof:
F .W.n.. ~ Y a5 a)
Pef Tau, € [ZaX +dlYacg
gmp 17 g 1Y
i 1/2
" - ug)/s; mM%N M2y (8, (vps--ery ) Va £a]
Huw =
X g, &
=pe{| T | = (8, (vpre-e VA a; uu a E
:»nﬂ Ly i k i=1 "
k
= T 2 S
?ATHJ mﬂ?.H vl

=1 -g.
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In the second to last step above we have made use of Lemma 2, p. 63
of Miller (op. cit.).

A two-stage Tukey type procedure can be derived based on the
distribution of the augmented range

Wﬁﬂ v-.-ﬂ v " E“‘ E _n _- wﬁﬂ reee, L Vu
<._. CW lci<k ¢M vy Vie

of k independent Student t-variables nc »e++3t o« For this proce-
dure the width of the confidence ..,unmﬂst for MWor linear combina-
tion i=1 »f. would be Nuzﬁmw.....m.rv where zo..:......mwu =

- ' The details of this procedure are omitted

{7 160 %1 uma .i

for vuwﬁ ty.
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