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We address the problem of determining the therapeutic window of a drug by finding its minimum effective and maximum safe doses
(MINED and MAXSD). The MINED is the lowest dose that exceeds the mean efficacy of the zero dose by a specified threshold, and
the MAXSD is the highest dose that does not exceed the mean toxicity of the zero dose by a specified threshold. Step-down multiple
test procedures are proposed to identify the MINED and MAXSD assuming a bivariate normal model. These procedures control the type
I familywise error probability of declaring any ineffective dose as effective or any unsafe dose as safe at a prespecified level �. A new
multivariate t-distribution is introduced whose critical points are required to implement the exact normal theory procedures. Because
these critical points depend on the unknown correlation coefficient between the efficacy and safety variables, the Bonferroni method is
proposed as an alternative, which amounts to separately testing for efficacy and safety, each at type I familywise error rate of �/2. The
bootstrap versions of the exact normal theory procedures provide an approximate way to jointly test for efficacy and safety without the
knowledge of the correlation coefficient, as well as to relax the bivariate normality assumption. The Bonferroni and bootstrap procedures
are compared in a simulation study. It is shown that significant power gains are achieved by jointly testing for both efficacy and safety
using bootstrap procedures. Coded data from an arthritis drug trial are analyzed to illustrate the procedures.

KEY WORDS: Bootstrap method; Closed testing procedure; Dose finding; Familywise error rate; Multiple comparisons; Multivariate
t-distribution; Step-down procedure; Therapeutic window.

1. INTRODUCTION

Recommended doses of a drug are based on efficacy and
safety considerations. It is common for efficacy as well as
toxicity (as measured by adverse reactions and side effects) to
increase over the range of doses, although at higher doses the
efficacy may show a plateau or even a decline. These consid-
erations lead one to define a minimum effective dose (MINED)
and a maximum safe dose (MAXSD). The range delimited by
these two doses is called a therapeutic window, which con-
sists of doses that are both effective and safe. We address the
problem of identifying the therapeutic window by finding the
MINED and MAXSD simultaneously. Our approach is similar
to that of Tamhane, Hochberg, and Dunnett (1996), who con-
sidered the problem of finding the MINED, and of Tamhane,
Dunnett, Green, and Wetherington (2001), who considered the
problem of finding the MAXSD. Simultaneous tests on effi-
cacy and safety endpoints have been previously studied by
Turri and Stein (1986), Thall and Russell (1998), Thall and
Cheng (1999), and Jennison and Turnbull (1993).
The applicability of this article is limited to settings where

efficacy and safety are evaluated in the same study using pre-
determined continuous endpoints. Generally, efficacy is eval-
uated at phase II/III, whereas safety is evaluated at all phases.
Typically, efficacy endpoints are predetermined, whereas some
safety endpoints may be unanticipated (e.g., rare adverse
events). Also, many safety endpoints are of ordinal or count
type. Statistics different than the t-statistics on which the pro-
cedures proposed in this article are based must be used for
such data.
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The outline of the article is as follows. Section 2 gives the
problem formulation and a basic model that assumes that the
efficacy and safety variables follow a bivariate normal distri-
bution with unknown correlation coefficient �. Section 3 intro-
duces a new multivariate t-distribution that arises in exact nor-
mal theory procedures. Section 4 develops exact step-down
procedures. The critical constants of the new multivariate t-
distribution required to implement these procedures cannot be
evaluated, because they depend on the unknown �. Therefore,
approximate procedures based on the Bonferroni inequality are
proposed as alternatives. Another approximate way to bypass
the difficulty of unknown �, as well as to relax the bivariate
normal assumption, is to use bootstrap versions (Westfall and
Young 1993) of the exact normal theory procedures. This is
done in Section 5. Section 6 gives a real example to illustrate
the proposed procedures, and Section 7 presents a simulation
study that compares the procedures. Finally, Section 8 gives
conclusions and recommendations.

2. PROBLEM FORMULATION AND NOTATION

Let 0�1� � � � � k denote increasing dose levels used in a
dose-finding study, where 0 denotes the zero dose level (con-
trol). Suppose that ni experimental units are tested at dose
level i and let N =∑k

i=0 ni denote the total sample size. Let
�Xij� Yij� be a bivariate random variable (rv) corresponding to
the observed efficacy response xij and safety response yij of
the jth experimental unit treated with dose i. We begin by
assuming that the �Xij� Yij� are independent bivariate normal
with

E�Xij�=�i�E�Yij�= �i� var�Xij�= �2�var�Yij�= �2�

and corr�Xij� Yij�= ��

where all parameters are unknown.
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Large values of the �i relative to �0 represent high efficacy,
whereas large values of the �i relative to �0 represent high
toxicity. Let �1 ≥ 0 and �2 ≥ 0 be two specified threshold
constants for efficacy and toxicity. Any dose i with �i > �0+
�1 is regarded as effective, and any dose j with �j < �0+�2
is regarded as safe. The true MINED and MAXSD are defined
as

MINED=min�i� �i > �0+�1�

and
MAXSD=max�j� �j < �0+�2�� (1)

The corresponding sample estimates (typically with �1 =
�2 = 0) are referred to in the literature as MINED (minimum
effective dose) and MTD (maximum tolerated dose).
If there is no dose i for which �i > �0+�1, then we say

that MINED > k. Similarly, if there is no dose j for which
�j < �0+ �2, then we say that MAXSD < 1. If MINED ≤
MAXSD, then the therapeutic window is defined as [MINED,
MAXSD]. For the MINED and MAXSD to be meaningful,
all doses greater than MINED must be effective and all doses
less than MAXSD must be safe, that is,

�i ≤ �0+�1 ∀ i <MINED and

�i > �0+�1 ∀ i ≥MINED
and

�j < �0+�2 ∀ j ≤MAXSD and

�j ≥ �0+�2 ∀ j >MAXSD� (2)

This assumption is weaker than the strong monotonicity
assumption �0 ≤ �1 ≤ · · · ≤ �k and �0 ≤ �1 ≤ · · · ≤ �k, with
at least one strict inequality in each case.
The goal is to estimate the MINED and MAXSD with the

following probability requirement. Let ̂MINED and ̂MAXSD
be the dose levels estimated as the MINED and MAXSD.
Then we want

P� ̂MINED<MINED or ̂MAXSD>MAXSD�

= P�an ineffective dose declared effective

or an unsafe dose declared safe�≤ �� (3)

where � is specified. If ̂MINED or ̂MAXSD does not exist,
then we conclude that ̂MINED > k or ̂MAXSD < 1. If̂MINED> ̂MAXSD, then no therapeutic window is found.

3. A NEW MULTIVARIATE t-DISTRIBUTION

Denote by x̄i and ȳi�i= 0�1� � � � � k� the sample means, and
by �̂2 and �̂2 the usual mean squared error estimates of �2

and �2 with � = N − �k+1� degrees of freedom (df).
The normal theory procedures in this article are based on

the joint distributions of the pivotal rv’s

T
�1�
i = 
Xi−
X0− ��i−�0�

�̂
√
1/ni+1/n0

= Ui

W1

and

T
�2�
j =


Y0−
Yj − ��0−�j�

�̂
√
1/nj +1/n0

= Vj

W2

(4)

for i� j = 1�2� � � � � k. Here the random vector �U1�U2� � � � ,
Uk$V1�V2� � � � � Vk� has a joint 2k-variate normal distribution
with zero means, unit variances, and correlation structure

corr�Ui�Uj�= corr�Vi�Vj�= %ij (say)

=
√

ninj

�ni+n0��nj +n0�
= &i&j for i �= j� (5)

where &i =
√
ni/�ni+n0� and

corr�Ui�Vj�=
{−� for i = j
−%ij� for i �= j�

The %ij are known and � is unknown. Note that if all dosed
groups have the same sample size, ni = n, then

%ij ≡ % = n

n+n0
(6)

and &i =√
% for all i. Finally,

W1 =
�̂

�
∼
√
'2�
�

and W2 =
�̂

�
∼
√
'2�
�

independent of the values of Ui and Vj . It follows that
the marginal distributions of T�1� = �T

�1�
1 � T

�1�
2 � � � � � T

�1�
k � and

T�2� = �T
�2�
1 � T

�2�
2 � � � � � T

�2�
k � are k-variate t (Cornish 1954;

Dunnett and Sobel 1954) with � df and correlation matrix
( = �%ij� for 1≤ i� j ≤ k. The joint distribution of T�1� and T�2�

involves the unknown � through the correlations between the
values of Ui and Vj and the correlation between W1 and W2.
The step-down procedure SD1 proposed in Sec-

tion 4.3.2 uses the upper � critical points of the rv
max�max1≤i≤) T

�1�
i �maxm≤j≤k T

�2�
j � for 1 ≤ )�m ≤ k. The cor-

relation matrix of �U1�U2� � � � �U)$Vm�Vm+1� � � � � Vk� can be
written as [

(1 −�(12
−�( ′

12 (2

]
� (7)

where (1 = �%ij� for 1 ≤ i� j ≤ )�(2 = �%ij� for m ≤ i� j ≤ k,
(12 = �%ij� for 1 ≤ i ≤ ) and m ≤ j ≤ k, and ( ′

12 denotes the
transpose of (12. Dependence of (1, (2, and (12 on 1� � � � � )
and m� � � � � k is suppressed for notational convenience. Note
that for )= k and m= 1, (1 = (2 = (12 = ( .
We denote the required upper � critical point by g��)� k−

m+1� �� (1� (2� (12� ��, which is the solution in g to the equa-
tion

P

{
max

(
max
1≤i≤)

T
�1�
i � max

m≤j≤k
T
�2�
j

)
≤ g

}
= 1−�� (8)

If %ij = % given by (6) (which holds when ni = n for i =
1�2� � � � � k), then we use the simplified notation g��)� k−
m+1� ��%���.
If we put ) = 0 or m = k+ 1 in the foregoing, then we

obtain the critical points of the multivariate t-distribution
as special cases. In particular, if ) = 0, then g��0� k −
m+1� �� (1� (2� (12� �� is the upper � critical point of a
�k−m+ 1�-variate t-distribution with � df and correlation
matrix (2, denoted by h��k−m+1� �� (2�. Similarly, if m =
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k+ 1, then g��)�0� �� (1� (2� (12� �� equals h��)� �� (1�. Note
that these two critical points do not depend on (12 and �.
To obtain an expression for the probability in (8), we first

condition on �W1�W2�. The joint probability density func-
tion (pdf) f��w1�w2� of �W1�W2� was derived in earlier work
(Tamhane and Logan 2000) using the Wishart distribution.
Then by exploiting the product correlation structure (5), and
a result from Bechhofer and Tamhane (1974) that exploits the
block correlation structure (7) among the values of Ui and Vj ,
we obtain the following iterated integral expression for the
probability in (8):∫ �

0

∫ �

0

{∫ �

−�

∫ �

−�
/)�m0z1�z2�w1�w2��&i���2

×32�z1�z2�−��dz1dz2

}
f��w1�w2�dw1dw2� (9)

where 32�·� ·�−�� is the pdf of the standard bivariate normal
distribution with correlation coefficient −�, and
/)�m0z1� z2�w1�w2��&i�� �2

=



[
)∏

i=m
52

(
gw1−&iz1√
1−&2i

�
gw2−&iz2√
1−&2i

∣∣∣∣∣−�

)

×
m−1∏
i=1

5

(
gw1−&iz1√
1−&2i

)
k∏

i=)+1
5

(
gw2−&iz2√
1−&2i

)]
if )≥m[

)∏
i=1

5

(
gw1−&iz1√
1−&2i

)
k∏

i=m
5

(
gw2−&iz2√
1−&2i

)]
if ) < m�

In the foregoing, 5�·� is the standard normal cumulative dis-
tribution function (cdf), and 52�·� ·�−�� the cdf of the stan-
dard bivariate normal distribution with correlation coefficient
−�.
Evaluation of (9) requires four-variate integration. How-

ever, the main difficulty is that the solution g��)� k −
m+1� �� (1� (2� (12� �� depends on the unknown �. As an
approximation, one could use a pooled (from all dose groups)
sample estimate of �. However, it turns out that the solution is
relatively insensitive to �, as calculations for g��k� k� ��%���
for k = 2�1�5� � = �� % = 1/2 and � = �1��2��7 given in
Table 1 show. This suggests that the Bonferroni upper bound
on this critical constant, which does not require knowledge
of �, would provide a good approximation. This upper bound
is h�/2�k� ��%�, which satisfies the equation

P
{
max
1≤i≤k

T
�1�
i ≤ h�/2�k� ��%�

}
= P

{
max
1≤j≤k

T
�2�
j ≤ h�/2�k� ��%�

}
= 1− �

2
�

The last row of Table 1 shows the h�/2�k� ��%� values.
Note that these values provide excellent approximations to
g��k� k� ��%��� in all cases. Thus the Bonferroni critical val-
ues do not depend on the unknown �, are quite accurate, and
are widely available for the %ij ≡ % case (see, e.g., Bechhofer
and Dunnett 1988). An algorithm of Dunnett (1989) available
at http://lib.stat.cmu.edu/apstat/251 can be used to compute
these critical points for unequal correlations resulting from
unequal values of ni.
In another step-down procedure (SD2) described in Sec-

tion 4.3.3, we require the upper � critical points of the rv’s of

Table 1. Critical Points g��k�k������� for �= �05� � = �5, and � =�

k

� 2 3 4 5

.1 2�209 2�346 2�439 2�509

.3 2�211 2�348 2�441 2�510

.5 2�212 2�349 2�442 2�511

.7 2�212 2�349 2�442 2�512

h�/2�k� ��� 2�212 2�349 2�442 2�512

the type max�T �1�
i � T

�2�
j � for i� j = 1�2� � � � � k. If i �= j, then

the desired critical point equals g��1�1� ��%ij� ��; in this case
corr�Ui�Vj� = −%ij�. If i = j, then corr�Ui�Vi� = −�, and
the distribution of �T �1�

i � T
�2�
i � is Siddiqui’s (1967) bivariate t.

Denote this latter critical point by g′��1�1� ����, which is the
solution in g′ to the equation P�max�T �1�

i � T
�2�
i �≤ g′�= 1−�.

The Bonferroni upper bound on both g��1�1� ��%ij� �� and
g′��1�1� ���� is the upper �/2 critical point of Student’s
t-distribution with � df, denoted by t�/2���.

4. NORMAL THEORY PROCEDURES

4.1 Preliminaries

The hypotheses for demonstrating efficacy are

H
�1�
i � �i ≤ �0+�1

versus
A
�1�
i � �i > �0+�1� i = 1�2� � � � � k� (10)

where H�1�
i states that the ith dose is ineffective. Similarly, the

hypotheses for demonstrating safety are

H
�2�
j � �j ≥ �0+�2

versus
A
�2�
j � �j < �0+�2� j = 1�2� � � � � k� (11)

where H�2�
j states that the jth dose is unsafe. The test proce-

dures for these hypotheses is based on the test statistics

t
�1�
i = x̄i− ȳ0−�1

�̂
√
1/ni+1/n0

and

t
�2�
j = ȳ0− ȳj +�2

�̂
√
1/nj +1/n0

� i� j = 1�2� � � � � k� (12)

For specified �, MINED and MAXSD are estimated as

̂MINED=min�i� H�1�
i is rejected�

and ̂MAXSD=max�j� H�2�
j is rejected�� (13)

Define the families

�1=�H
�1�
i �i=1�2�� � � �k� and �2=�H

�2�
j � j=1�2�� � � �k�

and their union

� = �1∪�2 = �H
�1�
i �H

�2�
j � i� j = 1�2� � � � � k��
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It is easy to check that strong control (Hochberg and Tamhane
1987) of the type I familywise error rate (FWE) for � at level
� is equivalent to (3).
Instead of � , we could take our family as

� ′ = {
H

�1�
i ∪H�2�

i � i = 1�2� � � � � k}�
where H�1�

i ∪H�2�
i states that the ith dose is either ineffective

or unsafe. Strong control of the FWE for this family is also
equivalent to (3). A single-step and a step-down procedure for
� ′ were given in earlier work (Tamhane and Logan 2000).

4.2 Test Procedures for Family �

A simple but conservative way to control the FWE for �
at level � is to control the FWE for �1 and �2 separately at
level �/2 and use the Bonferroni inequality. More generally,
different levels �1 and �2 (where �1+�2 = �) may be used
for �1 and �2 to reflect different weights that one may wish
to attach to efficacy testing and safety testing. We call the
Bonferroni procedures approximate, and call those based on
the exact critical constants exact.

4.3 Step-Down Test Procedures

We omit the discussion of the exact and approximate single-
step (SS) procedures, because they are uniformly less powerful
than the corresponding SD1 step-down procedures presented
here. However, the SS procedures have one advantage in that
they give simultaneous lower confidence bounds on �i −�0
and upper confidence bounds on �i−�0 �i = 1, 2� � � � � k�.
4.3.1 Approximate SD1 Procedure. To construct a step-

down procedure using the closure method of Marcus, Peritz,
and Gabriel (1976), we need a closed family. The fami-
lies �1 and �2 are closed because H

�1�
) ⇒ H

�1�
i ∀ i < ) and

H�2�
m ⇒H

�2�
j ∀ j > m as a consequence of the assumption (2).

The approximate SD1 procedure addresses the families �1
and �2 separately, each at level �/2. It tests the hypothe-
ses H�1�

) in �1 in a step-down manner beginning with ) = k,
and rejects H

�1�
) iff H

�1�
k �H

�1�
k−1� � � � �H

�1�
)+1 are rejected and

max1≤i≤) t
�1�
i > h�/2�)� �� (1�. Similarly, it tests the hypothe-

ses H�2�
m in �2 in a step-down manner beginning with m= 1,

and rejects H�2�
m iff H

�2�
1 �H

�2�
2 � � � � �H

�2�
m−1 are rejected and

maxm≤j≤k t
�2�
j > h�/2�k−m+1� �� (2�.

4.3.2 Exact SD1 Procedure. The exact SD1 procedure
addresses the family � = �1 ∪�2. Because � is not closed,
we need to form its closure, given by


� =
{
H

�1�
i �H

�2�
j �H

�1�
i ∩H�2�

j ∀ i� j = 1�2� � � � � k
}
� (14)

Although this exact procedure is not implementable because
it requires knowledge of �, we still present it here, because
its bootstrap version is implementable. It operates as follows.
Initialize )= k�m= 1 and (1 = (2 = (12 = ( .

General Step A: For ) ≥ 1 and m ≤ k, test H�1�
) ∩H�2�

m iff
all hypotheses H�1�

i and H
�2�
j are rejected for i ≥ )+ 1 and

j ≤m−1. Reject H�1�
) ∩H�2�

m if

max
(
max
1≤i≤)

t
�1�
i � max

m≤j≤k
t
�2�
j

)
> g��)� k−m+1� �� (1� (2� (12� ��� (15)

If H�1�
) ∩H�2�

m is not rejected, then stop testing and decide
that ̂MINED = )+ 1 and ̂MAXSD = m− 1. Otherwise, if
max1≤i≤) t

�1�
i > g��)� k −m+ 1� �� (1� (2� (12� �� then reject

H
�1�
) and set )← )−1. Similarly, if maxm≤j≤k t

�2�
j > g��)� k−

m+1� �� (1� (2� (12� ��, then reject H�2�
m and set m← m+ 1.

In fact, a shortcut can be used. If )′ is the lowest dose
≤ ) such that t�1�)′ > g��)� k−m+ 1� �� (1� (2� (12� ��, then
reject the hypotheses H

�1�
)′ � � � � �H

�1�
) and set ) ← )′ − 1.

Similarly, if m′ is the highest dose ≥m such that t�2�m′ >
g��)� k−m+1� �� (1� (2� (12� ��, then reject the hypotheses
H�2�

m � � � � �H
�2�
m′ and set m←m′ +1. If )= 0 or m= k+1, then

go to step B; otherwise, return to the beginning of step A.

General Step B:

B1: If )= 0 and m= k+1, then there are no more hypothe-
ses to be tested. Stop testing and decide that ̂MINED<
1 and ̂MAXSD> k; that is, all doses are effective and
safe.

B2: If )≥ 1 and m= k+1, then decide that ̂MAXSD> k;
then there are only efficacy hypotheses to be tested.
The critical constant for testing H

�1�
) is h��)� �� (1�.

If max1≤i≤) t
�1�
i ≤ h��)� �� (1�, then stop testing and

decide that ̂MINED= )+1. Otherwise, if )′ is the low-
est dose ≤) such that t�1�)′ > h��)� �� (1�, then reject
H

�1�
)′ � � � � �H

�1�
) and set )← )′ − 1. If ) = 0, then stop

testing and decide that ̂MINED < 1; otherwise, return
to the beginning of step B2.

B3: If )= 0 and m≤ k, then decide that ̂MINED< 1; then
there are only safety hypotheses to be tested. The crit-
ical constant for testing H�2�

m is h��k−m+1� �� (2�.
If maxm≤j≤k t

�2�
j ≤ h��k−m+ 1� �� (2�, then stop test-

ing and decide that ̂MAXSD = m − 1. Otherwise,
if m′ is the highest dose ≥m such that t

�2�
m′ >

h��k−m+1� �� (2�, then reject H�2�
m � � � � �H

�2�
m′ and set

m←m′ +1. If m= k+1, then stop testing and decide
that ̂MAXSD > k; otherwise, return to the beginning
of step B3.

This test procedure is shown graphically in Figure 1. Notice
that an advantage of testing the efficacy and safety hypotheses
jointly is that whenever an intersection hypothesis H�1�

) ∩H�2�
m

is rejected, then even if one of the component hypotheses is
not rejected, that component hypothesis remains in contention
as a candidate for rejection at a later step. This is not the case
when the efficacy and safety hypotheses are tested separately
using the approximate Bonferroni method, where testing stops
once a given hypothesis is not rejected.

4.3.3 Exact and Approximate SD2 Test Procedures. The
SD2 test procedure uses the test statistics t

�1�
) and t�2�m to
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Figure 1. Hypothesis Testing Sequence for Exact SD1 and SD2 Pro-
cedures for k= 5. Node ���m� represents the hypothesis H

�1�
� ∩H

�2�
m . If

� = 0, then the node represents the hypothesis H
�2�
m . If m = k�1 = 6,

then the node represents the hypothesis H
�1�
� .

test H�1�
) and H�2�

m instead of max1≤i≤) t
�1�
i and maxm≤j≤k t

�2�
j

used by SD1. Analogous to SD1, we can formulate the exact
and approximate SD2 procedures. The exact SD2 procedure
tests the intersection hypothesis H

�1�
) ∩H�2�

m using the test
statistic max�t�1�) � t�2�m �, which compares with the critical con-
stant g��1�1� ��%)m��� if ) �= m and g′��1�1� ���� if ) = m.
Because these critical constants depend on the unknown �, we
must use either a bootstrap procedure or the approximate SD2
procedure, which tests H�1�

) and H�2�
m separately each at level

�/2 using the critical constant t�/2��� for each test. Note that
shortcuts are not possible with SD2 procedures.

5. BOOTSTRAP PROCEDURES

Normal theory methods require the strong distributional
assumption of bivariate normality. Furthermore, they assume
homoscedasticity across dose groups and common correla-
tion. Bootstrapping allows for relaxation of these restrictive
assumptions. However, there is no unique way to apply boot-
strapping, and it is not always a priori clear which method
works better. The bootstrap procedures given here have been
tested extensively via simulation. They assume homoscedastic-
ity and common correlation because they pool the data across
different dose groups; however, they can be easily modified
by not pooling. They approximately account for the unknown
correlation through resampling.
The bootstrap versions of SD1 and SD2 are as follows:

1. Mean center the data. For convenience, we use the same
notation for the mean centered data as the raw data. Thus

xij ← xij − x̄i and yij ← yij − ȳi� i = 0�1� � � � � k�
j = 1�2� � � � � ni�

2. Repeat the following steps for B iterations.

a. For the bth iteration, draw a bootstrap sample for each
dose:

�xijb� yijb�� i = 0�1� � � � � k� j = 1�2� � � � � ni�
with replacement from the pooled mean centered
paired data �xij� yij� from all doses.

b. For the bth bootstrap sample, calculate the sample
means x̄ib and ȳib for i= 1�2� � � � � b and sample stan-
dard deviations �̂b and �̂b based on � = N − �k+ 1�
df.

c. Calculate the t-statistics

t
�1�
ib = x̄ib− x̄0b−�1

�̂b

√
1/ni+1/n0

and

t
�2�
jb = ȳ0b− ȳjb+�2

�̂b
√
1/nj +1/n0

� i� j = 1�2� � � � � k�

3. Exact SD1 procedure. Initialize )= k and m= 1.
General step A: For )≥ 1 and m≤ k, test H�1�

) ∩H�2�
m

iff all hypotheses H�1�
i and H�2�

j are rejected for i≥ )+1
and j ≤m−1. To test H�1�

) ∩H�2�
m , calculate

p
�1�
)�m = 1

B

{
#b

∣∣∣∣ max
1≤i≤)�m≤j≤k

�t
�1�
ib � t

�2�
jb �≥ max

1≤i≤)
t
�1�
i

}
and

p
�2�
)�m = 1

B

{
#b

∣∣∣∣ max
1≤i≤)�m≤j≤k

�t
�1�
ib � t

�2�
jb �≥ max

m≤j≤k
t
�2�
j

}
�

where #b denotes the number of bootstrap samples satis-
fying the given condition. If both p�1�)�m and p

�2�
)�m are ≥�,

then stop testing and decide that ̂MINED = )+ 1 and̂MAXSD=m−1. If p�1�)�m <�, then reject H�1�
)′ � � � � �H

�1�
) ,

where t�1�)′ =max1≤i≤) t�1�i , and set )← )′ −1. If p�2�)�m <�,
then reject H�2�

m � � � � �H
�2�
m′ , where t

�2�
m′ = maxm≤j≤k t

�2�
j ,

and set m ← m′ + 1. If ) = 0 or m = k+ 1, then go
to general step B; otherwise, return to the beginning of
step A.

General step B:

B1: If ) = 0 and m = k+ 1, then stop testing and
decide that ̂MINED < 1 and ̂MAXSD > k; that
is, all doses are effective and safe.

B2: If m = k + 1 and ) ≥ 1, then decide that̂MAXSD> k; there are only efficacy hypotheses
to be tested. Calculate

p
�1�
) = 1

B

{
#b

∣∣∣∣max1≤i≤)
t
�1�
ib ≥ max

1≤i≤)
t
�1�
i

}
� (16)

If p�1�) ≥ �, then stop testing and decide that̂MINED = )+ 1. Otherwise, if p�1�) < �, then
reject H�1�

)′ � � � � �H
�1�
) , where t

�1�
)′ = max1≤i≤) t�1�i ,

and set )← )′ −1. If )= 0, then stop testing and
decide that ̂MINED< 1; otherwise, return to the
beginning of step B2.

B3: If ) = 0 and m ≤ k, then decide that ̂MINED <
1; then there are only safety hypotheses to be
tested. Calculate

p�2�m = 1
B

{
#b

∣∣∣∣maxm≤j≤k
t
�2�
jb ≥ max

m≤j≤k
t
�2�
j

}
� (17)

If p�2�m ≥ �, then stop testing and decide that̂MAXSD = m− 1. Otherwise, if p�2�m < �, then
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reject H�2�
m � � � � �H

�2�
m′ , where t

�2�
m′ =maxm≤j≤k t

�2�
j ,

and set m ← m′ + 1. If m = k+ 1, then stop
testing and decide that ̂MAXSD> k; otherwise,
return to the beginning of step B3.

Note that we do not use the full shortcut version of
SD1 (as given in Sec. 4.3.2) in the bootstrap procedure,
because such a shortcut requires computing the adjusted
p values for each t�1�i for 1≤ i≤ ) and t�2�j for m≤ j ≤ k

instead of just for max1≤i≤) t
�1�
i and maxm≤j≤k t

�2�
j . There-

fore, the full shortcut version of SD1 results in more
computational effort in general, when implemented using
the bootstrap. Also note that the p values calculated ear-
lier are bootstrap estimates of the multiplicity adjusted
p values. They are not monotonically adjusted for step-
down testing, because the p value for any hypothesis is
calculated only if the p value for its implying hypothesis
is less than �.

4. Exact SD2 procedure. The bootstrap SD2 procedure is
similar to the SD1 procedure, except that no maximums
are taken over the t-statistics when calculating the esti-
mates of the adjusted p values.

6. EXAMPLE

A pharmaceutical company performed a phase II random-
ized double-blind, placebo-controlled parallel group clinical
trial of a new drug for the treatment of arthritis of the knee
using four increasing doses (labeled 1, 2, 3, and 4). A total
of 370 patients were randomized to the five treatment groups.
Several efficacy and safety endpoints were measured on each
patient at the baseline and at the end of the study after 4
weeks. Here we consider the changes from the baseline in one
particular efficacy and one safety endpoint.
For proprietary reasons, the actual data are concealed by

contaminating them with normally distributed random errors
with zero mean and one-tenth of the standard deviation of the
original data. This slightly increases the standard deviations
of the efficacy and safety variables for each dose group and
reduces the correlations between them. As a further step to
comply with the company requirements, the identity of the
safety variable is not revealed, and its values are coded post-
contamination. Despite these measures, the essential statistical
characteristics of the data are unimpaired, and the example
remains valuable for illustrating the proposed procedures.
The efficacy variable is the pooled WOMAC (West-

ern Ontario and McMaster Universities osteoarthritis index)
score, a composite score computed from assessments of pain
(5 items), stiffness (2 items), and physical function (17 items).
The composite score is normalized to a scale of 0–10. An
increase in WOMAC indicates an improvement in disease con-
dition. For the purpose of this example, an average improve-
ment by .5 units compared to the zero dose control is regarded
as clinically significant.
The safety variable is the serum level of a certain chemical,

labeled as Z. As dose level increases, the serum level of Z is
expected to increase from the baseline to the end of the study.
For the purpose of this example, an increase in serum level
of Z by 3 mmol/L over the zero dose control is regarded as
clinically significant.

Table 2. Summary Statistics for Changes from Baseline in WOMAC
Score and Serum Level of Z

Dose level

0 1 2 3 4

WOMAC Mean 1�437 2�196 2�459 2�771 2�493
SD 1�924 2�253 1�744 1�965 1�893

Z Mean �554 1�430 1�594 2�242 2�624
SD 2�122 1�941 2�340 2�388 2�229

Correlation coefficient −�247 �121 −�072 �232 −�047
Sample size 76 73 73 75 73

The summary data for the two variables are given in
Table 2. Normal plots of the data were made and found to
be quite satisfactory. The sample sizes are nearly equal, and
so %ij ≈ 1/2. Box’s (1949) test for homogeneity of covari-
ance matrices yielded F = 1�705 with p value = �059, which
is borderline nonsignificant. The Bartlett and Levene tests
for homogeneity of variances yielded highly nonsignificant
results. Therefore, all the assumptions are satisfied for the nor-
mal theory procedures. It is of interest to note that the corre-
lations are all close to zero.
The pooled estimates of the standard deviations for

WOMAC (the efficacy variable) and Z (the safety variable) are
�̂ = 1�962 and �̂ = 2�210, each with 365≈� df. The ANOVA
F -statistics for WOMAC and Z equal 5.079 (p = �001) and
9.747 (p= �000). The t-statistics for WOMAC and Z are com-
puted using (12) with �1 = �5 and �2 = 3 and are given in
Table 3.

6.1 Approximate SD1 Procedure

The critical constants h�025�i� � = �� % = 1/2� for i =
1�2�3�4 equal 1.960, 2.212, 2.349, and 2.442. A straight-
forward application of SD1 at the .025-level separately on
WOMAC and Z yields ̂MINED = 3 and ̂MAXSD > 4 (i.e.,
all four doses are safe). Thus the lower end of the therapeutic
window is dose 3, whereas the upper end can be higher than
dose 4.

6.2 Approximate SD2 Procedure

In this case, each t-statistic is compared with the same crit-
ical constant, t�025�� = �� = 1�960, in a step-down manner
starting with dose 4 for WOMAC and dose 1 for Z. Because
t
�1�
4 = 1�729< 1�960, the procedure stops with the conclusion
that ̂MINED > 4 (i.e., none of the doses are effective). Also,

Table 3. The t-Statistics and Their Unadjusted p Values for Comparing
Doses With Zero Dose Control

Comparison 1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0

WOMAC t
�1
i �806 1�625 2�612 1�729
p
�1
i �210 �052 �005 �042

Z t
�2
i 5�861 5�407 3�644 2�564
p
�2
i �000 �000 �000 �005
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̂MAXSD> 4 (i.e., all doses are safe), because all t�2�i statistics
are >1�960. Thus a therapeutic window is not found.

6.3 Bootstrap SD1 Procedure

Begin by testing H
�1�
4 ∩H

�2�
1 . The corresponding adjusted

p values are estimated to be (based on 5000 bootstrap sam-
ples) p�1�4�1 = �037 and p�2�4�1 = 0. Because both p�1�4�1 and p�2�4�1 are
< �05, we reject both H�1�

4 and H�2�
1 , and next test H

�1�
3 ∩H�2�

2 .
In fact, we can use the shortcut and directly test H�1�

2 ∩H�2�
2 ,

because rejection of H�1�
4 is caused by t

�1�
3 = max1≤i≤4 t

�1�
i ,

implying rejection of H�1�
3 as well. The adjusted p values for

H
�1�
2 ∩H�2�

2 are estimated to be p�1�2�2= �201 and p�2�2�2= 0. There-
fore, we reject H�2�

2 and next test H�1�
2 ∩H

�2�
3 . The adjusted

p values for H�1�
2 ∩H�2�

3 are estimated to be p�1�2�3 = �167 and
p
�2�
2�3= �001. Therefore, we reject H�2�

3 and next test H�1�
2 ∩H�2�

4 .
The adjusted p values for H�1�

2 ∩H
�2�
4 are estimated to be

p
�1�
2�4 = �137 and p�2�2�4 = �017, and so we reject H�2�

4 . This leaves
only the efficacy hypotheses H�1�

1 and H�1�
2 to be tested. The

adjusted p value for H�1�
2 is estimated to be p�1�2 = �085> �05,

so we stop testing. Thus the bootstrap exact SD1 procedure
comes to the same decision as the normal theory approximate
SD1, namely ̂MINED= 3 and ̂MAXSD> 4.

6.4 Bootstrap SD2 Procedure

For brevity, we give only the estimated adjusted p values at
each step. It should be clear from the foregoing description of
SD1 how the hypotheses tested at each step are determined.
The adjusted p values for H�1�

4 ∩H
�2�
1 are estimated to be

p
�1�
4�1 = �086 and p�2�4�1 = 0< �05, so we reject H�2�

1 . The adjusted
p values for H�1�

4 ∩H�2�
2 are estimated to be p�1�4�2 = �091 and

p
�2�
4�2 = 0 < �05, so we reject H�2�

2 . The adjusted p values for
H

�1�
4 ∩H�2�

3 are estimated to be p�1�4�3 = �085 and p�2�4�3 = 0< �05,
so we reject H�2�

3 . The adjusted p values for H�1�
4 ∩H�2�

4 are
estimated to be p�1�4�4 = �089 and p�2�4�4 = �012< �05, so we reject
H

�2�
4 . Thus all doses are proven safe, and we continue test-

ing only for efficacy. The adjusted p value for H�1�
4 is esti-

mated to be p�1�4 = �046< �05, so we reject H�1�
4 . The adjusted

p value for H�1�
3 is estimated to be p�1�3 = �005 < �05, so we

reject H�1�
3 . The adjusted p value for H

�1�
2 is estimated to be

p
�1�
2 = �047 < �05, so we reject H�2�

1 . Finally, the adjusted p

value for H�1�
1 is estimated to be p�1�1 = �205> �05, so we stop

testing and decide that ̂MINED= 2 and ̂MAXSD> 4. Notice
that whereas the normal theory SD2 did not find any effective
doses, the bootstrap SD2 procedure is able to find doses 2–4
as effective. This is the advantage of joint testing for efficacy
and safety over separate testing using the Bonferroni method.

7. SIMULATIONS

7.1 Design of Simulation Studies

We performed simulations to compare the performances of
the approximate normal theory SD1 and SD2 and their boot-
strap versions under different conditions, including normal and
nonnormal data, different mean configurations, and different
sample sizes.

The type I FWEs of these procedures, as well as their over-
all power, defined as

Power= P� ̂MINED=MINED and ̂MAXSD=MAXSD��

were estimated. The biases in the estimates ̂MINED and̂MAXSD were also estimated. All simulations were done on
an HP workstation in SAS/IML. Each simulation run consisted
of 5000 replicates. For bootstrap procedures, the number of
bootstrap samples B was set equal to 1000. The nominal FWE
for all procedures was set at �= �05. The number of doses, in
addition to the control, was fixed at k= 5. A common sample
size, n, was assumed per treatment including the control. Two
different sample sizes were studied: n= 10 and n= 50.
The means ��i��i� for different doses were chosen based

on the following power considerations. Let

&1=�MINED−��0+�1� and &2= ��0+�2�−�MAXSD

be the “separations” between the means of the MINED
and MAXSD and the corresponding thresholds, �0+ �1 for
efficacy and �0 + �2 for safety. The powers of different
test procedures depend on &1

√
n/� and &2

√
n/� , in addi-

tion to other mean values. We chose two different shapes
for the dose–response function, a “step” shape and a “lin-
ear” shape, and MINED = 2 and MAXSD = 4 in each
case. To obtain similar powers for n = 10 and n = 50,
the values of ��1� �2��� �� shown in Table 4 were chosen
to make �&1

√
n/��&2

√
n/�� approximately equal, that is,

�6�261�4�174� and �6�363�4�243�.
The normal data were simulated by generating n inde-

pendent pairs of bivariate normal observations �x� y� with
common correlation .5 for each dose with respective means
��i��i� and standard deviations ��� ��. Two nonnormal dis-
tributions were studied: a lognormal distribution as an exam-
ple of a skewed distribution and a double-exponential distri-
bution as an example of a heavy-tailed distribution. Because
the results for these nonnormal distributions were similar to
those for the normal distribution, they are not shown here (see
Tamhane and Logan 2000 for details).

7.2 Simulation Results

Simulated overall powers for approximate normal theory
SD1 and SD2 and their bootstrap versions are summarized in
Table 5 for normal data. The type I FWEs of the procedures
are not reported because they were found to be well controlled
at or below the .05 level for both normal and nonnormal data.
Biases in the estimates ̂MINED and ̂MAXSD or, equivalently,
the corresponding marginal powers show similar relative pat-
terns as the overall powers and hence are not reported either
(see Tamhane and Logan 2000).
First, we note that SD1 is more powerful (by about 11%–

12%) than SD2 for step configurations, but less powerful (by
about 6%–8%) for linear configurations. The higher power of
SD1 for step configurations is explained by the fact that in this
configuration, dose 2 (which is the MINED) through dose 5
have the same mean for efficacy. As a result, the correspond-
ing sample means are likely to be nonmonotone. When test-
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Table 4. Simulated Parameter Configurations

n= 10 n= 50
Dose i

Dose–Response � �1 �1 � �1 �1 MINED
Function Mean 0 1 2 3 4 5 � �2 �2 � �2 �2 MAXSD

Step �i 0 1 2 2 2 2 �5 1�01 �99 1�0 1�1 �9 2
�1 0 1 1 1 1 2 �75 1�99 �99 1�5 1�9 �9 4

Linear �1 0 1 2 3 4 5 �5 1�01 �99 1�0 1�1 �9 2
�i 0 1 2 3 4 5 �75 4�99 �99 1�5 4�9 �9 4

ing the highest dose 5 for efficacy (say), SD1 uses the maxi-
mum among these sample means, say ȳ3. If ȳ3 is significantly
greater than ȳ0+�1, then SD1 declares doses 3, 4, and 5 as
effective and proceeds to dose 2. On the other hand, if ȳ5�<ȳ3�
is not significantly greater than ȳ0+�1, then SD2 stops test-
ing with the decision that dose 5 is not effective. Although
SD1 uses a larger multivariate t critical constant than the uni-
variate t critical constant used by SD2, often SD1 proceeds
past dose 5 to eventually find dose 2 as the correct MINED,
whereas SD2 stops testing earlier because of nonsignificance.
A similar phenomenon occurs when testing for safety.
Because the dose means are monotone for linear configu-

rations (and much higher at higher doses than the mean for
the MINED, e.g., �5 = 5��2 = 2), SD2 often does not stop
testing early due to nonsignificance and thus gains in power.
SD1 also gains in power due to larger differences between the
means at higher doses and the MINED mean, but not as much,
because it uses a larger critical constant. Therefore, SD2 is
more powerful than SD1 for linear configurations.
Comparing SD1 and SD2 normal theory procedures with

the corresponding bootstrap procedures, we find that the latter
are always more powerful. The gain in power for the bootstrap
SD1 over the normal theory SD1 is about 3%–5%, whereas
the corresponding gain for SD2 is only around 1%. It may
appear surprising that the bootstrap procedures are more pow-
erful than the normal theory procedures when the data are
normal. The explanation is that although the bootstrap pro-
cedures may suffer slight loss in power because they do not
exploit normality, this loss is more than compensated for by
their use of joint testing of efficacy and safety, as illustrated
in Figure 1. On the other hand, the approximate normal the-
ory procedures treat the two endpoints as separate and use the
Bonferroni approximation.

Table 5. Simulation Estimates of Overall Powers for Normal Data

n= 10 n= 50

Procedure Step Configuration Linear Configuration Step Configuration Linear Configuration

SD1 .6697 �6934 �7332 �7590
(Normal)

SD2 .5581 �7792 �6106 �8256
(Normal)

SD1 .7092 �7402 �7622 �7912
(Bootstrap)

SD2 .5682 �7904 �6250 �8418
(Bootstrap)

8. CONCLUDING REMARKS

The bootstrap procedures not only are more robust with
regard to distributional assumptions, but also are more pow-
erful because of their joint testing feature. Therefore, they
are recommended. However, they are more complicated to
implement and explain and require special software. Also,
their FWE control is only approximately guaranteed for small
samples. For step configurations, bootstrap SD1 has a power
advantage of about 14% over bootstrap SD2, whereas for lin-
ear configurations, bootstrap SD2 has a power advantage of
about 5%. The true dose mean configuration is of course
unknown. Although one might argue that a linear configura-
tion is more likely than a step configuration, a flat response
beyond a certain dose level is in fact more commonly observed
than might be expected, especially for efficacy. The reason is
that in the dose selection process, it is usually difficult to find
the right doses to test, and practitioners tend to select doses at
the plateau of the dose–response curve. If the efficacy response
function has a downturn at higher doses, then SD2 will have
very low power. Given that the power gain of SD1 over SD2
for step configurations is much greater than its power loss for
linear configuration, we recommend bootstrap SD1 as a gen-
eral procedure unless dose response is known to be roughly
linear (or at least strictly increasing).
We have assumed weak monotonicity (2). If strong mono-

tonicity can be assumed, then more powerful procedures can
be developed based on the isotonic estimates (Robertson,
Wright, and Dykstra 1988) of the �i and the �i. The exact dis-
tribution theory would be quite complicated, but the bootstrap
version should be relatively straightforward.
Some may argue that efficacy is more important than safety,

and so a dose need not be tested for safety unless it is proven
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effective. This approach is followed by Bauer, Brannath, and
Posch (2001). On the other hand, some may argue that safety
is more important than efficacy. We have treated efficacy and
safety on an equal basis in this article.
Finally, we note that the SAS/IML code for implementing

the bootstrap versions of exact SD1 and SD2 procedures can
be downloaded from http://users.iems.northwestern.edu/∼ajit.

[Received October 2000. Revised May 2001.]
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