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Summary. Tang, Gnecco and Geller (1989) proposed an approximate likelihood ratio (ALR)

test of the null hypothesis that a normal mean vector equals a null vector against the alter-

native that all of its components are nonnegative with at least one strictly positive. This test

is useful for comparing a treatment group with a control group on multiple endpoints, and

the data from the two groups are assumed to follow multivariate normal distributions with

different mean vectors and a common covariance matrix (the homoscedastic case). Tang et

al. derived the test statistic and its null distribution assuming a known covariance matrix. In

practice, when the covariance matrix is estimated, the critical constants tabulated by Tang

et al. result in a highly liberal test. To deal with this problem, we derive an accurate small

sample approximation to the null distribution of the ALR test statistic by using the moment

matching method. The proposed approximation is then extended to the heteroscedastic case.

The accuracy of both the approximations is verified by simulations. A real data example is

given to illustrate the use of the approximations.
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2

1. Introduction

Many clinical trials are conducted to compare a treatment group with a control group on

several endpoints. Often, the treatment is expected to have a positive effect on all endpoints.

Inappropriateness of Hotelling’s T 2 test for this problem has been noted by several authors;

see, e.g., Meier (1975). As an alternative to Hotelling’s T 2 test, O’Brien (1984) proposed

his OLS and GLS tests, which possess high power against the restricted alternative that

the treatment has the same positive standardized effect on all endpoints. In the one-sample

problem, for the more general alternative that the mean vector lies in the positive orthant, the

exact likelihood ratio (LR) tests were derived by Kudô (1963) assuming a known covariance

matrix and by Perlman (1969) assuming an unknown covariance matrix. However, these

test statistics are complicated, and their null distributions are difficult to obtain. For the

Perlman test statistic, the null distribution is not free of the unknown covariance matrix. To

obviate some of these difficulties, Tang, Gnecco, and Geller (1989) proposed an approximate

likelihood ratio (ALR) test for the one sample problem assuming a known covariance matrix.

It provides an easy to use approximation to Kudô’s test. When extended to the two-sample

problem, it has better power properties compared to O’Brien’s (1984) OLS and GLS tests

for most alternatives in the positive orthant. This note focuses on the ALR test.

In practical applications the population covariance matrix is always unknown, and the

sample covariance matrix must be used to estimate it. This results in a highly liberal ALR

test if one uses the null distribution derived by Tang et al. which assumes a known covariance

matrix; see Reitmeir and Wassmer (1996) and Sankoh et al. (1999). The liberalism decreases

as the degrees of freedom (d.f.) available to estimate the covariance matrix increases. For

example, for six endpoints, the estimated type I error rate for a nominal 0.05-level test is

0.3550 for 10 d.f., 0.1066 for 30 d.f., 0.0830 for 50 d.f. and 0.0611 for 100 d.f. We derive an

accurate approximation to the small sample distribution of the ALR test which eliminates
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this liberalism.

The outline of the paper is as follows. In Section 2 we set the notation and review the ALR

test for the two sample problem in the known common covariance matrix (homoscedastic)

case. In Section 3 we propose the approximation to its small sample null distribution in the

unknown covariance matrix case. In Section 4 we extend the approximation to the unequal

unknown covariance matrices (heteroscedastic) case. In Section 5 we present the results of

simulations that demonstrate the accuracy of the proposed approximations. An example is

given in Section 6. Finally, a discussion about some anomalies of the LR tests (including the

ALR test) is given in Section 7.

2. Notation, Problem Formulation and the ALR Test

Suppose that there are two independent treatment groups with n1 and n2 subjects on each

of whom m ≥ 2 endpoints are measured. Treatment 1 is the test treatment and treatment 2

is the control. Let xijk denote the measurement on the kth endpoint for the jth subject in

the ith treatment group. For treatment group i, assume that xij = (xij1, xij2, . . . , xijm)′, j =

1, 2, . . . , ni, are independent and identically distributed (i.i.d.) random vectors from an m-

variate normal distribution with mean vector µi = (µi1, µi2, . . . , µim)′ and covariance matrix

Σi (i = 1, 2). In the present and the next section we assume the homoscedastic case, i.e.,

Σ1 = Σ2 = Σ (say). In this section we assume that Σ is known.

Let δ = µ1 − µ2 = (δ1, δ2, . . . , δm)′ denote the vector of mean differences. We are

interested in testing the null hypothesis of no difference against the one-sided alternative:

H0 : δ = 0 vs. H1 : δ ∈ O+, (2.1)

where 0 is the null vector and O+ = {δ|δk ≥ 0 for k = 1, 2, . . . ,m, δ 6= 0} is the positive

orthant.

Let xi· = (xi·1, xi·2, . . . , xi·m)′ denote the vector of sample means of the ni subjects from
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the ith group (i = 1, 2). The first step in the ALR test is to compute the transformation

u =

√
n1n2

n1 + n2

A(x1· − x2·), (2.2)

where A is any positive definite matrix such that

A′A = Σ−1 and AΣA′ = I. (2.3)

Then u ∼ N(θ, I), where θ = {n1n2/(n1 + n2)}1/2Aδ and the hypotheses (2.1) become

H0 : θ = 0 vs. H1 : θ ∈ A(O+), where A(O+) =
[
{n1n2/(n1 + n2)}1/2Aδ

∣∣∣ δ ∈ O+
]

is a

polyhedral cone. The matrix A used in the transformation is not unique. Tang et al. gave

a method for choosing A such that the center direction of A(O+) coincides with the center

direction of O+ which is the equicoordinate ray (λ, λ, . . . , λ)′ for λ > 0.

The cone alternative A(O+) is approximated by O+. Then the ALR test statistic equals

g(u) =
m∑

k=1

{max(uk, 0)}2 . (2.4)

The null distribution of g(u) is the χ2 distribution (see Robertson, Wright, and Dykstra,

1988) with symmetric binomial probability weights:

Pr{g(u) > c} =
m∑

k=0

(
m

k

)
2−m Pr

(
χ2

k > c
)
, (2.5)

where χ2
0 = 0.

3. Small Sample Null Distribution of the ALR Test Statistic in

the Homoscedastic Case

In this section we assume that Σ is unknown. Let Σ̂ denote the pooled covariance matrix

with ν = n1 + n2 − 2 d.f. It is known that Σ̂ is positive definite with probability 1 (Eaton

and Perlman, 1973). Analogous to the definition of u, we first make the transformation

v =

√
n1n2

n1 + n2

B(x1· − x2·), (3.1)
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where v = (v1, v2, . . . , vm)′ and B is a positive definite matrix such that

B′B = Σ̂
−1

and BΣ̂B′ = I. (3.2)

Analogous to (2.4), the ALR test statistic is given by

g(v) =
m∑

k=1

{max(vk, 0)}2 . (3.3)

The choice of B is not unique and, depending on the choice, the null distribution of

v may or may not depend on Σ. In particular, it is straightforward to show that if B is

the unique lower triangular matrix obtained using the Cholesky decomposition then the null

distribution of v does not depend on Σ. Also, it is easy to see that this distribution is

symmetric about the origin, and as ν → ∞, it approaches the joint distribution of u, the

components of which are i.i.d. N(0, 1) random variables (r.v.’s).

The null distribution of g(v) is quite intractable. Therefore we derive an approximation

to it. For finite ν, by analogy to the χ2 distribution (2.5), we propose to approximate

Pr{g(v) > c} ≈
m∑

k=0

(
m

k

)
2−m Pr

{(
νk

ν −m + 1

)
Fk,ν−m+1 > c

}
, (3.4)

where F0,ν−m+1 = 0. Thus we approximate the distribution of g(v) by a mixture of the

distributions of (
νk

ν −m + 1

)
Fk,ν−m+1, k = 0, 1, . . . ,m,

with symmetric binomial probability weights. We will call this approximation as the F

approximation since it uses a mixture of scaled F r.v.’s. This approximation is exact for all

ν when m = 1 and for ν = ∞ when m > 1.

We now show that the first moments of g(v) and the F approximation match. To compute

E{g(v)} we use the fact that

m∑
k=1

v2
k = v′v ∼ T 2

m,ν ∼
(

νm

ν −m + 1

)
Fm,ν−m+1, (3.5)
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where T 2
m,ν is Hotelling’s T 2 random variable (Anderson, 1984). Since each vk is symmetri-

cally distributed around 0, we have (assuming that ν > m + 1)

E{g(v)} =
m∑

k=1

E{max(vk, 0)}2 =
m∑

k=1

1

2
E(v2

k) =
1

2
E(v′v) =

1

2
E(T 2

m,ν) =
νm

2(ν −m− 1)
.

Next, to compute the expected value of the F approximation, define a r.v. x = {νy/(ν −

m+ 1)}Fy,ν−m+1, where y is a binomial r.v. with sample size m and success probability 1/2.

Then E(x) = E{E(x|y)} equals

E
{

νy

ν −m + 1
E(Fy,ν−m+1)

}
= E

(
νy

ν −m + 1
× ν −m + 1

ν −m− 1

)
=

νE(y)

ν −m− 1
=

νm

2(ν −m− 1)
.

Therefore the approximation matches with the exact distribution on the first moment.

We also compared the second moments of g(v) and the F approximation. It can be

shown that the exact variance of the F distribution is given by

m
(

ν

ν −m− 1

)2
{

1

4
+

2ν −m− 1

2(ν −m− 3)

}

and an approximation to the variance of g(v) is given by

m
(

ν

ν −m− 1

)2
[(

ν −m− 1

ν − 2

)2
{

1

4
+

ν − 1

2(ν − 4)

}
+

ν − 1

2(ν −m− 3)

]
.

The details of the derivations of these expressions are given in Logan (2001). For m = 1,

the two expressions are equal to

(
ν

ν − 2

)2 (1

4
+

ν − 1

ν − 4

)
,

which is the variance of {max(v1, 0)}2 since v1 ∼ tν for m = 1. (Note that the vk are

not marginally t-distributed for m > 1.) Also, as ν →∞, both expressions approach 5m/4,

which is the variance of the χ2 distribution. For other cases, the variance of the F distribution

is found to be higher, suggesting that the F approximation will be conservative. Critical

constants for the F approximation are given in Table 1 for α = 0.01, 0.05 and 0.10.
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4. Small Sample Null Distribution of the ALR Test Statistic in

the Heteroscedastic Case

In what follows, it will be convenient to define Ωi = (1/ni)Σi (i = 1, 2),Ω = Ω1 + Ω2

and Σ = {n1n2/(n1 +n2)}Ω. The sample estimates of these matrices are denoted by putting

carets over them; thus Σ̂i denotes the sample covariance matrix from group i with ni−1 d.f.

Analogous to (2.2) and (3.1), we now have the transformation

w =

√
n1n2

n1 + n2

C(x1· − x2·), (4.1)

where w = (w1, w2, . . . , wm)′ and C is a positive definite matrix such that C ′C = Σ̂
−1

and

CΣ̂C ′ = I. Analogous to (3.3), the ALR test statistic is given by

g(w) =
m∑

k=1

{max(wk, 0)}2 . (4.2)

We propose the same F distribution (3.4) as an approximation to the null distribution

of g(w), but with the following Welch-Satterthwaite estimate of the d.f. ν derived by Yao

(1965) for the multivariate Behrens-Fisher problem:

1

ν
=

1

(d′Ω̂
−1

d)2

(d′Ω̂
−1

Ω̂1Ω̂
−1

d)2

n1 − 1
+

(d′Ω̂
−1

Ω̂2Ω̂
−1

d)2

n2 − 1

 , (4.3)

where d = (x1·−x2·). Note that Yao derived this formula (also using the moment matching

method) to approximate the distribution of w′w = {n1n2/(n1+n2)}(x1·−x2·)
′Σ̂

−1
(x1·−x2·)

by Hotelling’s T 2
m,ν = {νm/(ν−m+1)}Fm,ν−m+1 distribution with an estimated ν, in analogy

with the corresponding exact distribution result for v′v with ν = n1 + n2 − 2 given in (3.5).

We have simply extended Yao’s approximation to the F distribution.
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5. Simulations

5.1 Homoscedastic Case

Simulations were designed to assess the actual type I error probabilities of the F approx-

imation to the ALR test statistic distribution and compare it with the χ2 approximation.

Error probabilities were estimated for values of m = 2(2)8, ν =10, 30, and 50, and Σ = I.

Additional simulations were done to study the dependence of g(v) on Σ for two choices

of Σ for m = 4 and m = 8. The first choice was an equicorrelated matrix with common

correlation ρ = 0.0, 0.3, 0.5, 0.7 and 0.9. The second choice was a block correlated matrix

with two blocks of size m/2; the within block and between block correlations (ρ1 and ρ2,

respectively) were chosen to be (ρ1, ρ2) = (0.5, 0.0), (0.9, 0.0) and (0.9, 0.5). In both cases,

two combinations of variances were examined: all σ2
i = 1, and half the σ2

i = 1 and the other

half equal to 4.

In each of the 10,000 simulation runs, νΣ̂ was sampled from a Wm(ν,Σ) random matrix,

u was independently sampled with i.i.d. N(0, 1) components, v was calculated using the

relation v = BA−1u, and the ALR test statistic was computed using equation (3.3). The

Tang et al. (1989) method was used to choose A and B. The P -value was computed

using the χ2 and F approximations. The proportion of runs in which this P -value is ≤ α

gives an estimate of the type I error probability. The results for the Σ = I case are given

in Table 2. The results for the Σ 6= I case were similar and hence are not reported to

save space. In particular, the type I error probability of g(v) is always well-controlled at

or slightly below α = 0.05. In no case did it exceed the upper 95% rejection limit of

0.05 + 1.96{(0.05)(0.95)/10, 000}1/2 = 0.0543. From these simulation results it appears that

the null distribution of g(v) does not depend in a significant way on Σ. This observation
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is bolstered by the fact that the first two moments of g(v) (the second moment expression

being approximate) given in Section 3 also do not depend on Σ. Finally, the results show

that the χ2 approximation is liberal in all cases. For fixed ν, its liberalism increases as m

increases.

5.2 Heteroscedastic Case

The type I error probability of the ALR test was simulated for nominal α = .05, m = 4

and 8, and n1 = n2 = 20, 30 and 50. For each choice of m and n1 = n2, a total of eight

combinations of (Σ1,Σ2) matrices were examined. These were parameterized as follows:

Treatment Group: (Σ1)ii = σ2
1 (1 ≤ i ≤ m/2), (Σ1)ii = σ′2

1 (m/2 < i ≤ m) and (Σ1)ij =

ρ1 (Σ1)
1/2
ii (Σ1)

1/2
jj (1 ≤ i 6= j ≤ m); Control Group: (Σ2)ii = σ2

2 = 1 (1 ≤ i ≤ m), (Σ2)ij =

ρ2 (1 ≤ i 6= j ≤ m).

All simulations were based on 10,000 runs. In each run, the P -value of the simulated g(w)

statistic was computed using the F approximation. The proportion of runs for which the

P -value is ≤ α gives an estimate of the type I error probability. The results are summarized

in Table 3.

From these results we see that the type I error probability is well-controlled for n1 =

n2 = 30 and 50, but for n1 = n2 = 20 there are several cases (especially for m = 8) where

the estimated type I error probability exceeds the 0.05 level significantly; these cases are

marked with asterisks. However, in no case does the estimated type I error probability

exceed substantially, say, 0.06. Thus we conclude that the approximation is quite accurate

for n1 = n2 ≥ 30 and is acceptably accurate for n1 = n2 = 20 if m ≤ 8. For larger values of

m, these sample sizes may not be adequately large.

6. Example

Läuter, Kropf, and Glimm (1998) used data from a trial conducted by Dr. Michael Syn-
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owitz at the Clinic for Heart Surgery of the Berlin Medical Faculty “CHARITE” in 1995.

In this trial it was of interest to determine if autotransfusion (donation of the patient’s own

blood) makes surgical patients more sensitive to postoperative risk of infection (pneumonia,

wound infection, etc.). This conjecture was supported by the fact that erythrocytes could

be activated in the extracorporal circuit. Thirty patients about to undergo bypass surgery

were randomized into two groups of 15 patients each. The treatment group received au-

totransfusion by means of a Pfizer-Shirley system, while the control group did not receive

autotransfusion. As a measure of the risk, interleukin-6 (which is a pro-inflammation inter-

leukin) plasma concentration (in picogram/ml) levels were measured for each patient at the

time of surgical cut (t0) and six successive occasions (t0 + 1 hour, t0 + 3 hours, t0 + 6 hours,

t0 + 12 hours, t0 + 24 hours and t0 + 48 hours). Note that here we have repeated measures

data on the same endpoint. This makes the assumption of one-sided effect more plausible

than if we had different endpoints.

The first two measurements were dropped because of some missing and some inconsis-

tent data, and the natural logarithmic transformation was applied to the remaining five

measurements. The resulting data are shown in Table 4. The mean vectors and the sample

covariance matrices for the two groups are shown below:

x1· = (3.50, 4.11, 3.77, 3.41, 3.15), x2· = (3.33, 3.55, 3.46, 2.85, 2.68),

Σ̂1 =



0.58 0.32 0.38 0.26 0.17

0.49 0.44 0.33 0.21

0.53 0.41 0.21

0.45 0.34

0.58


and Σ̂2 =



0.38 0.08 0.08 0.05 −0.12

0.21 0.00 −0.08 −0.09

0.22 0.13 0.02

0.25 0.10

0.28


.

Box’s (1949) test for homogeneity of covariance matrices yielded a nonsignificant result

(χ2 = 16.958 with a P -value = 0.321). Therefore Σ̂1 and Σ̂2 were pooled with a total
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d.f. = 28 and the ALR test for the homoscedastic case was applied. The transformation

matrix using the Tang et al. method is

B =



1.57 −0.77 −0.53 0.16 0.74

0.07 2.11 −1.44 0.77 −0.11

0.03 −0.27 2.72 −2.25 0.55

−0.13 −0.21 0.10 2.05 −1.42

−0.85 0.02 0.37 0.50 1.00


.

The ALR test statistic equals g(v) = 14.60. Using the χ2 approximation the P -value is

0.0022, whereas using the F approximation the P -value is 0.0145. Note the liberalism of

the χ2 approximation. The F -approximated P -value is in line with the P -value of 0.0199

obtained using the standardized sum statistic of Läuter (1996) and 0.0104 obtained using

the OLS statistic of O’Brien (1984).

For comparison purposes, the heteroscedastic ALR test was also performed. Because

n1 = n2, Σ̂ is the same in the heteroscedastic case as in the homoscedastic case. Therefore

C = B and g(w) = g(v) = 14.60. The d.f. using the formula (4.3) are ν = 25 and the

P -value = 0.0172. Thus the result is similar to that in the homoscedastic case.

7. Discussion

Silvapulle (1997) has given an example in the bivariate case where the LR test rejects

H0 even if both the mean differences are negative. This anomaly hinges on a large positive

correlation between the endpoints. Many authors have noted other anomalies of the LR

tests such as the lack of unbiasedness and monotonicity, and existence of uniformly more

powerful tests. On the other hand, Perlman and Wu (1999) have defended LR tests (see,

however, Perlman and Wu, 2000), noting that the alternative tests (e.g., those proposed

by Berger (1989), Tang (1994), and Wang and McDermott (1998)) that are less biased

and more powerful also suffer from lack of monotonicity and nonintuitive rejection regions.
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They argued that the anomalies of LR tests are the result of an incorrectly specified null

hypothesis. The anomalies disappear when the null hypothesis is specified as the complement

of the one-sided alternative hypothesis.

Cohen and Sackrowitz (1998) have suggested cone ordered monotone tests to ameliorate

these difficulties. However, their rejection regions are not entirely satisfactory either since,

e.g., in the bivariate case, their test can reject H0 if a large negative difference on one

endpoint is overcome by a larger positive difference on the other endpoint; see Perlman and

Wu (2001).

The abovementioned anomalies translate to the ALR test as well. Generally, they tend

to occur when the endpoints are highly positively correlated. In this case, the endpoints

with very dissimilar negative mean differences, when projected onto the positive orthant,

can generate a large value of the LR statistic that warrants rejection.

It is not our intention to get into the pros and cons of tests for multiparameters hypothesis

testing problems which seem to afflict LR as well as other tests. Suffice it to say that the

above anomalies should not present a serious problem in most practical situations. When

the correlation is high, it is unusual for the mean differences to be very dissimilar and the

LR statistic to be large as a result. If a negative effect on some endpoint(s) cannot be ruled

out a priori then a one-sided test should not be used. When a one-sided test is applicable,

the ALR test is a good choice that performs better than the more popular OLS test. We

have offered an accurate method for applying the ALR test in small samples. The proposed

approximations are very simple to implement by using a C program available for download

at http://users.iems.northwestern.edu/∼ajit.
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Table 1: Critical Constants for ALR Test Based on the F Approximation

m

α ν 2 3 4 5 6 7 8

0.10 10 4.00 6.49 9.80 14.63 22.47 37.14 72.05

30 3.24 4.61 5.97 7.37 8.85 10.42 12.13

50 3.12 4.35 5.52 6.67 7.83 9.01 10.23

∞(χ2) 2.95 4.01 4.96 5.84 6.67 7.48 8.26

0.05 10 6.18 9.65 14.40 21.61 33.87 58.48 123.6

30 4.75 6.41 8.05 9.74 11.52 13.43 15.50

50 4.53 5.99 7.36 8.70 10.05 11.43 12.84

∞(χ2) 4.23 5.44 6.50 7.48 8.41 9.29 10.16

0.01 10 12.85 19.50 29.30 45.46 76.18 148.17 391.4

30 8.64 10.95 13.24 15.62 18.15 20.87 23.85

50 8.05 9.97 11.76 13.53 15.30 17.10 18.95

∞(χ2) 7.29 8.75 10.02 11.20 12.26 13.30 14.30
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Table 2: Simulation Estimates of the Type I Error Probability in the Homoscedastic Case

m

α ν Approx. 2 4 6 8

0.10 10 χ2 0.1478 0.2557 0.4307 0.6987

F 0.0983 0.1018 0.0970 0.1041

30 χ2 0.1188 0.1380 0.1761 0.2252

F 0.1029 0.0995 0.0967 0.0961

50 χ2 0.1027 0.1245 0.1452 0.1620

F 0.0948 0.0975 0.1004 0.0961

0.05 10 χ2 0.0940 0.1835 0.3550 0.6285

F 0.0497 0.0449 0.0464 0.0505

30 χ2 0.0646 0.0832 0.1066 0.1507

F 0.0513 0.0482 0.0476 0.0447

50 χ2 0.0588 0.0660 0.0830 0.0997

F 0.0507 0.0479 0.0510 0.0464

0.01 10 χ2 0.0348 0.0946 0.2332 0.5149

F 0.0106 0.0110 0.0088 0.0091

30 χ2 0.0183 0.0258 0.0392 0.0610

F 0.0109 0.0095 0.0098 0.0081

50 χ2 0.0150 0.0182 0.0228 0.0318

F 0.0101 0.0090 0.0096 0.0074
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Table 3: Simulation Estimates of the Type I Error Probability in the Heteroscedastic Case

Using the F Approximation with Estimated Degrees of Freedom (α = .05)

σ2
1 σ′2

1 σ2
2 ρ1 ρ2 n1 = n2 = 20 n1 = n2 = 30 n1 = n2 = 50

m = 4 m = 8 m = 4 m = 8 m = 4 m = 8

4 4 1 0 0 .0535 .0562* .0536 .0486 .0506 .0487

4 2 1 0 0 .0463 .0509 .0530 .0468 .0501 .0500

4 4 1 0.5 0 .0478 .0512 .0481 .0453 .0486 .0500

4 2 1 0.5 0 .0493 .0444 .0466 .0460 .0512 .0460

4 4 1 0 0.5 .0500 .0575* .0500 .0501 .0458 .0477

4 2 1 0 0.5 .0479 .0546* .0479 .0474 .0449 .0476

4 4 1 0.5 0.5 .0572* .0538 .0469 .0525 .0479 .0482

4 2 1 0.5 0.5 .0509 .0463 .0499 .0450 .0473 .0490

∗ These type I error probability estimates exceed the nominal α = .05 at the 5%

significance level.
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Table 4: Log-Transformed Interleukin-6 Plasma Concentration Measurements at Five Suc-

cessive Occasions on Bypass Surgery Patients with and without Autotransfusion

Patient With Autotransfusion Without Autotransfusion

j x1j1 x1j2 x1j3 x1j4 x1j5 x2j1 x2j2 x2j3 x2j4 x2j5

1 2.84 4.00 3.45 2.55 2.46 2.60 3.76 2.86 2.41 2.71

2 2.51 3.26 3.10 2.82 2.48 2.82 3.66 3.20 2.49 2.49

3 2.41 4.14 3.37 2.99 3.04 2.18 3.65 3.87 3.00 2.65

4 2.95 3.42 2.82 3.37 3.35 3.46 3.60 2.97 1.80 1.74

5 3.14 3.25 3.31 2.87 3.41 4.01 3.48 4.42 3.06 2.76

6 3.79 4.34 3.88 3.40 3.16 3.04 2.87 2.87 2.71 2.87

7 4.14 4.97 4.25 3.43 3.06 3.47 3.24 3.47 3.26 3.14

8 3.85 4.31 3.92 3.58 3.91 4.06 3.92 3.18 3.06 1.74

9 3.02 3.11 2.20 2.24 2.28 2.91 3.99 3.06 2.02 3.18

10 3.45 3.41 3.80 3.86 3.91 3.59 4.21 4.02 3.26 2.85

11 5.37 5.02 4.59 3.99 4.27 4.51 4.21 3.78 2.63 1.92

12 3.81 4.21 4.08 3.18 1.86 3.16 3.31 3.28 3.25 3.52

13 4.19 4.59 4.79 4.17 2.60 3.86 3.61 3.28 3.19 3.09

14 3.16 5.30 4.69 4.83 4.51 3.31 2.97 3.76 3.18 2.60

15 3.84 4.32 4.25 3.87 2.93 3.02 2.73 3.87 3.50 2.93


