
Expressing Special Structures in an

Algebraic Modeling Language

for Mathematical Programming

Robert Fourer

Northwestern University
Evanston, Illinois 60201

David M. Gay

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

PUBLISHED VERSION

Robert Fourer and David M. Gay, “Expressing Special Structures in an Algebraic Modeling
Language for Mathematical Programming.” ORSA Journal on Computing 7 (1995) 166–190.

ABSTRACT

A knowledge of the presence of certain special structures can be advantageous in both the
formulation and solution of linear programming problems. Thus it is desirable that linear
programming software offer the option of specifying such structures explicitly. As a step
in this direction, we describe extensions to an algebraic modeling language that encompass
piecewise-linear, network and related structures. Our emphasis is on the modeling consid-
erations that motivate these extensions, and on the design issues that arise in integrating
these extensions with the general-purpose features of the language. We observe that our
extensions sometimes make models faster to translate as well as to solve, and that they
permit a “column-wise” formulation of the constraints as an alternative to the “row-wise”
formulation most often associated with algebraic languages.

1. Introduction

Certain special structures play a valuable role in both the formulation and the
solution of linear programs. When these structures are recognized explicitly, an
LP model can be formulated in a simpler and more natural way. When these
structures are communicated to correspondingly specialized algorithms, the resulting
LP problems can also be solved faster.

The benefits of special structures are not always so easy to realize, however. For
structured linear programs of typical size and complexity, some kind of computer
software is invariably employed to bridge the gap between the modeler’s conception
and the algorithm’s requirements. To take advantage of a structure, this software
must be able to recognize the structure’s presence in its input from the modeler,
and must be able to communicate the structure in its output to the algorithm.

For any particular application, the necessary software can be provided by writing
a “matrix generation” program that is specialized to the structure at hand; but the
difficulties of debugging and maintaining such a program are well known [16]. As
an alternative, numerous software systems have been specifically designed to read
a modeler’s LP formulation and to convert it automatically for solution. Most of
these systems are intended for general-purpose linear programming, however, and
so lack any facilities for dealing with structures. Other systems that do recognize
structure are highly specialized to particular structures or applications.

We are thus led to consider the possibility that a general-purpose linear program-
ming system might offer the option of specifying certain structures. The structure
features of such a system would be implemented as extensions to the basic facilities
for linear programming. Ideally, these extensions would be independent, in the sense
that a user concerned with a certain structure would only need to learn about the
extensions supporting that structure. At the same time, all extensions would be
tightly integrated with the rest of the system, so that they would not burden users
with too much in the way of new syntax or concepts.

As an example of how general-purpose LP software can accommodate special
structures, this paper presents extensions to the AMPL mathematical programming
language and translator for the purpose of handling network, piecewise-linear and
related structures. The emphasis is on the modeling considerations that motivate
these extensions, and on the design issues that must be resolved in adding these
extensions to the general-purpose features of the language. Close attention to design
is seen to be essential in providing a syntax that is natural to use, yet that achieves
the goals of independence and integration stated above.

The remainder of this introduction presents a brief self-contained summary of
the essential features of AMPL, and outlines the rest of the paper.

1.1 Essentials of AMPL

AMPL is an algebraic modeling language: a computer-readable language for
describing objective functions and constraints in the kind of algebraic notation that
many modelers use. Languages of this kind, such as GAMS [5, 6] and MGG [40],
were first developed in the 1970s, and have seen increasingly wide use in recent

1

R, a set of raw materials set R; # raw materials
P, a set of products set P; # products

aij , i ∈ R, j ∈ P: param a {R,P} >= 0;
input-output coefficients # input-output coefficients

bi, i ∈ R: units available param b {R} > 0; # units available

cj , j ∈ P: profit per unit param c {P} > 0; # profit per unit
uj , j ∈ P: production limit param u {P} > 0; # production limit

xj , j ∈ P, with 0 ≤ xj ≤ uj : var x {j in P} >= 0, <= u[j];
units of j produced # units of j produced

Maximize
∑
j∈P cjxj : total profit maximize tot: sum {j in P} c[j] * x[j];

total profit

Subject to
∑
j∈P aijxj ≤ bi, i ∈ R: subj to supply {i in R}:

limited availability of material sum {j in P} a[i,j] * x[j] <= b[i];
limited availability of material

Figure 1–1. A simple linear program in algebraic notation. At left is a traditional informal
algebraic description; at right is an equivalent in the AMPL modeling language.

years. AMPL is notable for its particularly natural and general syntax, and for its
variety of set and indexing expressions.

The AMPL language employs a standard computer character set, and permits
none of the ambiguity that is tolerated in informal algebraic notation. Thus a term
such as

∑
j∈P aijxj becomes sum {j in P} a[i,j] * x[j], in which the subscripts of

a must be separated by a comma, and the multiplication is indicated by an explicit
operator. Figure 1–1 displays a linear programming model side-by-side with its
equivalent in AMPL. Even in this simple case one can see the essential features of
the five basic kinds of AMPL declarations: set (index set), param (parameter), var
(variable), maximize or minimize (objective), and subject to (constraint).

The design of AMPL enforces a distinction between an optimization model, such
as is seen in Figure 1–1, and the instances of that model that correspond to particular
choices of set and parameter data. To employ AMPL in solving a particular instance,
one must supply both a model and a data description, which are processed by special
software—the AMPL translator—to produce the information required by a solver.
Since the extensions described in this paper affect only the way that a model is
formulated, we do not show the data description in our examples.

An earlier paper [19] has introduced the linear programming features of AMPL.
Much of the same material, together with four extended examples, is presented in
a technical report [18] available from the authors. The Scientific Press publishes
a book [20] and software that support the complete AMPL language, including all
features described in this paper, as well as extensions for nonlinear and integer
programming.

2

1.2 Outline

Section 2 considers the problem of specifying terms that are piecewise-linear in
individual variables. With some effort, a modeler may transform piecewise-linear
terms to linear ones by substituting special structures of auxiliary variables or con-
straints. We propose instead a new syntax that permits piecewise-linearities to be
described directly in an AMPL model, while appropriate transformations are pro-
vided automatically by the AMPL translator.

Section 3 deals with the specification of network flow linear programs, which
have a particularly distinctive constraint structure that relates directly to the ar-
rangement of network nodes and arcs. We examine the drawbacks of specifying
network constraints algebraically, and propose an alternative in which node and
arc declarations specify the network directly.

Section 4 extends our analysis to more general kinds of network structures in
LPs. We show that slight further extensions of AMPL suffice to permit a natural
description of the network structure in three common cases: weighted flows, side
constraints, and side variables.

The approach of the previous two sections is applied in Section 5 to another
special structure, that of set covering problems. We then observe that the AMPL
extensions for both networks and set covering can be regarded as cases in which
the constraint coefficient matrix is specified “by column” rather than “by row”.
This leads to our final extension, which permits column-wise specification of any
constraint structure.

Our concluding comments in Section 6 address some of the broader issues raised
by this paper. AMPL’s structure features allow people to specify a model in more
than one way, by use of one or another extension; we argue that this sort of re-
dundancy is a virtue of the design. AMPL’s extensions for column-wise constraint
specification go against the inherent row-wise orientation of algebraic languages; we
point out that many of the strengths of an algebraic modeling language are realized
regardless of how the constraints are specified.

We present statistics to show that the extensions described in this paper often
allow the AMPL translator to work faster. We also argue that, when structures
are specified explicitly in AMPL, certain preprocessing steps of structure-exploiting
algorithms can be simplified or eliminated. Finally, we comment on several promis-
ing areas of related research, including algebraic language extensions for additional
structures, and graphical interfaces for network optimization.

3

2. Piecewise-Linear Programming Models

A continuous function of one variable is piecewise-linear (P-L) if its domain can
be partitioned into intervals on which the function is linear. The P-L functions that
we consider here are defined by a finite number of intervals, but may otherwise be
quite arbitrary:

The linear piece on each interval can be defined in the customary way by its slope
and by its value at zero, or intercept. The boundaries of the intervals, where the
slope changes, are the P-L function’s breakpoints. For present purposes, we define
a piecewise-linear program (or P-LP) to be the generalization of a linear program
that results from using some of these P-L terms in the objective and constraints, in
addition to the usual linear terms.

Piecewise-linear programs have a long history of application, dating back to the
1950’s [7, 12]. They are widely used for a variety of purposes in large-scale math-
ematical programming: for modeling bidirectional flows, inventories/backorders,
tension/compression and other “reversible” activities; for approximating nonlinear-
ities, especially when the relevant nonlinear functions are only rough estimates to
begin with; and for penalizing the deviations of objectives or constraints from desired
levels.

Any P-LP can be converted, by any of several transformations, to an equivalent
mathematical program in which the P-L terms are replaced by linear terms. For
every linear piece, such a transformation adds a few constraints or variables (or
both), including a zero-one integer variable except in special cases. The resulting
linear or mixed-integer formulation is then readily expressed and solved with the
help of an algebraic modeling language such as AMPL. Yet although this sort of
transformation approach is sufficient in a mathematical sense, it fails to deal with
two important practical considerations in piecewise-linear programming:

• People conceive of a model in its original P-L formulation, and
would prefer to work with it in that form.

• Some optimization packages can employ a knowledge of the original
P-L formulation to solve P-LPs much more efficiently than they can
solve the equivalent linear or mixed-integer programs.

To address these issues, the AMPL language must provide a syntax for expressing
P-L terms explicitly.

Whereas AMPL’s linear expressions are based on standard algebraic notation,
there is no commonly accepted terminology for piecewise-linear functions. We have
had to invent a terminology, which is described in this section. We first explain

4

the underlying motivation for our design, and then describe the specifics. Finally,
we discuss the issues involved in translating piecewise-linear programs for various
solvers.

2.1 Design requirements

Our goal in this work was to design an AMPL expression that could concisely
and clearly describe any piecewise-linear function of one variable. Before we could
address the details of the syntax, we had to decide how AMPL would specify a
P-L function unambiguously. Certainly we wanted to use no more information than
necessary, but there are several different minimal collections of numbers that can
define the same P-L function:

1. A list of breakpoints, and either

(a) the change in slope at each breakpoint, or

(b) the value of the function at each breakpoint.

2. A list of slopes, and either

(a) the distance between the breakpoints bounding each slope, or

(b) the value of the intercept associated with each slope.

3. A list of breakpoints and a list of slopes.

In the case of (1a), (2a) or (3), these values actually only define the P-L function
up to an additive constant; the value at one arbitrary point must be given in order
to fix the function. Also for (1a) it is necessary to give the value of one particular
slope, and for (2a) the value of one particular breakpoint.

Any of these representations might correspond most closely to the data that
are available for a given application. Thus from the standpoint of convenience
and clarity we might prefer to make all five representations available in the AMPL
language. From the standpoint of complexity, on the other hand, we are reluctant
to add any new representations at all. Every new syntax interacts with existing
features of AMPL, often raising thorny design issues that involve all aspects of
language translation from parsing to coefficient generation; even when these issues
can be resolved, any new feature results in a new collection of rules that users
must learn. After considering these tradeoffs between convenience and complexity,
we decided to initially add just one piecewise-linear representation to the AMPL
language.

The syntax that we now proceed to describe is based on representation (3) above.
It explicitly specifies separate slope and breakpoint sequences, with conventions to
deal with the fine points: which slopes surround which breakpoints, and which
function is intended among all those differing by an additive constant. We find
this representation to be the clearest and most convenient for expressing common
piecewise-linear terms of a few pieces, such as those employed in modeling penalties
and reversible activities. Other representations may be preferable for expressing ap-
proximations to nonlinear functions, but representation (3) is reasonably convenient
for that purpose as well.

5

2.2 Examples

A piecewise-linear function is written in AMPL by use of an expression of the
following form:

<< breakpoints; slopes >> variable

The components denoted breakpoints and slopes are the defining breakpoint and
slope lists, whose syntax is to be described shortly. They are enclosed in << . . . >>
so that they comprise an entity clearly different from any of the other algebraic
constructs in AMPL. The entire entity is followed by the variable to which it applies;
one can think of the entity as “multiplying” the variable by several slopes, rather
than by just the one slope of a linear term.

The breakpoints and slopes are given, in the simplest case, by comma-separated
lists of values. AMPL adopts the conventions that

• the first slope refers to the linear piece between −∞ and the first
breakpoint;

• the last slope refers to the linear piece between the last breakpoint
and +∞; and

• the function’s value at zero is zero.

Thus, for example, the absolute value function of an AMPL variable x[j] is written

<<0; -1, 1>> x[j]

since the single breakpoint is at zero, and the slopes are −1 to the left and +1 to
the right. A more complicated instance is expressed in the same way:

<<-1,1,3,5; -5,-1,0,1.5,3>> x[j]

In an objective function, this term would tend to penalize deviation of x[j] from
the interval between 1 and 3.

Sometimes it is appealing to regard a lower bound on a variable as its first
breakpoint, or an upper bound on a variable as its last breakpoint. For example,
given the AMPL declarations set S and var x {j in S} >= 0, an increasing cost
function of the variable x[j] can be represented as

6

<<3,5; 0.25,1.00,0.50>> x[j]

where the first “breakpoint” of zero is really just the lower bound on x[j]. We did
consider allowing the first or last item in a breakpoint list to represent a bound;
but then, in cases of just one bound as above, there would be an equal number
of breakpoints and slopes, so that an additional convention would be necessary to
indicate whether the first breakpoint was intended to come before or after the first
slope. We chose instead to keep the syntax simple by requiring bounds to be defined
as part of a variable’s declaration (or possibly by means of explicit constraints) while
only “interior” breakpoints are listed in a P-L expression.

Multiplication of a P-L term has the effect of multiplying all its slopes. Thus,

0.25 * <<0; -1,3>> x[j]

is the same as the convex function <<0; -0.25,0.75>> x[j]. On the other hand,
multiplication by a negative number,

-1 * <<0; -1,3>> x[j]

gives a concave function that could just as well be written -<<0; -1,3>> x[j] or
<<0; 1,-3>> x[j].

The slopes and breakpoints need not be literal numbers as in the above examples.
They could just as well be any AMPL expressions. However, these examples do
exhibit a fixed number of slopes and breakpoints. This is no limitation when the
terms are simple functions such as absolute values; but in other cases, such as where
the terms represent penalties or convex increasing costs, it can be desirable to let
the number of linear pieces be itself a function of the data. AMPL already provides
for data-dependent collections of many other kinds, by allowing model entities to be
indexed over sets. Thus it is natural to allow indexed slope and breakpoint series
as well.

As an example, we could let npce be an AMPL parameter that specifies the
number of linear pieces in a piecewise-linear function of x[j]. Then we could define

7

parameter arrays such that bkp[k] and slp[k] are the kth breakpoint and slope
values, respectively:

param npce integer > 1;
param bkp {1..npce-1};
param slp {1..npce};

Our expression for a piecewise-linear term having these breakpoints and slopes is as
follows:

<<{k in 1..npce-1} bkp[k]; {k in 1..npce} slp[k]>> x[j]

The construct {k in 1..npce-1} is an AMPL indexing expression, such as might
be used elsewhere in the model to declare an indexed collections of parameters or to
describe an indexed sum. Here it serves to indicate that the breakpoints are bkp[1],
bkp[2], . . . , bkp[npce-1]; the number of breakpoints clearly depends on the value
for npce that is supplied as data. Analogous comments apply to the slopes.

The indexed breakpoint and slope notation is readily applied to more intricate
cases, in which P-L functions of the variables x[j] may have different values of the
breakpoints and slopes for each j, or even different numbers of breakpoints and
slopes for each j. As an example, suppose that the variables x[j] are indexed over
some set S; we index npce over S, and index bkp and slp over both S and the
number of pieces:

set S;
var x {S};

param npce {S} integer > 1;
param bkp {j in S, 1..npce[j]-1};
param slp {j in S, 1..npce[j]};

minimize cost:
sum {j in S} <<{k in 1..npce[j]-1} bkp[j,k];

{k in 1..npce[j]} slp[j,k]>> x[j];

In the objective, the term for x[j] has npce[j] pieces. The breakpoints in order
are bkp[j,1], . . . , bkp[j,npce[j]-1], and the corresponding slopes are slp[j,1],
. . . , slp[j,npce[j]].

A “piecewise-linear” function whose form depends on the data may turn out to
have only one piece, in which case AMPL properly interprets it as a linear function.
For instance, in the preceding illustration, if npce[j] takes the value 1 for some
j then the set 1..npce[j]-1 is empty, and no breakpoints bkp[j,k] are defined.
The P-L term involving x[j] is interpreted as a linear term having the one slope
slp[j,1] everywhere.

Two complete examples are exhibited in the appendices. struc is a structural
design model that uses simple two-piece terms (Appendix C). score is an equation-
fitting model for credit scoring, in which the number and value of the breakpoints
and slopes depend in various ways on the problem data (Appendix B).

8

2.3 General form

The general AMPL syntax for a piecewise-linear term is

<< bkpt1, bkpt2, . . .; slope1, slope2, . . . >> variable

where each of the items bkpt1, bkpt2, . . . and slope1, slope2, . . . has one of the forms

expr
{indexing} expr

The expr must be an AMPL expression that evaluates to a number. The optional
indexing must specify an ordered AMPL set: either a set entirely of numbers (as in
our examples) or a set that has been defined to be ordered (by specifying ordered
or circular in its declaration). Any indexed item is expanded to a sequence of
numbers by taking each member of the set in order, substituting it into expr, and
evaluating the result. After all expansions are made, the breakpoints must be non-
decreasing, and the number of slopes must be one more than the number of break-
points.

Not all piecewise-linear functions of interest are zero at zero, as the AMPL
convention assumes. If it is desired to have a P-L function evaluate to other than
zero at zero, one may simply add a constant term, observing that

const-expr + << bkpt1, bkpt2, . . .; slope1, slope2, . . . >> variable

has the value of const-expr at zero. A P-L function’s value at zero is sometimes of
no particular significance, however, especially when the variable is bounded away
from zero. The function’s value may instead be known to be zero at the first or last
breakpoint, or (for penalty functions) at a breakpoint where the value is smallest;
as a result, the modeler may be forced to construct a messy const-expr to adjust
the function to the proper level. For convenience in these situations, AMPL also
recognizes the more general notation

<< bkpt1, bkpt2, . . .; slope1, slope2, . . . >> (variable, const-expr)

which is interpreted as before, except that const-expr gives a value of variable at
which the function is zero.

2.4 Translation issues

An AMPL user typically issues commands to read a model and data from files,
and to choose a solver which may be an implementation of one algorithm or a
package of algorithms such as MINOS [38], CPLEX [9] or OSL [29]. Upon receiving
a subsequent solve command, the AMPL translator generates a particular instance
of the model, writes it to a file in a compact format, and passes control to a driver
for the chosen solver. The driver reads the newly-created file, translates the instance
to the solver’s internal data structure, and invokes an appropriate algorithm. At
the completion of the algorithm, the driver also translates the optimal solution back
to a file that AMPL can read.

The AMPL translator can deal with P-L functions most straightforwardly by

9

writing a description of each such function’s slope and breakpoint structure to the
generated file. This would be the right approach for a solver such as CPLP [14, 23]
that can handle some kinds of P-L functions directly, through the use of an algorithm
that has been adapted to solve piecewise-linear problems in an efficient way.

For the many solvers that cannot operate directly on P-L functions, some kind
of transformation to a linear program is necessary. Because this is such a common
situation, we have built the transformation logic directly into the AMPL translator,
rather than duplicating it in the drivers for numerous solvers. The transformation
is turned on or off by use of AMPL’s option command; it is on by default in the
current implementation.

A piecewise-linear program can be transformed to an equivalent linear program,
provided that certain conditions are met [1]. In the objective, all P-L terms must
be convex (if minimizing) or concave (if maximizing). In the constraints, P-L terms
are limited to the following situations:

• convex on the left-hand side of a ≤ constraint, or the right-hand
side of a ≥ constraint; or

• concave on the left-hand side of a ≥ constraint, or the right-hand
side of a ≤ constraint.

A P-L term is readily identified as convex or concave through its slope sequence,
which is increasing for a convex function and decreasing for a concave one. Of the
several available transformations (surveyed in [17]), AMPL employs the so-called
∆-form [10], which replaces each P-L term by a linear combination of bounded
auxiliary variables. The coefficients of these variables correspond to slopes, and
their bounds correspond to differences between breakpoints.

When the above conditions are not satisfied, the transformation must be to some
kind of integer linear program. For this purpose it is most convenient to use the
Λ-form transformation [12], which replaces each P-L term by a convex combination
of the function values at the breakpoints. To describe the convex combination,
this transformation introduces a nonnegative auxiliary variable for each breakpoint,
and a constraint that these variables sum to 1; in addition, these variables must
be explicitly constrained so that at most two of them, corresponding to adjacent
breakpoints, are positive in any feasible solution. Many current solvers for integer
programming impose this adjacency constraint directly and efficiently, by treating
the auxiliary variables as a “special ordered set of type 2” [2, 42].

To support solvers that do not implement special ordered sets, AMPL offers the
option of transforming a P-LP to an equivalent mixed-integer linear program. A
transformation for this purpose must introduce a zero-one integer variable as well as
a continuous linear variable corresponding to each piece, and it must add constraints
to enforce the appropriate relationships between adjacent variables. It can be based
on either the ∆-form [37] or the Λ-form [11]; AMPL employs the latter.

Because convexity and concavity depend upon an appropriate ordering of the
slopes, any error in the slope data may cause these properties to be lost. As a result,
AMPL may generate a difficult integer program when a transformation to a simpler
linear program is expected. To prevent occurrences of this kind, AMPL’s check

10

statement can be used to verify that the slopes are in the expected order; in the
case of the preceding example, a check for convexity could be written as

check {j in S, k in 1..npce[j]-1}: slp[j,k] <= slp[j,k+1];

It is not necessary to check the breakpoints in this way, since it is an AMPL error
to specify them in other than an increasing order.

AMPL’s transformation strategy enables it to successfully address the two prac-
tical considerations that were cited at the beginning of this section. When a model
uses AMPL’s notation for piecewise-linear terms, the AMPL translator generates
problem instances in the form best suited to the chosen solver. Subsequently, when
the optimal solution is passed back from the solver, AMPL undoes the effects of any
transformation, so that people can work with the solution in terms of the original
variables and constraints.

11

3. Network Flow Models

The linear network flow model is one of the best known and most important in
linear programming. In its purest form, it is based on the sort of directed network
exhibited in Figure 3–1, in which nodes are connected by “one-way” arcs. Some
kind of entity is imagined to flow, literally or figuratively, from node to node along
the arcs, so that the decision variables are the levels of these flows. The objective
is to minimize or maximize some linear function of the flows; the constraints are
simple bounds on the flows, and balances of flow at the nodes. Details are supplied
in Chvátal [8] and many other linear programming texts.

Figure 3–1. Diagram of a directed network, in which circles represent the nodes, and
arrows the arcs. For the generic model introduced in the text, a cost and bounds on the
flow are associated with each arc, and a required net flow is associated with each node.

Network flow models are important because they have many varied applications,
and because they are particularly easy to solve by means of specialized algorithms.
Although the general-purpose features of AMPL suffice to express virtually any of
these models, the resulting constraint expressions are often not as natural as we
would like. Indeed, it can be hard to tell whether a model’s algebraic constraints,
taken together, represent a valid collection of flow balances on a network. As a result,
when specialized network optimization software is used, additional checking of the
model must be made outside of the language; Zenios [44] describes a comparable
arrangement in conjunction with the GAMS algebraic modeling system [6].

To overcome the awkwardness of expressing network flow models in AMPL, we
have added the option of declaring nodes and arcs more explicitly. We first explain
the source of the awkwardness at greater length below, then detail the design of the
network extensions, and finally comment on translation issues.

Other, more graphically oriented systems for expressing network models are
compared to AMPL in the concluding remarks of Section 6.

3.1 Design requirements

The issues faced by our design can be illustrated through a simple generic model
of minimum-cost flows on a directed network. The structure of the network is
determined by a set N of nodes, and a set A ⊆ N ×N of arcs, such that (i, j) ∈ A
if and only if there is an arc from node i to node j. The objective is to minimize
the total cost of the flows xij along all the arcs,∑

(i,j)∈A
cijxij ,

12

subject to bounds on the flows along the arcs,

lij ≤ xij ≤ uij , (i, j) ∈ A,

and balance of flow at the nodes. The latter constraints have the form∑
(flows out of i)−

∑
(flows into i) = bi, i ∈ N ,

where bi is the amount of flow produced at node i if bi ≥ 0, or −bi is the amount con-
sumed at node i if bi ≤ 0. (The special case of bi = 0 defines a pure “transshipment”
node at which flow out equals flow in.)

The flow balance constraints pose the main difficulty of this model for algebraic
notation. To be precise, they should be written as∑

j∈N :(i,j)∈A
xij −

∑
j∈N :(j,i)∈A

xji = bi, i ∈ N ,

but the required indexing expressions are then so long as to be awkward. Instead
we can abbreviate them, writing∑

(i,j)∈A
xij −

∑
(j,i)∈A

xji = bi, i ∈ N .

Since this constraint is being defined for each i, it makes sense to interpret (i, j) ∈ A
in this context as the set of all arcs out of i, and (j, i) ∈ A as the set of all arcs
into i.

We will refer to the AMPL version of this model as transship. Its data can be
declared as

set N;
set A within N cross N;

param b {N};
param c {A} >= 0;

param l {A} >= 0;
param u {(i,j) in A} >= l[i,j];

The variables can then be defined, along with their bounds, by

var Flow {(i,j) in A} >= l[i,j], <= u[i,j];

We name the variables Flow rather than x, to make the model a little clearer, and to
help with the subsequent exposition. We can now easily write the objective function
as

minimize Total_Cost: sum {(i,j) in A} c[i,j] * Flow[i,j];

Finally, the flow balance constraints are expressed by

subject to Balance {i in N}:
sum {j in N: (i,j) in A} Flow[i,j] -
sum {j in N: (j,i) in A} Flow[j,i] = b[i];

13

or, more concisely,

subject to Balance {i in N}:
sum {(i,j) in A} Flow[i,j] - sum {(j,i) in A} Flow[j,i] = b[i];

These representations of the constraints are direct transcriptions of the two algebraic
alternatives formulated previously.

Whether in the language of mathematics or of AMPL, the expressions for the
flow balance constraint are fundamentally unsatisfying. The idea of constraining
“flow out minus flow in” is intuitively obvious, yet its algebraic equivalents are
not so quickly comprehended. The problem is only worse for models of realistic
complexity; as two examples, we give a planning and distribution model (dist) in
Appendix A and a scheduling model (train) in Appendix D.

Our difficulty arises from the fact that standard algebra can directly describe
only variables and constraints, while the existence of nodes and arcs is an implicit
property of the formulation. People tend to approach network flow problems in
just the opposite way. They imagine giving an explicit definition of nodes and arcs,
from which flow variables and balance constraints implicitly arise. To deal with this
situation, we have designed an extension that permits AMPL to express the relevant
network concepts directly.

3.2 Design specifics: node declarations

The network extensions to AMPL comprise two new kinds of declaration, arc
and node, which take the place of the var and subject to declarations in an alge-
braic constraint formulation.

AMPL’s node declarations name the nodes of a network, and characterize the
flow balance constraints at the nodes. The arc declarations then name and define
the arcs, by specifying the nodes that arcs connect, and by providing a variety of
optional information associated with arcs. Since at least some of the nodes must
be declared before any of the arcs, we begin by describing our design for the node
declarations, and then introduce the arc declarations. A completed statement of
the transship example using node and arc is exhibited in Figure 3–2, with the
equivalent example using var and subject to placed alongside for comparison.

A node declaration names and defines a network node, or an indexed collection
of nodes. Thus the transship example declares

node Balance {i in N}: net_out = b[i];

to define a node Balance[i] for each member i of the set N. The optional part of
the declaration after the colon is a description of the flow balance constraint, as we
will explain shortly.

One might informally think of N above as actually being the set of nodes; but in
AMPL it is just a set of objects over which the collection Balance of nodes happens
to be defined. Such a distinction permits a collection of nodes to be indexed over
any set that can be described in AMPL, such as a set of pairs in the train model
of Appendix D:

14

NODE-ARC FORMULATION ### ### ALGEBRAIC FORMULATION

set N; set N;
set A within N cross N; set A within N cross N;

param b {N}; param b {N};
param c {A} >= 0; param c {A} >= 0;

param l {A} >= 0; param l {A} >= 0;
param u {(i,j) in A} >= l[i,j]; param u {(i,j) in A} >= l[i,j];

var Flow {(i,j) in A}
>= l[i,j], <= u[i,j];

minimize Total_Cost; minimize Total_Cost:
sum {(i,j) in A} c[i,j] * Flow[i,j];

node Balance {i in N}: subject to Balance {i in N}:
net_out = b[i]; sum {(i,j) in A} Flow[i,j] -

sum {(j,i) in A} Flow[j,i] = b[i];
arc Flow {(i,j) in A}:

from Balance[i], to Balance[j],
>= l[i,j], <= u[i,j],
obj Total_Cost c[i,j];

Figure 3–2. Two AMPL descriptions of the transship model described in the text. At
the left, the node and arc extensions are employed; at right, the constraints are given in
the customary algebraic way.

node N {cities,times};

This declaration specifies one node for each city at each time in the planning period.

More complicated network models have several kinds of nodes, each defined by
a separate node declaration. In the dist example of Appendix A there are in fact 7
such declarations,

node RT: rtmin <= net_out <= rtmax; # source of regular crews
node OT: otmin <= net_out <= otmax; # source of overtime crews
node P_RT {fact}; # regular crews at factories
node P_OT {fact}; # overtime crews at factories
node M {prd,fact}; # manufacturing locations
node D {prd,dctr}; # distribution centers
node W {p in prd, w in whse}: net_in = dem[p,w]; # warehouses

The first two of these define individual nodes, while the others are declarations of
indexed collections. Dummy indices, such as p in prd, are not specified except (as
for W) where needed in the remainder of the declaration, to characterize the balance
condition at the nodes.

In the case of transship, the balance condition is described by the phrase
net_out = b[i], which indicates that the net flow out of node Balance[i]—that is,
flow out minus flow in—must equal b[i]. This is precisely the condition that was
previously specified by the algebraic constraint Balance[i] in the network model,
except that the outflow is represented by just the keyword net_out, rather than by

15

the long expression sum {(i,j) in A} Flow[i,j] - sum {(j,i) in A} Flow[j,i].

The dist model exhibits some other possibilities. The balance condition may
involve inequalities, as in the case of nodes RT and OT. When a node is a destination
of flow, such as a warehouse, then it is more natural to specify the condition in
terms of the net flow in; thus the condition for node W[p,w] is net_in = dem[p,w].
A pure transshipment node can be specified by either net_in = 0 or net_out = 0;
such a node is the default in AMPL, so it can be defined by giving no condition at
all, as in several of the dist declarations.

In general, the balance condition may take any of the following forms:

net-expr = arith-expr
net-expr <= arith-expr
net-expr >= arith-expr

arith-expr = net-expr
arith-expr <= net-expr
arith-expr >= net-expr

arith-expr <= net-expr <= arith-expr
arith-expr >= net-expr >= arith-expr

The arith-expr may be any AMPL arithmetic expression in previously declared sets
and parameters, while the net-expr is restricted to one of the following:

net_in net_out
net_in + arith-expr net_out + arith-expr
arith-expr + net_in arith-expr + net_out

Any balance condition written in these ways is guaranteed to be a constraint on net
flow of the kind that must appear in a network linear program.

As an alternative, we could allow the balance condition to be any AMPL ex-
pression that uses net_in or net_out. The keywords flow_in and flow_out might
be provided as well, to represent just the flows in or flows out. This approach does
have the appeal of introducing no new syntactic rules; but it allows the modeler to
specify a balance condition that is not a proper restriction on flow out minus flow in,
or indeed that does not represent any kind of “balance” at all. Such an alternative
would go well beyond our immediate goal of allowing network flow linear programs
to be specified in an obvious way. Hence we have chosen to proceed more cautiously,
by permitting only the forms of the balance condition specified above.

3.3 Design specifics: arc declarations

An arc declaration names and defines a network arc, or an indexed collection of
arcs. The arcs of the transship example are declared as follows:

arc Flow {(i,j) in A}:
from Balance[i], to Balance[j],
>= l[i,j], <= u[i,j], obj Total_Cost c[i,j];

There is one arc Flow[i,j] for each member (i,j) of the set A. This arc takes
the place of the like-named variable in the algebraic model. Much as in the case of

16

the nodes, one might informally think of A as actually being the set of arcs, but in
AMPL it is a set of pairs of objects over which the collection Flow of arcs happens
to be indexed. More complex models have an arc declaration for each different kind
of arc; in the train model, for example, two of the declarations begin:

arc U {c in cities, t in times} . . .
arc X {(c1,t1,c2,t2) in schedule} . . .

An arc U[c,t] represents passenger cars held over in city c at time t, while an arc
X[c1,t1,c2,t2] stands for cars traveling in a train from city c1 (at time t1) to
city c2 (at time t2).

The body of an arc declaration consists of a series of phrases, in any convenient
order. (Commas separating the phrases are optional; their only use is to make the
boundaries between phrases a little more obvious.) At the least, there must be from
and to phrases to show where the arc appears in the network; their general form is

from node-name
to node-name

In transship, the arc Flow[i,j] is naturally declared to be from Balance[i] and
to Balance[j]. More elaborate models use these phrases to establish the structure
of the network. Thus within the train example, the U[c,t] arcs are from N[c,t]
and to N[c,next(t)], while the X[c1,t1,c2,t2] arcs are from N[c1,t1] and
to N[c2,t2].

Other phrases specify bounds on the flow along the arc. They have the general
forms

>= arith-expr
<= arith-expr

In transship the bounds for arc Flow[i,j] are >= l[i,j] and <= u[i,j]; in dist
most of the bounds are >= 0. AMPL recognizes similar phrases with the operator
being = to fix certain flows, or := to suggest initial flows for algorithmic purposes.

Finally, there is a phrase for a linear objective function coefficient:

obj objective-name arith-expr

The arith-expr is evaluated to give the arc’s contribution, per unit of flow, to the
named objective’s value. As in other AMPL models, the objective must be previ-
ously declared. For example, in transship, prior to the use of the objective function
phrase obj Total_Cost c[i,j], there is a declaration

minimize Total_Cost;

Unlike other minimize or maximize declarations, this one requires no expression for
the objective function. The objective coefficients are fully defined by the obj phrase
in the subsequent arc declaration.

As another example, the train model declares two objectives,

17

minimize cars;
minimize miles;

and the subsequent arc X declaration is seen to have two corresponding obj phrases:

obj {if t2 < t1} cars 1
obj miles distance[c1,c2]

The special indexing expression {if t2 < t1} causes a coefficient of 1 to be generated
in the cars objective for those arcs X[c1,t1,c2,t2] that have t2 less than t1. By
default, all other X arcs receive coefficients of zero in the cars objective, with the
result that this objective only counts cars in trains that are still running at the end
of the day. Similarly, because the arc U declaration has only a phrase for the cars
objective, all U arcs are assumed to have coefficients of zero in the miles objective.

3.4 Design specifics: source and sink variables

As described up to this point, AMPL’s node and arc declarations conveniently
describe a broad variety of models based on the kind of network exhibited in Figure
3–1. Nonzero flows in these networks are necessitated by positive lower bounds on
the arcs, or by balance conditions at the nodes. The formulations may be very
general as in transship, or may reflect the structure of the application as in dist
and train. (The general and structured approaches to network model formulation
are contrasted in greater detail in Chapter 11 of [20].)

Another class of network models is more naturally symbolized by the diagram
in Figure 3–3. Here the flow into a designated source node, and the flow out of a
designated sink node, are variables rather than data of the model. At least one of
these variables plays a fundamental role in forcing flow through the network.

Figure 3–3. Directed network with source and sink flows. The dashed arrows at the left
and right depict flow into the network and flow out of the network, respectively; either may
be a variable of the associated linear program.

As an illustration, we consider a generic maximum-flow model. The objective
is to maximize the flow into the source (or equivalently, the flow out of the sink),
subject to conservation of flow at the nodes and bounds on the flows along the
arcs. The formulation begins by specifying a set of nodes as in Figure 3–2, and by
designating two specific nodes to be the source and sink:

set N;

param srce symbolic in N;
param sink symbolic in N, != srce;

18

The parameters srce and sink are declared symbolic to indicate that they may
be any set members; by default AMPL assumes parameters to be numbers. The
phrase != srce checks that the sink is not the same as the source.

As in our previous example, the arcs are indexed over a subset of N cross N. In
this case, we choose to restrict the arc set a bit more, by specifying that arcs cannot
be from the sink or to the source:

set A within (N diff {sink}) cross (N diff {srce});

We can now proceed to declare the bound data, the nodes, and the arcs between
nodes, in much the same way as before:

param l {A} >= 0;
param u {(i,j) in A} >= l[i,j];

node Balance {i in N};

arc Flow {(i,j) in A}:
from Balance[i], to Balance[j],
>= l[i,j], <= u[i,j];

We specify no explicit balance condition for the nodes, since in this application the
flow in equals the flow out at every node.

It remains to declare the source and sink arcs. The diagram in Figure 3–3
strongly suggests that we regard a source arc as directing flow to some node but
not from any node, and a sink arc as directing flow from some node but not to any
node. Thus AMPL allows for an arc declaration that contains only a to phrase or
only a from phrase:

set N;

param srce symbolic in N;
param sink symbolic in N, != srce;

set A within (N diff {sink}) cross (N diff {srce});

param l {A} >= 0;
param u {(i,j) in A} >= l[i,j];

node Balance {i in N};

arc Flow {(i,j) in A}:
from Balance[i], to Balance[j],
>= l[i,j], <= u[i,j];

arc Flow_In >= 0, to Balance[srce];
arc Flow_Out >= 0, from Balance[sink];

maximize Total_Flow: Flow_In;

Figure 3–4. An AMPL formulation of a maximum flow model, using the node and arc
declarations.

19

arc Flow_In >= 0, to Balance[srce];
arc Flow_Out >= 0, from Balance[sink];

The objective is to maximize one or the other of these variables, and so is very easily
specified by a conventional objective declaration at the end:

maximize Total_Flow: Flow_In;

Alternatively, the model could declare maximize Total_Flow before the arc decla-
rations, and could then specify the one term in the objective by adding the phrase
obj Total_Flow 1 to the declaration of Flow_In.

The completed model is shown in Figure 3–4. A similar approach can be used
to model maximum flow problems having a more complex structure, including any
combination of multiple source and sink flows. Similar formulations are useful for
other problems that can be viewed as “sending flow through the network” from one
designated node to another. For example, the well-known shortest path problem is
conveniently modeled by putting a cost on each arc Flow[i,j] equal to its length,
and fixing the Flow_In or Flow_Out variable to 1.

3.5 Translation issues

When a network model is processed (along with appropriate data) by the AMPL
translator, each node declaration gives rise to a constraint; each arc declaration de-
fines a variable, which is given coefficients of −1 and +1 in the constraints indicated
by from and to phrases. The translator’s output can thus be sent to any solver that
recognizes linear programs. The output includes sufficient information, however, to
permit drivers for such optimization packages as CPLEX [9] and OSL [29] to recog-
nize a network linear program and to apply their much faster network optimization
routines. Regardless of the algorithm applied, each driver returns an optimal solu-
tion in the AMPL standard form; AMPL’s commands for examining solutions then
treat arcs like any other variables, and nodes like any other constraints.

It is in fact quite easy to determine whether a linear program generated by
the AMPL translator is a pure network LP, no matter what kind of declarations
the model has employed. In the easiest case, any constraints that represent simple
bounds are first folded into the bounds on the variables. Then each variable is
checked to insure that it has at most two nonzero coefficients in the remaining
constraints, consisting of at most one +1 and one −1.

When the constraints are written using subject to declarations, however, the
test for a pure network becomes somewhat more involved. Depending on how the
model is expressed and how the translator converts AMPL declarations into a con-
straint matrix, some of the constraints may end up being in the form flow in −
flow out = constant, while others are in the form flow out − flow in = constant;
some variables may as a result have two +1 or two −1 coefficients. Hence it may
be necessary to reflect certain constraints (that is, to scale them by −1) in order
to reveal the network structure. Fortunately, there exist fast and simple algorithms
that find the necessary combination of reflections (or determine that none exists).
We have implemented one such algorithm in our AMPL/OSL driver, and a similar
algorithm is planned for introduction into the CPLEX package itself.

20

The advantage of AMPL’s node and arc declarations thus lies not so much in
helping solvers to identify pure network flow structures, as in making network mod-
els easier for people to formulate and understand. As a secondary benefit, the use of
these declarations helps to enforce the formulation of optimization problems as net-
work flow LPs. When a model is formulated instead by use of var and subject to,
it is up to the modeler to ensure that the constraints have the pure network flow
structure that fast algorithms require. In the case of the dist model, for example,
our original version in [18] used an equivalent but slightly different formulation that
departs from the network structure by defining certain variables to have nonzero
coefficients in three different constraints.

21

4. Generalizations of the Network Model Features

Many network applications diverge from the “pure” network flow formulation
considered in the previous section. With only modest further extensions, however,
our AMPL node and arc declarations can be used to specify several more general
kinds of network.

This section describes extensions for network flow models with “multipliers” on
the flows, and with extra (“side”) constraints or variables.

4.1 Network flows with multipliers

The network balance-of-flow constraints may be generalized by allowing arbitrary
coefficients on the flows in and out:∑

(i,j)∈A
vijxij −

∑
(j,i)∈A

wjixji = bi, i ∈ N .

In terms of the network, one can imagine that the flow xij is from node i with
multiplier vij , and to node j with multiplier wij . A pure network flow problem (as
in Section 3) is just the default case in which all multipliers are 1.

AMPL supports this generalization by allowing an optional expression for the
multipliers in a from or to phrase:

from node-name mult-expression
to node-name mult-expression

The mult-expression can be any AMPL expression in the previously declared sets
and parameters. It defaults to 1 if absent.

An example of this feature is found in the dist model’s declaration of the arcs
Manu_OT. Each arc Manu_OT[p,f] carries a “flow” of overtime labor—measured in
crew-hours—from the overtime pool at factory f (node P_OT[f]) to the manufac-
turing facilities for product p at factory f (node M[p,f]). The balance constraint
at the “to” node is not in terms of crew-hours, however, but rather in 1000s of
cases produced. To correct for this difference, the flow must be multiplied by
1/pt[p,f], where pt[p,f] is the previously defined parameter that represents crew-
hours needed to produce 1000 cases.

The declaration of Manu_OT thus contains the phrases

from P_OT[f]
to M[p,f] (1/pt[p,f])

The multiplier at the “from” node is left at its default of 1, since that node does
have a balance constraint in terms of crew-hours.

Besides changes in units, this generalization serves to model such diverse phe-
nomena as losses incurred in transportation and interest accrued on cash flows.

4.2 Side constraints

Some network problems are constrained by more than just balance of flow at
the nodes and bounded flows on the arcs. The additional “side constraints” take

22

set N;
set A within N cross N;

set P; # products

param b {N,P};
param c {A,P} >= 0;

param l {A,P} >= 0;
param u {(i,j) in A, p in P} >= l[i,j,p];

param u_mult {A} >= 0;

minimize Total_Cost;

node Balance {i in N, p in P}: net_out = b[i,p];

arc Flow {(i,j) in A, p in P}:
from Balance[i,p], to Balance[j,p],
>= l[i,j,p], <= u[i,j,p], obj Total_Cost c[i,j,p];

subject to Mult {(i,j) in A}:
sum {p in P} Flow[i,j,p] <= u_mult[i,j];

Figure 4–1. A multicommodity flow model with side constraints.

many forms, but in general they do not correspond to individual nodes or arcs of
the network. Thus it is desirable to let an AMPL model specify arbitrary algebraic
constraints in addition to the constraints implied by node and arc declarations.

The problem of multicommodity flows provides a simple example. In the network
model of Section 3, we can imagine the nodes as representing locations, and the
flows along the arcs as being the transportation of some product. To accommodate
multiple products, we simply replicate the model so that there are separate network
data, nodes and arcs for each product in some set. Instead of an arc Flow[i,j] for
each (i,j) in A, for example, we may have an arc Flow[i,j,p] for each (i,j) in
A and p in P.

If we carry out this replication and nothing more, we have a model that decom-
poses into separate pure network linear programs, one for each product. In a more
likely scenario, however, total shipments of all products from location i to location
j are bounded by some overall upper limit. This additional multicommodity con-
straint ties the different product networks together; since it simultaneously involves
many disjoint arcs Flow[i,j,p] for different products p, it cannot be modeled by
merely adding more nodes and arcs. Rather, we recall from Section 3 that arcs
correspond to variables in the associated network linear program. We can thus use
the names Flow[i,j,p] to stand for the flow variables in an algebraic description
of the multicommodity restriction.

The resulting AMPL model, as seen in Figure 4–1, introduces a new parameter
to represent overall shipment bounds for all (i,j) in A:

param u_mult {A} >= 0;

23

The desired constraints are then written as

subject to Mult {(i,j) in A}:
sum {p in P} Flow[i,j,p] <= u_mult[i,j];

The entire model now clearly appears as a network (defined by node and arc) with
side constraints (defined by subject to).

This example generalizes in the obvious way. Once an entity has been defined
in an arc declaration, it represents a model variable, and may be used as such in
any subsequent subject to declaration.

4.3 Side variables

Once we have decided that subject to can be employed in conjunction with node
and arc, we can allow supplementary var declarations as well. A var declaration
defines “side variables” that can be used, along with variables implicitly defined by
arc declarations, in any constraint defined by use of subject to.

The side variables of some network models appear not in the side constraints,
however, but as complicating terms in the balance-of-flow constraints at the nodes.
Figure 4–2 shows how these variables can be handled in an obvious way within
the node declarations of AMPL. This model is based on a replication of Section
3’s network model, just like the previous one. The separate product networks are
held together not by additional constraints, however, but by additional variables
representing feedstocks that can be used at the nodes.

set N;
set A within N cross N;

set F; # feedstocks
set P; # products

param a {P,F} >= 0;
param u_feed {F,N} >= 0;

param b {N,P};
param c {A,P} >= 0;

param l {A,P} >= 0;
param u {(i,j) in A, p in P} >= l[i,j,p];

minimize Total_Cost;

var Feed {f in F, i in N} >= 0, <= u_feed[f,i];

node Balance {i in N, p in P}:
net_out = b[i,p] + sum {f in F} a[p,f] * Feed[f,i];

arc Flow {(i,j) in A, p in P}:
from Balance[i,p], to Balance[j,p],
>= l[i,j,p], <= u[i,j,p], obj Total_Cost c[i,j,p];

Figure 4–2. A multicommodity flow model with side variables.

24

The new parameter declarations in Figure 4–2 define the amount a[p,f] of
product p that can be derived from one ton of feedstock f, and the limit u_feed[f,i]
on feedstock f available at location i:

param a {P,F} >= 0;
param u_feed {F,N} >= 0;

The new connecting variables Feed[f,i] represent the amount of feed f used at
location i:

var Feed {f in F, i in N} >= 0, <= u_feed[f,i];

Thus the amount of product p derived from feedstock f at location i is given by
a[p,f] * Feed[f,i]. The total of product p derived from feedstocks at location i
is the sum of this quantity over all feedstocks f in F.

At the node Balance[i,p], we want to specify that flow out minus flow in is
equal to b[i,p] (as before) plus the total of product p that is derived from feedstocks
at location i. Thus the AMPL node declaration must be:

node Balance {i in N, p in P}:
net_out = b[i,p] + sum {f in F} a[p,f] * Feed[f,i];

To permit this formulation in AMPL, we need only slightly expand our previous
definition of the node declaration, to allow the use of variables in an arith-expr
within the balance condition.

The arcs of this model are defined as before, using an arc declaration. In this
way, the distinction between network and side variables is emphasized by the AMPL
formulation.

25

5. Other Column-Wise Structures

Although the AMPL network extensions can be motivated entirely by a desire
to more naturally represent network flow models, they can also be viewed as a
special case of an alternative “column-wise” approach to the specification of linear
programs. As a result, some of the ideas of the node and arc declarations can
reasonably be introduced into the var and subject to declarations as well.

In this section, we first present an extension for another special structure, that of
set covering problems. We then show how all of the preceding ideas can be adapted
to permit column-wise specification for linear programs of any structure.

5.1 Set covering

When we tried to represent various set covering models in AMPL, we encountered
much the same kinds of problems that we had with networks. Thus we have used
much the same approach in devising a solution, though some important details are
necessarily different.

In a simple generic set covering model, we are given subsets Sj ⊂ U and costs cj ,
for j = 1, . . . , n. Our goal is to find the cheapest collection of subsets whose union
contains all of U . This problem is readily formulated as a zero-one integer program,
in which the variable xj is 1 if and only if the subset Sj is in the desired collection:

Minimize
∑

1≤j≤n cjxj
Subject to

∑
1≤j≤n : i∈Sj xj ≥ 1, for each i ∈ U

xj ∈ –0, 1˝, for each j = 1, . . . , n

As in the network case, the summation within the main constraint seems awkward,
particularly compared to the very simple original description of the model.

The awkwardness persists when the common algebraic notation is transcribed to
AMPL, as shown in Figure 5–1. Moreover, the processing of this formulation is likely
to be inefficient. When it comes to evaluating the summation in the constraints,

subject to complete {i in U}:
sum {j in 1..n: i in S[j]} x[j] >= 1;

the condition i in S[j] must be tested for every one of the n subsets S[j]. In our
implementation of an AMPL translator, these constraints are generated individually
for each instance of i in U; as a result, the number of tests of the form i in S[j] that
the translator must make is equal to n times the cardinality of U. Since the number
of possible subsets of U grows exponentially, the size of n can easily be 100,000 or
more, while values in the millions are not unknown for crew scheduling applications.
As a result, this kind of AMPL model can become very expensive to translate.

To circumvent these difficulties, AMPL offers a more natural and efficient way
to describe the set covering model’s coefficients. A variable x[j] has nonzero coeffi-
cients of 1 in the constraints complete[i] for each i in S[j], as well as a coefficient
c[j] in the objective. The following AMPL alternative says this directly:

var x {j in 1..n} binary,
cover {i in S[j]} complete[i], obj cost c[j];

26

SET-COVERING EXTENSION ### ### ALGEBRAIC FORMULATION

param n > 0; param n > 0;
param c {1..n} >= 0; param c {1..n} >= 0;

set U; set U;
set S {1..n} within U; set S {1..n} within U;

var x {1..n} binary;

minimize cost; minimize cost:
sum {j in 1..n} c[j] * x[j];

subject to complete {i in U}: subject to complete {i in U}:
to_come >= 1; sum {j in 1..n: i in S[j]} x[j] >= 1;

var x {j in 1..n} binary,
cover {i in S[j]} complete[i],
obj cost c[j];

Figure 5–1. AMPL formulations of the set-covering problem. At left, the description uses
the cover extension; at right, the covering constraints are specified in the usual algebraic
way.

As in the network models that use node and arc, the objective and constraints are
declared before the variables:

minimize cost;
subject to complete {i in U}: to_come >= 1;

In the constraints, the keyword to_come is a placeholder that works much like
net_in or net_out; it shows where the linear expression in the variables is to be
placed. The complete model is exhibited in Figure 5–1 alongside its algebraic equiv-
alent.

In var declarations generally, a cover phrase specifies nonzero coefficients within
previously declared constraints. It has the forms

cover constraint-name
cover {indexing} constraint-name

The first form places a coefficient of 1 in the named constraint; it is the analogue of
the previously discussed to and from phrases. The second form uses {indexing} to
specify an entire indexed collection of constraints in which a coefficient of 1 is to be
placed. This feature is required by our example, because the number of coefficients
of x[j] is determined by the cardinality of S[j], which varies according to the data
supplied. (By contrast, a network model has at most two coefficients per variable.)

To process this alternative AMPL formulation, the translator need only scan
each subset S[j] once. This can represent a particularly great savings when n is
large and each subset is just a small part of U.

5.2 Arbitrary column-wise formulations

The most significant feature common to our network examples (using node and
arc) and our set-covering examples (using cover) is the specification of the coeffi-

27

cients within the declarations of the variables. In the argot of linear programming,
these are column-wise formulations, since a variable’s coefficients lie in one column
of the constraint matrix. By contrast, a fully algebraic formulation is row-wise,
specifying the coefficients within the declarations of the constraints.

Most efficient implementations of linear programming algorithms have used a
data structure in which the coefficients are grouped by column. As a result, early
“matrix generators” tended to encourage column-wise formulations. This view has
persisted, out of habit or convenience, so that in certain applications it is still
customary to view linear programs “by activity” rather than by constraint [34, 43].

Once the syntactic forms for networks and set covering have been introduced, it
is only a small step to provide for column-wise specification of coefficients in general.
In the same way that we allow node declarations to employ net_in and net_out, we
allow subject to declarations to employ the placeholder to_come within constraint
expressions of the forms

variable-expr = arith-expr
variable-expr <= arith-expr
variable-expr >= arith-expr

arith-expr = variable-expr
arith-expr <= variable-expr
arith-expr >= variable-expr

arith-expr <= variable-expr <= arith-expr
arith-expr >= variable-expr >= arith-expr

where the variable-expr is any of

to_come
to_come + arith-expr
arith-expr + to_come

As in the case of set covering, the keyword to_come indicates where AMPL will
place the linear terms that are to be specified in a column-wise fashion.

In subsequent var declarations, we specify the variables’ coefficients by use of a
coeff phrase that combines the features of the from/to and cover phrases:

coeff constraint-name value
coeff {indexing} constraint-name value

The first form says that the variable has a coefficient with the given value in the
named constraint. The second form is similar except that it defines a collection of
coefficients, one for each member of the set specified by {indexing}.

Objectives are handled in an analogous way. A minimize or maximize declara-
tion may use any variable-expr as above to specify an objective function, though the
function consisting of to_come alone is most common and is assumed by default.
In subsequent var declarations, obj phrases specify variables’ coefficients in the ob-
jectives. The syntax is exactly the same as for coeff above, except for the initial
keyword obj.

Figure 5–2 shows how the simple production model of Figure 1–1 can be ex-

28

COLUMN-WISE FORMULATION ### ### ROW-WISE FORMULATION

set R; set R;
set P; set P;

param a {R,P} > 0; param a {R,P} > 0;
param b {R} > 0; param b {R} > 0;
param c {P} > 0; param c {P} > 0;
param u {P} > 0; param u {P} > 0;

var x {j in P} >= 0, <= u[j];

maximize tot; maximize tot:
sum {j in P} c[j] * x[j];

subject to supply {i in R}: subject to supply {i in R}:
to_come >= b[i]; sum {j in P} a[i,j] * x[j] >= b[i];

var x {j in P} >= 0, <= u[j],
coeff {i in R} supply[i] a[i,j],
obj tot c[j];

Figure 5–2. Column-wise (left) and row-wise forms for a linear program in AMPL. This
simple production model was introduced in Figure 1–1.

set N;

set A within N cross N;

set P;

param b {N,P};

param c {A,P} >= 0;

param l {A,P} >= 0;

param u {(i,j) in A, p in P} >= l[i,j,p];

param u_mult {A} >= 0;

minimize Total_Cost;

node Balance {i in N, p in P}: net_out = b[i,p];

subject to Mult {(i,j) in A}: to_come <= u_mult[i,j];

arc Flow {(i,j) in A, p in P}:

from Balance[i,p], to Balance[j,p],

>= l[i,j,p], <= u[i,j,p],

coeff Mult[i,j] 1.0,

obj Total_Cost c[i,j,p];

Figure 5–3. An entirely column-wise formulation for the multicommodity flow model
introduced in Figure 4–1.

29

pressed either row-wise or column-wise through different uses of var, maximize,
and subject to. The coeff phrase can also be used within an arc declaration, to
specify the coefficients in side constraints; Figure 5–3 shows how this option may
be applied so as to convert the model of Figure 4–1 to an entirely column-wise
formulation.

30

6. Reflections and Conclusions

To this point, our presentation has concentrated on specific design decisions
motivated by the extension of AMPL to several model structures. We conclude by
considering some of the broader issues raised by our designs.

We assert that AMPL’s structure extensions add valuable “redundancies” to the
language, and permit the benefits of algebraic notation to be enjoyed even when the
objective and constraints are not specified in a conventional algebraic way. We then
summarize the various efficiencies that the extensions make possible in translation
and solution of models. Finally, we indicate some likely directions of future work on
modeling languages and systems for structured optimization problems.

6.1 Redundancy in the language design

In the preceding discussion of column-wise coefficient specification, we observed
that an obj phrase places coefficients within objective functions in just the same way
that a coeff phrase places coefficients within constraints, using the same syntax
except for the initial keyword. Evidently the obj phrase is redundant, in that
the coeff phrase could just as well serve the same purpose. AMPL enforces a
distinction, however, for two reasons: to promote the readability of var declarations,
and to allow for some additional error-checking. This approach is consistent with
an earlier and more fundamental AMPL design decision, to syntactically distinguish
the declarations of objectives from the declarations of constraints. It is possible to
design a language that uses the same syntax for both, as in the case of GAMS [6].

The cover phrase is a similar case of redundancy. Its role is to provide a conve-
nient, suggestive and reliable way of specifying coefficients equal to 1.

The special network syntaxes of Section 3 are also redundant in a sense. The
node and arc declarations could be subsumed by subject to and var; the effect
of the from and to phrases could be accomplished by coeff; and the net_in and
net_out keywords could be replaced by to_come. In this situation, however, the
special syntax is particularly advantageous. It permits the AMPL model to more
closely correspond to people’s common notions of a network linear programming
formulation, and ensures that every instance generated by the model translator has
the proper network coefficient structure.

As this discussion suggests, there are many redundancies built into AMPL, only
some of which are introduced by the extensions described in this paper. Examples
of others have been cited in our analysis of fundamental language features [19]. In
each case, some degree of naturalness and error-checking has been achieved, at some
loss of simplicity and generality. We have sought to limit redundancies to cases in
which this tradeoff is reasonably favorable.

6.2 Benefits of an algebraic language

Algebraic notation and modeling languages are most often associated with a row-
wise specification of the constraint coefficient matrix, simply because they are most
often used to express a constraint-by-constraint formulation. The discussions in [34]
and [43] are representative of this view. As our examples have shown, however,

31

many of the features of an algebraic language are just as valuable in a column-wise
specification.

AMPL’s apparatus for describing data—in set and param declarations—is seen
in Figures 3–2, 5–1 and 5–2 to provide equally good support for row-wise and
column-wise constraint specifications. AMPL indexing expressions also prove to
be equally useful whether they are indexing sums in an algebraic declaration, or
constraint names in a coeff phrase.

Within a from, to, coeff or obj phrase, the coefficient value may be specified
by a nontrivial algebraic expression, as in this example from the dist model of
Appendix A:

arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0} >= 0

from P_RT[f] to M[p,f] (dp[f] * hd[f] / pt[p,f])

obj cost (rpc[p,f] * dp[f] * hd[f] / pt[p,f]);

Column-wise specifications can make extensive use of an algebraic language in this
way, even though they do not describe any complete objective or constraint alge-
braically.

Finally, an algebraic modeling language can accommodate convenient hybrids of
column-wise and row-wise specifications. Figure 4–1 offers an example in a model
of a network with side constraints. As another possibility, a model could have
a nonlinear objective function expressed algebraically in a minimize or maximize
declaration, but subject to network constraints specified by means of node and arc
declarations.

6.3 Efficiency of translation

We previously remarked that the AMPL language translator should be able to
process certain set covering models much faster when they are specified column-
wise, by use of the cover phrase. Table 6–1 presents evidence of this advantage; in
a randomly constructed 100 by 25000 example, the speedup is by a factor of about 9.

Other tests reported in Table 6–1 show that the special syntaxes for network
and piecewise-linear structures also permit a speedup, though to a much more mod-
est degree. In the network examples, both alternatives generate the same linear
program, but the translator can process the node and arc declarations somewhat
more efficiently than the corresponding var and subject to declarations. In the
piecewise-linear examples, the advantage is due to the P-L formulation’s smaller
number of variables and coefficients than the equivalent LP formulation.

6.4 Efficiency of solution

Previous investigations have established that network and piecewise-linear mod-
els can be solved faster by methods that take advantage of their special structures.
When AMPL is used to formulate models for these methods, its special structure
syntax can make possible some additional efficiencies.

For an algorithm to take advantage of structure in a linear program, it must
receive input indicating where the structure is present. If piecewise-linear functions

32

cover dist score struc trans

Without extensions 92.20 1.38 11.23 0.87 14.35
With extensions 10.37 1.18 8.80 0.77 7.90

Table 6–1. Efficiencies afforded by the AMPL structure extensions. Timings are for the
“genmod” phase of the AMPL translator, on a Sun SPARCstation 2; other phases (as
described in [19]) were much more nearly the same. The test problems are as follows:

cover: The set covering model of Figure 5–1 with randomly generated data. There are
100 members in the set U, and 25000 subsets of one to five members each.

dist: The network model of Appendix A with a realistic data file; similar to test problem
SHIP12L in the netlib set [24]. There are 1268 nodes and 2295 arcs.

score: The piecewise-linear model of Appendix B with a realistic data file; equivalent to
test problem FIT2P in the netlib set [24]. The piecewise-linear version has 3000 constraints
in 3025 variables, with 4 or 5 linear pieces per variable.

struc: The piecewise-linear model of Appendix C with a realistic data file; equivalent to
test problem SCSD8 in the netlib set [24]. The piecewise-linear version has 397 constraints
in 1375 variables.

trans: The network model of Figure 3–2 with randomly generated data. There are 5000
nodes and 50455 arcs.

or network nodes and arcs are declared explicitly, then an AMPL translator can
automatically generate the input that a specialized algorithm requires. If ordinary
algebraic declarations are employed, however, then the algorithm must incorporate
a pre-processing stage in order to make the structure explicit for its purposes.

Previous studies have described pre-processors both for network constraints [44]
and for piecewise-linear objective terms [23]. These routines necessarily involve some
extra cost, but they are usually cheap compared to the overall cost of translation and
solution. A greater source of difficulty lies in the possibility that, due to some error
in the formulation, the generated model may fail to exhibit the expected structure.
A pre-processor must be relied upon to detect any such error and to communicate
it in a useful way to the modeler. No analogous error handling is required when the
desired structure is already explicit in the AMPL model.

6.5 Directions for further investigation

There are special algorithms for other kinds of structures in linear programming.
For which other structures might comparable benefits be realized, through extension
of an algebraic modeling language such as AMPL? Our observations suggest that
a structure is a good candidate if it is well known to modelers, and if it tends to
simplify a formulation when its presence is made explicit. Introduction of a new
syntax for such a structure can offer benefits in the formulation and translation of
a model as well as in its solution.

Among the likely candidates for AMPL extensions, we have been investigating
structures associated with stochastic programming and robust optimization. We also
envision several extensions for special structures in mixed-integer programming, par-
ticularly for expressing certain logical conditions in a way that permits them to be
identified as giving rise to so-called special ordered sets [2, 42]. The range of combi-

33

natorial optimization models representable in AMPL might be further expanded by
introducing more ambitious extensions, such as a way of optimizing over all subsets
of a given set; however, as explained in [4], these pose much greater difficulties of
translation than AMPL’s current structure extensions.

For the case of network optimization models, there has been considerable in-
terest in modeling systems that employ a natural graphical representation. The
simple diagrams in Figures 3–1 and 3–3 can be generalized to a broad variety of
cases; Glover, Klingman and Philips [25, 26] have shown how these diagrams (or
“netforms”) often provide for a very natural and convenient interface between mod-
elers and computer systems. Implementations based on this approach have been
described by Dean, Mevenkamp and Monma [13], by Jones [31, 32], by Ogryczak,
Studziński and Zorychta [39], and by Steiger, Sharda and LeClaire [41].

Netform interfaces to network optimization may be regarded as an alternative
to the algebraic interfaces exemplified by AMPL. The netform approach tends to be
most attractive when the network diagram is central to the modeler’s conception of
the problem, and when the relevant parameters and variables of the problem have a
direct relationship to the nodes and arcs of the diagram. Algebraic representations
are most advantageous when the network diagram is incidental to the modeler’s con-
ception, when substantial manipulations of the data are described within the model,
or when there are nontrivial side constraints or side variables. Rather than force
a user to decide between these two approaches, several investigators have proposed
to maintain parallel netform and algebraic “views” of a model. The principles of a
multiple-view optimization system have been set forth by Greenberg and Murphy
[27]. Kendrick [35, 36] describes a system that maintains both an algebraic view in
the GAMS language [6] and a netform view, while Jones and D’Souza [33] suggest
how an implementation might allow network models to be manipulated both through
netforms and through AMPL formulations that use node and arc declarations.

Despite the many advantages of special-structure extensions to modeling lan-
guages, extensions are often discouraged by the complication and cost of imple-
mentation. Any new feature for a particular structure inevitably interacts with
many existing features, giving rise to a variety of new language rules governing
their interaction, and requiring programming changes throughout the existing lan-
guage translator. The design of modeling languages to facilitate extensions is thus
itself a topic for further study. A framework that permits independent extensions
to be “embedded” in an existing language has been proposed by Bhargava and
Kimbrough [3].

34

Appendix A. DIST, a generalized network distribution model

This generalized network model determines a production and distribution plan to
meet given demands for a set of goods. An equivalent model, employing a somewhat
different formulation, is described by use of algebraic constraints in [18].

SHIPPING SETS AND PARAMETERS

set whse 'warehouses'; # Locations from which demand is satisfied

set dctr 'distribution centers' within whse;

Locations from which product may be shipped

param sc 'shipping cost' {dctr,whse} >= 0;

Shipping costs, to whse from dctr, in $ / 100 lb

param huge 'largest shipping cost' > 0;

Largest cost allowed for a usable shipping route

param msr 'minimum size restriction' {dctr,whse} logical;

True indicates a minimum-size restriction on
direct shipments using this dctr --> whse route

param dsr 'direct shipment requirement' {dctr} >= 0;

Minimum total demand, in pallets, needed to
allow shipment on routes subject to the
minimum size restriction

PLANT SETS AND PARAMETERS

set fact 'factories' within dctr;

Locations where product is manufactured

param rtmin 'regular-time total minimum' >= 0;

Lower limit on (average) total regular-time
crews employed at all factories

param rtmax 'regular-time total maximum' >= rtmin;

Upper limit on (average) total regular-time
crews employed at all factories

param otmin 'overtime total minimum' >= 0;

Lower limit on total overtime hours at all factories

param otmax 'overtime total maximum' >= otmin;

Upper limit on total overtime hours at all factories

param rmin 'regular-time minimums' {fact} >= 0;

Lower limits on (average) regular-time crews

param rmax 'regular-time maximums' {f in fact} >= rmin[f];

Upper limits on (average) regular-time crews

param omin 'overtime minimums' {fact} >= 0;

Lower limits on overtime hours

param omax 'overtime maximums' {f in fact} >= omin[f];

Upper limits on overtime hours

param hd 'hours per day' {fact} >= 0;

Regular-time hours per working day

param dp 'days in period' {fact} > 0;

Working days in the current planning period

35

PRODUCT SETS AND PARAMETERS

set prd 'products'; # Elements of the product group

param wt 'weight' {prd} > 0;

Weight in 100 lb / 1000 cases

param cpp 'cases per pallet' {prd} > 0;

Cases of product per shipping pallet

param tc 'transshipment cost' {prd} >= 0;

Transshipment cost in $ / 1000 cases

param pt 'production time' {prd,fact} >= 0;

Crew-hours to produce 1000 cases

param rpc 'regular-time production cost' {prd,fact} >= 0;

Cost of production on regular time,
in $ / 1000 cases

param opc 'overtime production cost' {prd,fact} >= 0;

Cost of production on overtime, in $ / 1000 cases

DEMAND SETS AND PARAMETERS

param dt 'total demand' {prd} >= 0;

Total demands for products, in 1000s

param ds 'demand shares' {prd,whse} >= 0.0, <= 1.0;

Historical demand data, from which each
warehouse's share of total demand is deduced

param dstot {p in prd} := sum {w in whse} ds[p,w];

Total of demand shares; should be 1, but often isn't

param dem 'demand' {p in prd, w in whse} := dt[p] * ds[p,w] / dstot[p];

Projected demands to be satisfied, in 1000s

set rt 'shipping routes available' :=

{d in dctr, w in whse:
d <> w and sc[d,w] < huge and
(w in dctr or sum {p in prd} dem[p,w] > 0) and
not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) };

List of ordered pairs that represent routes
on which shipments are allowed

OBJECTIVE

minimize cost; # Total cost: regular production, overtime
production, shipping, and transshipment

NODES

node RT: rtmin <= net_out <= rtmax;

Source of all regular-time crews allocated

node OT: otmin <= net_out <= otmax;

Source of all overtime hours allocated

node P_RT {fact}; # Sources of regular-time crews at factories

node P_OT {fact}; # Sources of overtime hours at factories

36

node M {prd,fact}; # Sources of manufacturing:
send to factory's W node for local demand;
send to factory's D node for distribution

node D {prd,dctr}; # Sources of distribution:
receive transshipped goods from center's W node;
receive manufactured goods from center's M node;
send to W nodes elsewhere

node W {p in prd, w in whse}: net_in = dem[p,w];

Locations of warehousing:
receive from D nodes and local M node (if any),
to satisfy local demand;
send to local D node (if any) for transshipment

ARCS

arc Work_RT {f in fact}

from RT to P_RT[f] >= rmin[f], <= rmax[f];

Regular-time crews allocated to each factory

arc Work_OT {f in fact}

from OT to P_OT[f] >= omin[f], <= omax[f];

Overtime hours allocated to each factory

arc Manu_RT {p in prd, f in fact: rpc[p,f] <> 0} >= 0

from P_RT[f] to M[p,f] (dp[f] * hd[f] / pt[p,f])

obj cost (rpc[p,f] * dp[f] * hd[f] / pt[p,f]);

Regular-time crews allocated to
manufacture of each product at each factory

arc Manu_OT {p in prd, f in fact: opc[p,f] <> 0} >= 0

from P_OT[f] to M[p,f] (1 / pt[p,f]) obj cost (opc[p,f] / pt[p,f]);

Overtime hours allocated to
manufacture of each product at each factory

arc Prod_L {p in prd, f in fact} >= 0

from M[p,f] to W[p,f];

Manufacture of each product at each factory
to satisfy local demand, in 1000s of units

arc Prod_D {p in prd, f in fact} >= 0

from M[p,f] to D[p,f];

Manufacture of each product at each factory,
for distribution elsewhere, in 1000s of units

arc Ship {p in prd, (d,w) in rt} >= 0

from D[p,d] to W[p,w] obj cost (sc[d,w] * wt[p]);

Shipments of each product on each allowed route

arc Trans {p in prd, d in dctr} >= 0

from W[p,d] to D[p,d] obj cost (tc[p]);

Transshipments of each product at each
distribution center

37

Appendix B. SCORE, a piecewise-linear data fitting model

This model fits linear inequalities to data, by minimizing a sum of convex
piecewise-linear penalties on the deviations from an acceptable fit. The motivation
comes from a problem of weighting certain customer attributes so as to distinguish
“good” from “bad” credit risks.

DATA ON PEOPLE

set Good; # Good risks
set Bad; # Bad risks

set people := Good union Bad; # Everyone is either good or bad

param app_amt > 0; # General credit-approval amount
param bal_amt {people} >= app_amt; # Maximum-balance amounts of individuals

DATA ON FACTORS

set factors; # Questions posed to individuals

set wt_types := {'pos','neg','free'}; # Required signs of weights

param wttyp {factors} symbolic within wt_types;

param answer {people,factors} >= 0; # Numerical responses to all questions

DATA DEFINING THE PENALTY FUNCTION

Parameters starting with G (or B) are for the good (or bad) risks

param Gpce > 1;
param Bpce > 1; # Linear pieces in penalty term

param Gslope {1..Gpce}; check {k in 1..Gpce-1}: Gslope[k] < Gslope[k+1];
param Bslope {1..Bpce}; check {k in 1..Bpce-1}: Bslope[k] < Bslope[k+1];

Increasing slopes in penalty term

set bkpt_types := {'A','B'};

param Gbktyp {1..Gpce-1} symbolic within bkpt_types;
param Bbktyp {1..Bpce-1} symbolic within bkpt_types;

param Gbkfac {1..Gpce-1}; check {k in 1..Gpce-2}: Gbkfac[k] <= Gbkfac[k+1];
param Bbkfac {1..Bpce-1}; check {k in 1..Bpce-2}: Bbkfac[k] <= Bbkfac[k+1];

Information to define the
increasing breakpoints in penalty
terms (see objective function)

param Gprop > 0; # Scale objective to simulate ratio
param Bprop > 0; # Gprop/Bprop of goods to bads

param Gratio := (Gprop/(Gprop+Bprop)) / (card {Good}/card {people});
param Bratio := (Bprop/(Gprop+Bprop)) / (card {Bad}/card {people});

VARIABLES

var Wt_const; # Constant term in computing all scores

var Wt {j in factors} >= if wttyp[j] = 'pos' then 0 else -Infinity
<= if wttyp[j] = 'neg' then 0 else +Infinity;

Weights on the factors

var Sc {i in people}; # Scores for the individuals

38

OBJECTIVE

minimize penalty: # Sum of penalties for all individuals

Gratio * sum {i in Good} << {k in 1..Gpce-1} if Gbktyp[k] = 'A'
then Gbkfac[k]*app_amt
else Gbkfac[k]*bal_amt[i];

{k in 1..Gpce} Gslope[k] >> Sc[i] +

Bratio * sum {i in Bad} << {k in 1..Bpce-1} if Bbktyp[k] = 'A'
then Bbkfac[k]*app_amt
else Bbkfac[k]*bal_amt[i];

{k in 1..Bpce} Bslope[k] >> Sc[i];

CONSTRAINTS

def_Sc {i in people}:

Sc[i] = Wt_const + sum {j in factors} answer[i,j] * Wt[j];

Score = sum of answers times weights

39

Appendix C. STRUC, a piecewise-linear structural design model

Given a set of admissible joints and a set of admissible bars connecting the joints,
this model determines bar widths that minimize the total weight of the structure
while maintaining an equilibrium with external loads [15, 28]. Each term of the
objective is the length of a bar times the absolute value of the force (positive for
tension, negative for compression) on the bar.

DATA

set joints;
set bars within {i in joints, j in joints: i <> j};

Definition of admissible structure:
each bar connects two joints

param fixed symbolic in joints; # Designated position of fixed support
param rolling symbolic in joints; # Designated position of roller support

param density > 0; # Density of bar material
param yield_stress > 0; # Yield stress of bar material

param xpos {joints}; # Horizontal positions of joints
param ypos {joints}; # Vertical positions of joints

check {(i,j) in bars}: xpos[i] <> xpos[j] or ypos[i] <> ypos[j];

param xload {joints}; # Horizontal external loads on joints
param yload {joints}; # Vertical external loads on joints

param length {(i,j) in bars} :=
sqrt ((xpos[j]-xpos[i])^2 + (ypos[j]-ypos[i])^2);

Bar lengths calculated from positions

param xcos {(i,j) in bars} := (xpos[j]-xpos[i]) / length[i,j];
param ycos {(i,j) in bars} := (ypos[j]-ypos[i]) / length[i,j];

Cosines of bar angles with
horizontal and vertical axes

VARIABLES

var Force {bars}; # Forces on bars:
positive in tension, negative in compression

OBJECTIVE

minimize weight: (density / yield_stress) *

sum {(i,j) in bars} length[i,j] * <<0; -1,+1>> Force[i,j];

Weight is proportional to length
times absoluted value of force

CONSTRAINTS

subject to xbal {k in joints: k <> fixed}:

sum {(i,k) in bars} xcos[i,k] * Force[i,k]
- sum {(k,j) in bars} xcos[k,j] * Force[k,j] = xload[k];

subject to ybal {k in joints: k <> fixed and k <> rolling}:

sum {(i,k) in bars} ycos[i,k] * Force[i,k]
- sum {(k,j) in bars} ycos[k,j] * Force[k,j] = yload[k];

Net sum of forces must balance external
load, horizontally and vertically

40

Appendix D. TRAIN, a network allocation model

Given a day’s schedule, this network flow model allocates passenger cars to trains
so as to minimize either the number of cars required or the number of car-miles run
[21, 22]. The same model is formulated in [18] using algebraic constraints.

SCHEDULE SETS AND PARAMETERS

set cities;

set links within {c1 in cities, c2 in cities: c1 <> c2};

Set of cities, and set of intercity links

param last > 0 integer;

set times circular := 1..last;

Number of time intervals in a day, and

set of time intervals in a day

set schedule within
{c1 in cities, t1 in times,
c2 in cities, t2 in times: (c1,c2) in links};

Member (c1,t1,c2,t2) of this set represents
a train that leaves city c1 at time t1
and arrives in city c2 at time t2

DEMAND PARAMETERS

param section > 0 integer;

Maximum number of cars in one section of a train

param demand {schedule} > 0;

For each scheduled train:
the smallest number of cars that
can meet demand for the train

param low {(c1,t1,c2,t2) in schedule} := ceil(demand[c1,t1,c2,t2]);

Minimum number of cars needed to meet demand

param high {(c1,t1,c2,t2) in schedule}

:= max (2, min (ceil(2*demand[c1,t1,c2,t2]),
section*ceil(demand[c1,t1,c2,t2]/section)));

Maximum number of cars allowed on a train:
2 if demand is for less than one car;
otherwise, lesser of
number of cars needed to hold twice the demand, and
number of cars in minimum number of sections needed

DISTANCE PARAMETERS

param dist_table {links} >= 0 default 0.0;

param distance {(c1,c2) in links} > 0
:= if dist_table[c1,c2] > 0 then dist_table[c1,c2] else dist_table[c2,c1];

Inter-city distances: distance[c1,c2] is miles
between city c1 and city c2

OBJECTIVES

minimize cars; # Number of cars in the system:
sum of unused cars and cars in trains during
the last time interval of the day

minimize miles; # Total car-miles run by all scheduled trains in a day

41

NODES

node N {cities,times}; # For every city and time:
unused cars in present interval will equal
unused cars in previous interval,
plus cars just arriving in trains,
minus cars just leaving in trains

ARCS

arc U {c in cities, t in times} >= 0

from N[c,t] to N[c,next(t)]

obj {if t = last} cars 1;

U[c,t] is the number of unused cars stored
at city c in the interval beginning at time t

arc X {(c1,t1,c2,t2) in schedule}

>= low[c1,t1,c2,t2] <= high[c1,t1,c2,t2]

from N[c1,t1] to N[c2,t2]

obj {if t2 < t1} cars 1
obj miles distance[c1,c2];

X[c1,t1,c2,t2] is the number of cars assigned
to the scheduled train that leaves c1 at t1
and arrives in c2 at t2

The bounds insure that the cars meet demand,
but that they are not so far in excess of demand
that unnecessary sections are required

42

References

[1] E.M.L. Beale, 1970. Advanced Algorithmic Features for General Mathematical Pro-
gramming Systems. In J. Abadie, ed., Integer and Nonlinear Programming, American
Elsevier Publishing Company, New York, pp. 119–137.

[2] E.M.L. Beale and J.A. Tomlin, 1970. Special Facilities in a General Mathematical
Programming System for Non-Convex Problems Using Ordered Sets of Variables. In
J. Lawrence, ed., OR 69: Proceedings of the Fifth International Conference on Opera-
tional Research, Tavistock Publications, London, pp. 447–454.

[3] H.K. Bhargava and S.O. Kimbrough, 1993. Model Management: An Embedded
Languages Approach. Technical report, Naval Postgraduate School, Monterey, CA; to
appear in Decision Support Systems.

[4] J.J. Bisschop and R. Fourer, 1990. New Constructs for the Description of Combina-
torial Optimization Problems in Algebraic Modeling Languages. Memorandum no. 901,
Faculty of Applied Mathematics, University of Twente, Enschede, The Netherlands; to
appear in Annals of Operations Research.

[5] J. Bisschop and A. Meeraus, 1982. On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment. Mathematical Programming
Study 20, 1–29.

[6] A. Brooke, D. Kendrick and A. Meeraus, 1992. GAMS: A User’s Guide, Release
2.25. The Scientific Press, South San Francisco, CA.

[7] A. Charnes, W.W. Cooper and R.O. Ferguson, 1955. Optimal Estimation of
Executive Compensation by Linear Programming. Management Science 1, 138–151.

[8] V. Chvátal, 1983. Linear Programming. W.H. Freeman and Company, New York.

[9] CPLEX Optimization Inc., 1992. Using the CPLEX Callable Library and CPLEX
Mixed Integer Library. Incline Village, NV.

[10] G.B. Dantzig, 1956. Recent Advances in Linear Programming. Management Science
2, 131–144.

[11] G.B. Dantzig, 1960. On the Significance of Solving Linear Programming Problems
with Some Integer Variables. Econometrica 28, 30–44.

[12] G.B. Dantzig, S. Johnson and W. White, 1958. A Linear Programming Approach
to the Chemical Equilibrium Problem. Management Science 5, 38–43.

[13] N. Dean, M. Mevenkamp and C.L. Monma, 1992. NETPAD: An Interactive
Graphics System for Network Modeling and Optimization. In O. Balci, R. Sharda
and S.A. Zenios, eds., Computer Science and Operations Research: New Developments
in Their Interfaces, Pergamon Press, New York, pp. 231–243.

[14] D. De Wolf, O. Janssens de Bisthoven and Y. Smeers, 1991. The Simplex
Algorithm Extended to Piecewise-Linearly Constrained Problems I: the Method and an
Implementation. Discussion paper, Center for Operations Research and Econometrics,
Louvain-La-Neuve, Belgium.

[15] W.S. Dorn, R.E. Gomory and H.J. Greenberg, 1964. Automatic Design of Op-
timal Structures. Journal de Mécanique 3, 25–52.

[16] R. Fourer, 1983. Modeling Languages versus Matrix Generators for Linear Program-
ming. ACM Transactions on Mathematical Software 9, 143–183.

[17] R. Fourer, 1992. A Simplex Algorithm for Piecewise-Linear Programming III: Com-
putational Analysis and Applications. Mathematical Programming 53, 213–235.

43

[18] R. Fourer, D.M. Gay and B.W. Kernighan, 1987. AMPL: A Mathematical Pro-
gramming Language. Computing Science Technical Report 133, AT&T Bell Laborato-
ries, Murray Hill, NJ; also Technical Report 87-03, Department of Industrial Engineer-
ing and Management Sciences, Northwestern University, Evanston, IL.

[19] R. Fourer, D.M. Gay and B.W. Kernighan, 1990. A Modeling Language for
Mathematical Programming. Management Science 36, 519–554.

[20] R. Fourer, D.M. Gay and B.W. Kernighan, 1992. AMPL: A Modeling Language
for Mathematical Programming. The Scientific Press, South San Francisco, CA.

[21] R. Fourer, J.B. Gertler and H.J. Simkowitz, 1977. Models of Railroad
Passenger-Car Requirements in the Northeast Corridor. Annals of Economic and Social
Measurement 6, 367–398.

[22] R. Fourer, J.B. Gertler and H.J. Simkowitz, 1978. Optimal Fleet Sizing and Al-
location for Improved Rail Service in the Northeast Corridor. Transportation Research
Record 656, 40–45.

[23] R. Fourer and R.E. Marsten, 1992. Solving Piecewise-Linear Programs: Experi-
ments with a Simplex Approach. ORSA Journal on Computing 4, 16–31.

[24] D.M. Gay, 1985. Electronic Mail Distribution of Linear Programming Test Problems.
Committee on Algorithms Newsletter 13, 10–12. Also Numerical Analysis Manuscript
86-0, AT&T Bell Laboratories, Murray Hill, NJ.

[25] F. Glover, D. Klingman and N. Phillips, 1990. Netform Modeling and Applica-
tions. Interfaces 20:4, 7–27.

[26] F. Glover, D. Klingman and N.V. Phillips, 1992. Network Models in Optimiza-
tion and their Applications in Practice. Wiley, New York.

[27] H.J. Greenberg and F.H. Murphy, 1992. Views of Mathematical Programming
Models and Their Instances. Technical report, University of Colorado at Denver, Den-
ver, CO.

[28] J.K. Ho, 1975. Optimal Design of Multi-Stage Structures: A Nested Decomposition
Approach. Computers & Structures 5, 249–255.

[29] M.S. Hung, W.O. Rom and A.D. Waren, 1993. Optimization with OSL. The
Scientific Press, South San Francisco, CA.

[30] J.P. Jarvis and D.R. Shier, 1990. Netsolve: Interactive Software for Network
Optimization. Operations Research Letters 9, 275–282.

[31] C.V. Jones, 1990. An Introduction to Graph-Based Modeling Systems, Part I:
Overview. ORSA Journal on Computing 2, 136–151.

[32] C.V. Jones, 1991. An Introduction to Graph-Based Modeling Systems, Part II: Graph-
Grammars and the Implementation. ORSA Journal on Computing 3, 180–206.

[33] C. Jones and K. D’Souza, 1992. Graph-Grammars for Minimum Cost Network
Flow Modeling. Faculty of Business Administration, Simon Fraser University, Burn-
aby, British Columbia, Canada.

[34] G. Kahan, 1982. Walking through a Columnar Approach to Linear Programming of
a Business. Interfaces 12:3, 32–39.

[35] D.A. Kendrick, 1990. Parallel Model Representations. Expert Systems With Appli-
cations 1, 383–389.

[36] D.A. Kendrick, 1991. A Graphical Interface for Production and Transportation Sys-
tem Modeling: PTS. Computer Science in Economics and Management 4.

44

[37] H.M. Markowitz and A.S. Manne, 1957. On the Solution of Discrete Programming
Problems. Econometrica 25, 84–110.

[38] B.A. Murtagh and M.A. Saunders, 1987. MINOS 5.1 User’s Guide. Technical re-
port SOL 83-20R, Department of Operations Research, Stanford University, Stanford,
CA.

[39] W. Ogryczak, K. Studziński and K. Zorychta, 1992. EDINET — A Network
Editor for Transshipment Problems with Facility Location. In O. Balci, R. Sharda and
S.A. Zenios, eds., Computer Science and Operations Research: New Developments in
Their Interfaces, Pergamon Press, New York, pp. 197–212.

[40] R.V. Simons, 1987. Mathematical Programming Modeling Using MGG. IMA Journal
of Mathematics in Management 1, 267–276.

[41] D. Steiger, R. Sharda and B. LeClaire, 1992. Functional Description of a Graph-
Based Interface for Network Modeling (GIN). In O. Balci, R. Sharda and S.A. Zenios,
eds., Computer Science and Operations Research: New Developments in Their Inter-
faces, Pergamon Press, New York, pp. 213–229.

[42] J.A. Tomlin, 1970. Branch and Bound Methods for Integer and Non-Convex Pro-
gramming. In J. Abadie, ed., Integer and Nonlinear Programming, American Elsevier
Publishing Company, New York, pp. 437–450.

[43] J.S. Welch, Jr., 1987. PAM—A Practitioner’s Approach to Modeling. Management
Science 33, 610–625.

[44] S.A. Zenios, 1990. Integrating Network Optimization Capabilities into a High-Level
Modeling Language. ACM Transactions on Mathematical Software 16, 113–142.

45

