
EXTENDING A GENERAL-PURPOSE
ALGEBRAIC MODELING LANGUAGE
TO COMBINATORIAL OPTIMIZATION:
A LOGIC PROGRAMMING APPROACH

Robert Fourer

Department of Industrial Engineering and Management Sciences
Northwestern University, Evanston, IL 60208-3119, USA

4er@iems.nwu.edu

General-purposealgebraic modeling languagesare a central feature of popular com-
puter systems for large-scale optimization. Languages such asAIMMS [2], AMPL
[12, 13],GAMS [4, 5], LINGO [23] andMPL [18] allow people to develop and main-
tain diverse optimization models in their natural mathematical forms. The systems
that process these languages convert automatically to and from the various data struc-
tures required by packages of optimizing algorithms (“solvers”), with only minimal
assistance from users. Most phases of language translation remain independent of
solver details, however, so that users can easily switch between many combinations of
language and solver.

Algebraic modeling languages have been applied most successfully in linear and
smooth nonlinear optimization. They have been notably less successful in combinato-
rial or discrete optimization, however, for two interconnected reasons.

First, modeling languages have lacked the kinds of expressions that are needed to
describe combinatorial problems in natural and convenient ways. Indeed, only one
feature of these languages has been of direct use for combinatorial optimization: the
option to specify that certain variables must take integer values. Hence these languages
have been useful mainly for combinatorial problems that have straightforward formu-

1

2

lations as integer linear programs. While in principle any combinatorial optimization
problem can be expressed as an integer program, in practice a variety of problem-
specific formulation tricks are often required to carry out the transformation. Much of
the advantage of a modeling language for formulation and maintenance of models is
lost as a result.

Second, modeling languages have lacked access to suitable algorithms for com-
binatorial optimization. The only applicablegeneral-purposemethods commonly
interfaced to algebraic modeling languages have been integer programming branch-
and-bound schemes. Although automatic transformations to integer programs have
been worked out for significant classes of combinatorial problems [15, 21, 22], branch-
and-bound codes do not necessarily perform well on the resulting formulations. At the
same time, research in combinatorial optimization has concentrated onspecial-purpose
algorithms for which explicit performance bounds can be derived. Because these al-
gorithms are focused on particular problem types, they do not address many of the
complex combinatorial problems that are of practical interest. Even where they do ap-
ply, modeling software lacks efficient and reliable ways of deducing their applicability
based on formulations expressed in modeling languages.

General-purpose software suitable for combinatorial optimization has in fact a sub-
stantial history, going back to Lauriere’sALICE [19]. Considerable development effort
has led to successful current implementations of several kinds:

Descendants of Prolog [26] that handle objectives and constraints, including
CHIP [28], ECLiPSe [8] and Prolog III [6].

Specialized C-like languages, such as2LP [20].

Specialized class libraries for C++, notably ILOG SOLVER [16, 24].

The modeling approaches and algorithmic methods employed by such systems are
commonly referred to aslogic programming,or asconstraint logic programmingto
distinguish them from earlier systems more narrowly focused on logical inference. All
of these systems incorporate computer languages that are algebraic to some degree,
particularly in their descriptions of specific constraint expressions. They tend to differ
substantially from the systems familiar to users of algebraic modeling languages for
linear or integer programming, however, especially in two respects:

Reflecting their origins (in Prolog, C or C++), their descriptions of complete
optimization models depart in significant ways from the formulations that
people most often use.

Their implementations rely on specialized solvers, allowing users limited
flexibility to choose language and solver independently.

These systems have nevertheless been successful in introducing constraint forms and
algorithmic strategies that are natural and desirable for practical combinatorial op-
timization. For some difficult applications in scheduling, sequencing, location and

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 3

assignment, a constraint logic programming approach has been reported to be superior
to an integer programming approach of the sort that would be available through current
modeling languages [7, 17, 25].

In sum, there have been a range of obstacles to development of fully effective
general-purpose modeling languages for combinatorial optimization, based on either
integer programming or logic programming. These obstacles have tended moreover to
reinforce each other. Developers of algebraic modeling languages, believing that there
are no efficient and reliable general-purpose solvers for combinatorial problems beyond
integer programming branch-and-bound, have made little attempt to extend their lan-
guages to better express such problems. Developers of constraint logic programming
systems, observing that algebraic modeling languages are limited to integer programs,
have made little attempt to connect their solvers to existing modeling languages. The
purpose of this paper is to suggest, by analysis and by example, how we are now in a
much improved position to overcome this deadlock.

The first part of this paper (sections 1–3) explores combinatorial extensions to the
AMPL modeling language [13], with the goal of showing that such a language can
provide the expressiveness desired by builders of combinatorial optimization models.
AMPL’s broad range of forms for set and arithmetic expressions are particularly well
suited to a variety of extensions. In many cases, it suffices to define new operators by
analogy with the syntactic forms of current ones, or to extend the range of contexts in
which variables are permitted. Further advantage is gained by extending the concept
of a variable to permit values that are arbitrary objects or sets of objects.

The second part of this paper (sections 4–5) considers how ILOG SOLVER [16] could
provide the general-purpose solver required by the first part’s language extensions. The
major focus of SOLVERhas been to serve as a C++ class library for embedding constraint
logic programming techniques in users’ applications. As its range of applications has
expanded, it has accumulated a variety of constraint and expression forms, which have
turned out to correspond nicely to the features that would be needed to provide a general-
purpose algorithmic framework for theAMPL combinatorial extensions. Thus SOLVER

provides an empirical confirmation of the proposed extensions’ practical value, while
also demonstrating that a general-purpose optimizer for combinatorial optimization is
a reasonable possibility.

An implementation of a link from integer programs inAMPL to the optimization
procedures in SOLVER is described in section 4, and specific SOLVER C++ classes
that would correspond to the proposedAMPL combinatorial extensions are identified
in section 5. Thus this paper lays the groundwork for the actual implementation
of combinatorial features in an algebraic modeling language. Section 6 concludes by
discussing some of the challenges that are likely to be faced in any initial implementation
and the refinements that are likely to follow.

The numerous examples throughout this paper are presented with the intention of
being understandable to all readers, including those who are not familiar with theAMPL

4

language. Many of the examples come from complete models that are identified in
the text by filenames (such assched1.mod). The corresponding files are listed in
an appendix, and can also be found online athttp://www.iems.nwu.edu/~4er/
LOGLANG/.

1 EXTENDING AN ALGEBRAIC MODELING LANGUAGE

Extending a computer language tends to make it more powerful, but also more compli-
cated. Thus the first aim of this paper is not merely to show that an algebraic modeling
languagecanbe extended to better express combinatorial optimization problems. The
goal is to show that combinatorial extensions can be made without giving up the estab-
lished convenience and power of the language’s existing features.

A closer consideration of this goal motivates design principles that are in fact com-
mon to most modeling language extensions. First, an extension does need to offer
some value to the user, and the principle involved is fairly obvious:

Applicability. An extension should provide a concise and natural way to
express some aspect of a formulation that arises in applications of opti-
mization modeling.

This principle is actually most notable for what it does not say. It does not specify that
extensions should be useful only for entirely new kinds of constraints, or that extensions
should provide a minimal collection of language changes sufficient to express models
of some kind. To the contrary, successful modeling languages incorporate considerable
redundancy of features, because they are intended to express models in ways that are
natural to people — and different people frequently have different ideas as to what is
natural. A discussion of redundancy in some previous extensions to theAMPL language
can be found in [11].

The extensions to be proposed in sections 2 and 3 have thus been derived empirically,
by considering how people would like to be able to express a variety of combinatorial
optimization models. The principle of applicability accepts any extension derived
in this way, while other principles narrow the possibilities by imposing additional
requirements.

Two other principles apply specifically to the relationships between extensions and
the existing forms of a language:

Independence.New extensions should be clearly differentiated from ex-
isting language forms. Users should not be required to be aware of the
extensions unless they are formulating the kinds of problems for which the
extensions were designed.

Consistency.New extensions should be based on the same principles as
existing language forms. Current users of the language should find the
extensions to be familiar.

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 5

These requirements are intended to prevent the language from becoming overly exten-
sive, to the point where it is no longer attractive to its original users.

As an example,AMPL [13] provides an iterated summation operator that consists
of a keyword (sum), an expression for an indexing set (delimited by{ and}), and an
expression to be summed over the set:

sum {i in ORIG, j in DEST: cost[i,j] < BIG} cost[i,j] * Trans[i,j]

Because this operator is repeatedly used in formulating linear programs, an extension
cannot modify it without violating the independence principle. On the other hand, we
would not want to define an entirely new syntax for the iterated operations needed
in combinatorial optimization, as that would almost surely violate consistency. The
preferred approach is to retain the form of thesum operator while altering a few of its
specifics, such as by introducing a new keyword and changing the type of expression
that follows the indexing.

These principles are not intended to be absolute, and indeed will have to be relaxed
in some cases to achieve the desired expressiveness of the extended language. For
instance, a further extension to add a parenthesized argument after an iterated opera-
tor keyword may also be desirable (as Section 2 will explain), although a degree of
consistency is given up as a result.

Two universal principles of modeling language design are also particularly relevant
to proposed extensions:

Generality.An expression that would be meaningful to most users should
not be ruled out by complex or arbitrary restrictions.

Implementability. An expression must be translatable with reasonable
efficiency into the forms required by suitable algorithms.

Since greater generality tends to complicate implementation, these requirements tend
to trade off against each other.

To continue the preceding example, imagine thatTrans[i,j] are variables rep-
resenting shipments, and suppose that we want to extend theAMPL sum operator to
support a distinction between fixed and varying shipment costs. By allowing variables
to appear in a comparisonwithinan indexing expression, we could provide a convenient
way of expressing total cost as the sum of a fixed costfcost[i,j] and a varying cost
vcost[i,j] * Trans[i,j] for each pair of indicesi andj such that shipment is
positive:

sum {i in ORIG, j in DEST: Trans[i,j] >= fuzz}
(fcost[i,j] + vcost[i,j] * Trans[i,j])

Generality would then suggest that the comparison within the indexing expression
should be extended by allowing variables to appear at any place where constants (or

6

parameters, inAMPL terminology) are currently allowed. The resulting design might
not be implementable, however, due to insurmountable difficulties in translating some
of the resulting comparisons to a form usable by a general-purpose solver. We could
instead try to insure implementability by placing greater restrictions on the ways vari-
ables are allowed to appear inside an indexing expression; but then the design might
tend to violate generality, since it is difficult to come up with any simple rule in this
case to distinguish the permitted expressions from the prohibited ones.

A better alternative might thus be to useAMPL’s if . . . then . . . else operator
with variables in the expression after theif. Then fixed costs would still be easy to
express:

sum {i in ORIG, j in DEST}
(if Trans[i,j] >= fuzz

then fcost[i,j] + vcost[i,j] * Trans[i,j] else 0.0)

Implementation would be more practical, because this expression specifies unambigu-
ously, for giveni andj, the value to be taken both when the condition followingif is
true and when it is false. Because this is a restriction inherent in the way that that the
if operator is currently defined inAMPL, the principle of generality is maintained.

The next section covers extensions that involve adding operators or extending the
applicability of operators. Section 3 then describes extensions that permit variables to
take objects or sets as values.

2 EXTENSIONS TO OPERATORS

Many valuable modeling language extensions for combinatorial optimization can be
achieved by expanding the uses and variety of operators. In some cases, the extensions
merely allow existing operators to be applied more generally. Other extensions involve
the definition of new iterated operators analogous to current ones.

Logical operators

Logical constraints may be built from simpler constraints using the standard boolean
operators “and”, “or” and “not”. In the context of algebraic modeling languages, we
can consider in particular the constraints that result when these operators are applied
to conventional algebraic constraints.

The best known and most common constraints of this kind aredisjunctiveconstraints,
which say that at least one among several algebraic constraints must hold. As a simple
example, in a flowshop problem we require that the start times of two jobs be sufficiently
separated to prevent them from being scheduled for production at the same time. In
algebraic terms, this reduces to saying that for any pair of jobsi1 andi2, either

Start[i2] >= Start[i1] + t_offset[i1,i2]

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 7

or

Start[i1] >= Start[i2] + t_offset[i2,i1]

The standard approach to formulating this discrete restriction as an integer program
(flowshp0.mod) involves defining a zero-one variablePrecedes[i1,i2] and a
sufficiently large parameterM:

subj to No12_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] +

t_offset[i1,i2] - M * (1 - Precedes[i1,i2]);

subj to No21_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] +

t_offset[i2,i1] - M * Precedes[i1,i2];

Yet the same thing could be said much more clearly and economically by representing
the disjunctive form of the constraint directly (flowshp1.mod):

subj to No_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] + t_offset[i1,i2] or
Start[i1] >= Start[i2] + t_offset[i2,i1];

Theoroperator is already a part ofAMPL, but its use is restricted to conditions involving
only sets and parameters (such as appear within indexing expressions). The extension
here is simply to permit the use ofor in constraint declarations.

The previously stated generality principle suggests that if we allow theor operator
in constraints, then we should similarly allowAMPL’s other boolean operators. To
provide an example, here is how one real-world assignment model uses additional
binary variables and constraints to enforce a requirement that prevents any person from
being “isolated” in the solution. As specified in the initial part of the model (not shown
here), there arenumber[i1,i2] people of ranki1 from sitei2, and there is a set
ROOM of meeting rooms; each person must be assigned to exactly one room. The set
TYPE contains every distinct “type” of person: every pair(i1,i2) that represents the
rank and site of at least one person to be assigned. The main decision variables are
declared by

var Assign {(i1,i2) in TYPE, j in ROOM} integer >= 0;

Assign[i1,i2,j] is the number of people of type(i1,i2) assigned to roomj.
The constraints to rule out “isolation” employ some auxiliary zero-one variables:

var Any {(i1,i2) in TYPE, j in ROOM} binary;

The intent is thatAny[i1,i2,j] will take the value one if there are any people of
type(i1,i2) assigned to roomj, and zero otherwise. Upper bounds on the values of

8

the variablesAssign[i1,i2,j] are also calculated, in terms of previously defined
parameters:

param upperbnd {(i1,i2) in TYPE, j in ROOM} := min (
ceil ((number[i1,i2]/card PEOPLE) * hiDine[j]) + give[i1,i2],
hiTargetTitle[i1,j] + giveTitle[i1],
hiTargetLoc[i2,j] + giveLoc[i2],
number[i1,i2]);

Then three collections of constraints jointly specify the non-isolation requirement:

subj to Isolation0 {(i1,i2) in TYPE, j in ROOM}:
Assign[i1,i2,j] <= upperbnd[i1,i2,j] * Any[i1,i2,j];

subj to Isolation1a {(i1,i2) in TYPE, j in ROOM}:
Assign[i1,i2,j] >= Any[i1,i2,j];

subj to Isolation1b {(i1,i2) in TYPE, j in ROOM}:
Assign[i1,i2,j] +

sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j]
>= 2 * Any[i1,i2,j];

WhenAny[i1,i2,j] is zero, constraintIsolation0[i1,i2,j] says no person
of type (i1,i2) may be assigned to roomj, while Isolation1a[i1,i2,j]
andIsolation1b[i1,i2,j] are trivially satisfied. WhenAny[i1,i2,j] is one,
Isolation0[i1,i2,j] is the trivial constraint;Isolation1a[i1,i2,j] in-
sures that at least one person of type(i1,i2) is assigned to roomj, and finally
Isolation1b[i1,i2,j] — the actual non-isolation condition — says that roomj
must receive at least two people from sitei2 who are of ranki1 or an “adjacent” rank
(specified in the setADJ[i1]).

In addition to the obvious drawbacks of complication and inefficiency, these con-
straints represent only one of many ways of writing the desired restriction in integer
programming form; the modeler had to experiment with a number of possibilities before
hitting on one that yielded good results in a branch-and-bound procedure. In contrast,
theand andnot operators can be used to describe these constraints in a much more
concise and understandable form:

subj to Isolation {(i1,i2) in TYPE, j in ROOM}:
not (Assign[i1,i2,j] = 1 and

sum {ii1 in ADJ[i1]: (ii1,i2) in TYPE} Assign[ii1,i2,j] = 0);

This formulation requires no supplementary zero-one variables and is significantly
closer to the modeler’s original conception.

The generality principle also argues for allowing constraints to useAMPL’s iterated
analogues ofand andor, which resemble the summation operator but with keywords

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 9

forall andexists, respectively. These then become special cases of the iterated
counting operators to be proposed later in this section.

The introduction of logical operators into constraints does raise some implemen-
tational complications. Since it extends the allowable forms for constraints, we must
correspondingly extend the representation thatAMPL uses in passing constraints to
solvers. IfAMPL were a modeling language for linear problems alone, such an exten-
sion would require fundamental changes to the language’s translation process.AMPL
already handles a variety of nonlinear expressions in the variables, however, by pass-
ing quite general expression trees to the solver. As a result, the changes required to
accommodate new operators on variables — includingand, or, not, and others to be
proposed in this section — should be straightforward. The greater challenge will be
to write AMPL’s interfaces to different solvers, so as to convert the expression trees to
whatever constraint representations the solvers require.

More seriously, with the introduction of logical operators it becomes possible to
specify a feasible region that is not closed, with the result that a continuous-valued
objective may have an infimum (or supremum) but may not achieve a minimum (or
maximum). A simple case such as

not (sum {p in PROD} Trans[i,j,p] <= min_ship[i,j])

is easy to spot, but it is not computationally practical (or even theoretically possible) to
detect every combination of constraints that gives rise to a non-closed region. The best
one may be able to hope for is that solvers will deal sensibly with the non-closed case,
such as by returning a solution that is optimal for the closure of the feasible region
within specified tolerances.

Common subexpressions pose another challenge. For example, a simple “zero-or-
range” restriction from a multicommodity transportation problem is naturally written as

subj to Multi_Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] = 0 or
min_load <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

For many solvers, it is worthwhile to recognize this as a special kind of restriction on
the single expressionsum {p in PROD} Trans[i,j,p], rather than as a disjunction
between two arbitrary constraint expressions.AMPL already detects common subex-
pressions, so the issues here are to decide which such expressions are significant in
combinatorial optimization and how their presence should be communicated to solvers.

Conditional operators

Various if-then and if-then-else constructs provide another convenient way of specify-
ing logical constraints. We review two of theseconditional forms that are already
available inAMPL, and suggest an extension that would be especially useful for formu-

10

lating combinatorial models. (A third form of conditional — an if-then or if-then-else
statementfor use in programming with theAMPL command language — is not relevant
to model formulation.)

AMPL provides a conditional operator,

if logical-expr then expr1
if logical-expr then expr1 else expr2

which takes the valueexpr1 if logical-expr is true and the valueexpr2(or some de-
fault value) if logical-expr is false. When this operator appears in a constraint, the
logical-exprcan contain variables, in which caseAMPL handles the constraint like
other nonlinear constraints, passing an expression tree to the solver. In particular, the
logical-exprmay be any valid constraint expression. Thus in a location-transportation
model it is entirely acceptable to theAMPL translator to write the objective in terms of
variablesBuild[i] andShip[i,j] as

minimize Total_Cost:
sum {i in WHSE} (if Build[i] = 1 then build_cost[i]) +
sum {i in WHSE, j in CUST} trans_cost[i,j] * Ship[i,j];

Solvers have the option of processing such an expression, although currentAMPL
interfaces to integer linear programming solvers reject it as a nonlinearity.

AMPL also has a form of conditional indexing expression, which is used in the
context of constraints as follows:

subject to {if const-logical-expr}: constraint-expr;

Thus one indexing example in theAMPL book [13,§8.4] is:

subject to Time {if avail > 0}:
sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

It is arguably more natural, however, to make theif condition part of the constraint
expression:

subject to Time: if avail > 0 then
sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

We then have a new conditional form of constraint:

if logical-expr then constraint-expr1
if logical-expr then constraint-expr1else constraint-expr2

As in the case of the conditional operator, variables could be allowed in thelogical-expr.
AMPL could then conveniently express a considerably greater variety of conditional
constraints. For example, the previously exhibited multicommodity transportation
constraint could be written more naturally as follows (multicom1.mod):

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 11

subject to Multi_Min_Ship {i in ORIG, j in DEST}:
if sum {p in PROD} Trans[i,j,p] > 0 then

min_load <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

In the location-transportation example, capacity constraints could be expressed as:

subject to Capacity {i in WHSE}:
if Build[i] = 1

then sum {j in CUST} Ship[i,j] <= cap[i]
else forall {j in CUST} Ship[i,j] = 0;

In general, the expression followingif could be any valid constraint expression. The
AMPL translator would convert these conditional constraints to expression trees, in
much the same way that it currently handles conditional operators.

Counting operators

AMPL’s card operator returns the number of members in a set. If we extend the
language to letcard be applied to a set defined in terms of variables, it can count the
number of constraints of a given form that are satisfied. As an example, the integer
programming form of the multicommodity transportation problem (multicom0.mod)
has the following constraint on the number of destinations served by any origin:

subject to MaxServe {i in ORIG}:
sum {j in DEST} Use[i,j] <= maxserve;

Usingcard, the same thing could be expressed in terms of the naturalTrans[i,j,p]
variables, without recourse to the auxiliary zero-oneUse[i,j] variables:

subject to MaxServe {i in ORIG}:
card {j in DEST: sum {p in PROD} Trans[i,j,p] > 0} <= maxserve;

This form might be too general, though. The operand ofcard could be any set expres-
sion. To implement the resulting constraint, the solver would have to receive enough
information to enable it to evaluate that set expression given any values of the variables.

We could circumvent this difficulty by restricting the ways in which variables may
appear in the argument tocard, but the generality principle suggests that we should
avoid complicating the language design with such restrictions. Instead, we could define
a new operator that explicitly counts the number of times that a certain constraint is
satisfied:

count {indexing} constraint-expr

The above constraint would then be written:

subject to MaxServe {i in ORIG}:
count {j in DEST} (sum {p in PROD} Trans[i,j,p] > 0) <= maxserve;

12

The generality principle directs that any validAMPL constraint should be allowed as
theconstraint-exproperand tocount.

Additional iterated logical operators might be defined to simplify the descriptions
of constraints in some common special cases. The following are self-explanatory:

atmost1 {indexing} constraint-expr
atleast1 {indexing} constraint-expr
exactly1 {indexing} constraint-expr

Theatleast1 operator is a synonym forexists, but the other two are not currently
available inAMPL. A further generalization would replace the1 in these operators by
a parenthesized argument indicating the number of constraints to be satisfied:

atmost(k) {indexing} constraint-expr
atleast(k) {indexing} constraint-expr
exactly(k) {indexing} constraint-expr

The preceding example could then be further simplified (multicom1.mod) to:

subj to MaxServe {i in ORIG}:
atmost(maxserve) {j in DEST} sum {p in PROD} Ship[i,j,p] > 0;

An argument like(maxserve) is an extension to currentAMPL conventions for iterated
operators. It has the same form as an argument to anAMPL function, however, so the
violation of similarity is not great. Generality would suggest that the argument could
be anyAMPL expression, but implementability is likely to dictate that it be limited to
a constant expression that evaluates to a positive (or perhaps nonnegative) value.

Another important special case ofcount occurs when constraining thehistogram
of a given expression: the array of the numbers of instances in which the expression
takes different values. As a simple example, consider the scheduling problem that
assigns a number of jobs to a smaller number of machines, so that at mostcap[k] jobs
are assigned to machinek. The conventional formulation (sched0.mod) defines a
zero-one variableAssign[j,k] for each job-machine pair, such thatAssign[j,k]
will be 1 if and only if jobj is assigned to machinek:

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cap {MACHINES} integer >= 0;
var Assign {JOBS,MACHINES} binary;

The requirements of the assignment can then be specified by one algebraic constraint
for each job and for each machine:

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 13

subj to OneMachinePerJob {j in JOBS}:
sum {k in MACHINES} Assign[j,k] = 1;

subj to CapacityOfMachine {k in MACHINES}:
sum {j in JOBS} Assign[j,k] <= cap[k];

An alternative (sched1.mod), common in the logic programming literature, associates
with each job only one variable, whose value is taken from the set of machines:

var MachineForJob {JOBS} integer >= 1, <= n;

For eachj in JOBS, the value ofMachineForJob[j] would be the number of the
machine that is assigned to do jobj. This approach requires fewer variables by an
order of magnitude, and automatically enforces the requirement that one machine be
assigned to each job. To specify that at mostcap[k] jobs are assigned to machinek,
we could use the proposedcount operator:

subj to CapacityOfMachine {k in MACHINES}:
count {j in JOBS} (MachineForJob[j] = k) <= cap[k];

This is not as readable a statement of the constraint as one might like, however, due to
the necessity of writing<= cap[k] directly after= k. It is also likely to be inefficient.
Because thecount operator could be applied to anyAMPL constraint-expr, its general
implementation in theAMPL translator would scan through the entire setJOBS for
each constraint, testingMachineForJob[j] = k for every combination of jobj and
machinek — even though only one pass through the jobs is necessary to accumulate
the counts for all machines.

These circumstances suggest thatAMPL should instead offer a more specialized
iterated operator for counting individual values assumed by an expression:

countof(k) {indexing} object-expr

The scheduling constraint would then reduce (sched2.mod) to:

subj to CapacityOfMachine {k in MACHINES}:
countof(k) {j in JOBS} MachineForJob[j] <= cap[k];

Although it would remain possible to implement this operator by scanning all of
MachineForJob once for each machinek, the presence ofcountof could alert a
solver interface to consider the possibilities of a more efficient treatment.

Pairwise operators

Various assignment and related combinatorial problems require that a collection of
entities be pairwise different or disjoint. New iterated operators for these conditions
would enable them to be stated more clearly and efficiently.

14

An example is given by an assignment problem that resembles the one defined
above, but with equal numbers of jobs and machines. Each job is assigned to one
machine, as before, but also each machine gets one job. The conventional integer
programming formulation is much the same, except that all the parameterscap[k]
are 1 (assign0.mod):

subj to OneMachinePerJob {j in JOBS}:
sum {k in MACHINES} Assign[j,k] = 1;

subj to OneJobPerMachine {k in MACHINES}:
sum {j in JOBS} Assign[j,k] = 1;

Using instead the variablesMachineForJob as before, these constraints can be ex-
pressed more succinctly by saying that no two variablesMachineForJob[j1] and
MachineForJob[j2] may have the same value for differentj1 andj2. But how is
such a restriction to be stated algebraically? The literal statement in terms ofAMPL’s
inequality operator would be

subj to OneJobPerMachine {j1 in JOBS, j2 in JOBS: j1 < j2}:
MachineForJob[j1] <> MachineForJob[j2];

This is a cumbersome way to express the simple idea of being pairwise different,
however, and it requires a number of constraints that is on the order of the square
of the number of variables. The difficulty is that we think of pairwise inequality as
being a joint property of the collection ofMachineForJob variables, rather than as a
collection of binary relations between individual variables.

In AMPL, properties of indexed collections are defined by means of iterated operators
such assum andexists. Thus it would make sense to introduce an analogous operator
for pairwise inequality in an indexed collection of variables:

alldiff {indexing} object-expr

In our example, the one-to-one relationship of jobs and machines would be written as
a single constraint (assign1.mod):

subj to OneJobPerMachine: alldiff {j in JOBS} MachineForJob[j];

Using alldiff makes the constraint easier to read, and also conveys more useful
information to a solver than a large collection of individual inequalities.

A similar operator could be introduced for indexed collections of set expressions,
to express the property of being pairwise disjoint:

alldisjoint {indexing} set-expr

To express the same thing in currentAMPL syntax, it is necessary to state for each pair
of sets that their intersection has cardinality zero.

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 15

Variables in subscripts

When we use zero-one variables for the assignment model, it is easy to express the
objective as a conventional linear programming expression (assign0.mod):

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,k] * Assign[j,k];

To use theMachineForJob variables, however, we are currently forced to resort to a
more awkward formulation (assign1.mod):

minimize TotalCost:
sum {j in JOBS, k in MACHINES}

if MachineForJob[j] = k then cost[j,k];

If we could simply writeMachineForJob[j] in place ofk, then the objective could
be expressed much more naturally and efficiently (assign2.mod):

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,MachineForJob[j]];

This represents an extension analogous to a number of the others proposed above. An
AMPL operator — in this case, the “subscripting operator” — is extended by allowing
it to apply to variables.

For reasons of both power and generality, it would be desirable to extend “variables in
subscripts” to apply to other variables as well as parameters, and to apply in constraints
as well as objectives. These requirements arise in sequencing models, for example,
that assign a number of jobs to an equal number of “slots” so that each job is assigned
to a different slot. The key difference between these slots and the machines of the
preceding assignment model is that the slots have a significant ordering. Setup costs
and times between jobs are a function of this slot ordering, in ways that can be hard to
express using currentAMPL features.

As an illustration, we consider a sequencing model introduced in [17] to exhibit a
variety of requirements. For individual jobs, we have data,

procTime[j], the processing time required for jobj

dueTime[j], the deadline for completion of jobj

duePen[j], the cost per unit of time that jobj is finishedearly

classOf[j], the setup class to which jobj belongs

and corresponding variables:

ComplTime[j], the time when jobj is assigned to finish

We have additional setup data for pairs of job classes:

16

setupTime[k1,k2], the setup time for a classk2 job after a classk1 job

setupCost[k1,k2], the setup cost for a classk2 job after a classk1 job

A representative integer programming formulation for this problem (seq0.mod) de-
fines a zero-one variable for each pair of jobs:

Seq[j1,j2], equal to 1 if and only ifj2 immediately followsj1

Hence the number of variables is on the order of the number of jobs squared. An al-
ternative (seq1.mod), following the approach introduced in the preceding assignment
example, uses two arrays of variables whose values are slot or job numbers:

SlotForJob[j], the slot to which jobj is assigned

JobForSlot[k], the job assigned to slotk

The number of variables thus remains proportional to the number of jobs, but again
their benefit will only realized by allowing them to appear within subscripts.

Consider first the setup cost associated with thekth slot. It is the cost of going from
JobForSlot[k-1] to JobForSlot[k], or

setupCost[classOf[JobForSlot[k-1]],classOf[JobForSlot[k]]]

Thus the objective of minimizing total setup cost plus total earliness penalty can be
written:

var DCost {j in 1..nJobs}
= duePen[j] * (dueTime[j] - ComplTime[j]);

var SCost {k in 1..nSlots}
= setupCost[classOf[JobForSlot[k-1]],classOf[JobForSlot[k]]];

minimize TotalCost:
sum {j in 1..nJobs} DCost[j] + sum {k in 1..nSlots} SCost[k];

Similarly constructed terms are employed in the constraint that relates the completion
times of two consecutive jobs:

subj to ComplTimeDefn {k in 0..nSlots-1}:
ComplTime[JobForSlot[k]] =

min (dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- setupTime[classOf[JobForSlot[k]],classOf[JobForSlot[k+1]]]
- procTime[JobForSlot[k+1]]);

The expressionComplTime[JobForSlot[k]] is an example of a variable in the
subscript of a variable, representing in this case the finish time for the job assigned to
slotk.

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 17

TheSlotForJob variables make it easy to describe the precedence constraints:

subj to Precedence {j in 1..nJobs: classOf[j-1] = classOf[j]}:
SlotForJob[j-1] < SlotForJob[j];

To ensure that theJobForSlot andSlotForJob variables represent the same valid
sequencing, however, we need one more instance of a variable subscripted by a variable:

subj to JobSlotDefn {k in 0..nSlots}:
SlotForJob[JobForSlot[k]] = k;

This constraint also indirectly ensures that each job is assigned a different slot, and
each slot is assigned a different job.

Currently,AMPL allows a subscript to be specified by any arithmetic expression in
sets and parameters of the model. Thus our generality principle would suggest that
the language should be extended by allowing subscripts to contain valid arithmetic
expressions that also use variables. Then rather than evaluating all subscripts while
generating a problem (as at present),AMPL will need to send subscript expressions
involving variables to the solver, for evaluation within the optimization algorithm.
This extension to the implementation is not expected to give rise to any fundamental
difficulties, since the expressions to be allowed within subscripts are no more general
than the expressions currently allowed elsewhere in constraints.

3 EXTENSIONS TO THE RANGES OF VARIABLES

Algebraic modeling languages have traditionally been designed around the idea of
the decision variable, and in particular the numerical-valued decision variable. This
sort of variable has many uses even in formulations of combinatorial problems, as the
preceding examples have suggested. Nevertheless, there remain a significant variety
of combinatorial optimization problems that do not have natural descriptions solely in
terms of traditional modeling language variables.

Since combinatorial optimization problems do involve specific decisions, the prob-
lem faced by modeling languages is not due to their fundamental reliance on decision
variables, but rather to their restriction that variables take numbers as values. This
section thus considers two useful extensions that are based on expanding the ranges of
variables, first to arbitrary “objects” and then to sets. Since values of these kinds are
already well supported inAMPL for other purposes, the principles of consistency and
generality are easy to maintain in the extended language.

Object-valued variables

In the preceding assignment model (assign2.mod) we artificially definedJOBS and
MACHINES to be sets of the firstn integers.AMPL does not require the use of integers
to represent objects that are not intrinsically numbered in any way, however. Instead

18

it provides for sets of arbitrary character strings that stand for objects. A more natural
formulation of the assignment problem would thus begin by declaring arbitrary job
and machine sets, along with a check that they contain the same number of objects
(assign3.mod):

set JOBS;
set MACHINES;

check card (JOBS) = card (MACHINES);

For eachj in JOBS, the variableMachineForJob[j] would then have as its value
the member of setMACHINES that is assigned to do jobj. Such a variable cannot be
defined inAMPL as it currently exists, however, because allAMPL variables are limited
to numerical values.

We are thus led to consider an extension that allows variables to take values from
an arbitrary set.AMPL’s variable declarations currently use the operators>= and<= to
restrict a variable’s domain to a particular numerical interval, as invar FinishTime
{JOBS} >= 0. Thus it makes sense to allow the set-membership operatorin to be used
in the same context to denote restriction of a variable’s domain to an arbitrary set:

var var-name{indexing} in set-expr;

In particular, the variable declaration for the assignment model would be written as:

var MachineForJob {JOBS} in MACHINES;

The remainder of the formulation would be the same as before. A similarly minor
change to our sequencing example would permit it also to use a set of objects for the
jobs.

This extension clearly satisfies the design principles of similarity and independence.
It can satisfy the generality principle as well, by allowing the expression followingin
to be anyAMPL expression (not involving variables) that evaluates to a set.

The usefulness of this extension occurs mainly in combination with the previously
described extension to permit variables in subscripts. Without the latter, there is usually
nowhere in a constraint expression that an object-valued variable can be used. A minor
exception might occur in the case of a variable that is fundamentally numerical but that
can take values only from an arbitrary set of numbers. For example, if we can decide to
build a warehouse at any location in a setLOC, but only of a pre-determined size from
the setWSIZE, then the variableBuild[i] that represents the size of the warehouse
built ati might be declared by

var Build {LOC} in {0} union WSIZE;

This situation is already handled efficiently by most branch-and-bound codes for integer
programming, however, through the device known as special ordered sets of type 1
[1, 27].

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 19

Set-valued variables

Many kinds of combinatorial problems are described more naturally in terms of choos-
ing an optimal subset, than in terms of choosing individual values of any kind. Thus
another extension to the domain specification inAMPL’s var statements would give
rise to variables that take subsets as values.

As an example, consider first a simple knapsack problem that concerns a set of
objects having given values and weights, and an overall capacity:

set OBJECTS;

param value {OBJECTS} > 0;
param weight {OBJECTS} > 0;

param capacity > 0;

The problem can be stated concisely and naturally as follows: Find a subset of the set
OBJECTS, such that its total value is maximized, subject to its total weight being no
more than the capacity. This statement can be converted to a conventional algebraic
formulation by use of binary variables indexed overOBJECTS:

var In {OBJECTS} binary;

maximize TotalValue:
sum {i in OBJECTS} value[i] * In[i];

subject to WeightLimit:
sum {i in OBJECTS} weight[i] * In[i] <= capacity;

The variableIn[i] is 1 if and only if objecti is in the selected subset.
To represent the original problem description more directly,AMPL needs a better

way of expressing the requirement to “find a subset ofOBJECTS such that. . . ”. Equiva-
lently, in the terminology of algebraic model descriptions,AMPL needs a way to define
variables that represent subsets. As in the previous case of object-valued variables,
it suffices to expand the variety of operators that can be used in avar statement to
specify a variable’s domain. To express the fact that a variable represents some subset
of a given set, we would useAMPL’s set containment operator,within:

var var-name{indexing} within set-expr;

For the knapsack example, this extension permits the following direct formulation:

var Knapsack within OBJECTS;

maximize TotalValue:
sum {i in Knapsack} value[i];

subject to WeightLimit:
sum {i in Knapsack} weight[i] <= capacity;

20

The alternative objective and constraint superficially resemble their counterparts that
use zero-one variables, but they sum over the members of the set-valued variable
Knapsack rather than over the given setOBJECTS. The result is a formulation that
better preserves the brevity and naturalness of the original problem statement.

A somewhat different perspective is provided by the budgeted traveling salesman
problem. It is stated in terms of a set of cities, one designated the home city; a set
of city pairs on which travel is possible, and travel costs between those pairs; and an
overall budget:

set CITIES;
param Home symbolic in CITIES;

set LINKS within {i in CITIES, j in CITIES: i <> j};
param cost {LINKS};

param budget > 0;

In one version of the problem, the goal is to plan a tour from the home city visiting
as many cities as possible, using only available city-pair links, and subject to the total
travel cost being within the budget. Thus a natural formulation is provided by using a
set-valued variable to represent the subset of cities visited.

This example differs from the previous one, however, in that the order of the cities is
also significant. We would thus want to further extend thevardeclaration to encompass
ordered set-valued variables:

var var-name{indexing} ordered within set-expr;
var var-name{indexing} circular within set-expr;

The keywordsordered andcircular would have the same meanings as they cur-
rently do inAMPL’s set declarations. Both would indicate that the members of the
subset are ordered, butcircular would also say that the ordering is extended so that
the first member of the set is regarded as following the last.

For the budgeted traveling salesman example, the natural set-valued variable would
be the circularly ordered subset of cities visited:

var Tour circular within CITIES;

The objective and constraints are then easily specified:

maximize CitiesVisited: card {Tour};

subject to BudgetLimit:
sum {c in Tour} cost[c,next(c)] <= budget;

subject to LeaveHome: first(Tour) = Home;

subject to LinkExists {c in Tour}: (c,next(c)) in LINKS;

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 21

Unlike the knapsack problem, this one has no clearly analogous equivalent as an integer
program. The integer programming approach has had some success in solving this kind
of problem, but only through substantial and somewhat problem-specific modifications
to both the formulation and the branch-and-bound procedure. This state of affairs is
characteristic of many combinatorial optimization problems of practical interest.

4 USING ILOG SOLVER FOR
GENERAL-PURPOSE COMBINATORIAL OPTIMIZATION

ILOG SOLVER is a C++ class library for “problems in planning, allocation, optimiza-
tion, management, mixing materials, assignment, layout” and many other areas [16].
Although these problems have a long association with linear and integer programming,
SOLVER differs fundamentally from commercial integer programming codes, in that
it does not carry out a branch-and-bound search based on solving continuous relax-
ations of integer programs. Instead it relies a constraint logic programming approach
to problem-solving, which applies tree-search techniques developed through the study
of logical inference in the field of artificial intelligence [28].

SOLVER addresses two distinct activities of large-scale optimization, which are de-
scribed by its developers as follows:

Problem representation.A problem representation consists of the declaration of the
unknowns and the constraints of the problem. This representation is specific to the
problem domain under consideration and requires a very expressive programming
language to capture that specificity. SOLVER uses the object-orientation of C++ to
make this activity easier: classes of objects are provided for representing unknowns.
These objects are calledconstrained variables.With each of these constrained
variables, we associate a set of possible values called thedomainof the variable.

Solution search.Solving the problem consists of selecting a value in the domain
of each constrained variable, so that all the constraints are satisfied. Moreover,
SOLVER can also be used to search for a solution that optimizes a given criterion.

SOLVER thus incorporates aspects of both a modeling language and an optimization
algorithm. Used as intended, it would take the place of a modeling language such
as AMPL and an integer programming code such asCPLEX, OSL or XA [10]. We
have in mind two somewhat different uses, however, in the context of general-purpose
combinatorial optimization.

First, SOLVER’s problem representations can provide an independent confirmation
of the usefulness of theAMPL extensions described in the two preceding sections. Like
AMPL, SOLVER has been designed empirically, based on the developers’ perceptions
of users’ ways of thinking about optimization. Thus if SOLVER can be found to incor-
porate C++ functions and classes that serve the same purposes as the proposedAMPL
extensions, our confidence in the appropriateness of the extensions will be strengthened.

22

Second, SOLVER’s problem representations have the potential to provide an ex-
cellent programming environment for implementing an interface from the proposed
AMPL combinatorial extensions to SOLVER’s solution search routines. Used in this
way, SOLVER would play the role of a general-purpose combinatorial optimizer, the
missing link (as explained in this paper’s introduction) in the use of algebraic modeling
languages for combinatorial optimization.

The remainder of this section introduces ILOG SOLVER’s problem representation,
and describes issues faced in using SOLVER’s representation as a general-purpose inter-
face to its solution search. The following section then considers specifically the SOLVER

features that would correspond to each of the extensions proposed in sections 2 and 3.

The SOLVER problem representation

The user of ILOG SOLVER constructs a model by writing an executable C++ program.
The object-orientation of C++ is exploited to make the model-defining parts of the
program relatively declarative in nature, so that the program states the model in some-
what the same fashion thatAMPL would. Nevertheless, SOLVER is unlikely to supplant
AMPL as a modeling language, due to limitations inherent in the design of programming
languages like C++.

As an example of SOLVER’s strengths and limitations as a declarative modeling
language, we compare the previous sequencing example as it could be expressed in
extendedAMPL (seq1.mod) to its equivalent as a SOLVER C++ program (seq.cc).

For one-dimensional data, there is a direct analogy between declarations inAMPL
and in SOLVER. To concisely display analogousAMPL and SOLVER expressions, we’ll
show them separated by a line, with theAMPL one above:

param dueTime {0..nJobs} >= 0;

dueTime = IlcIntArray(nJobs+1);

There’s a similar analogy for one-dimensional arrays of variables:

var SlotForJob {j in 0..nJobs} in 0..nSlots;

IlcIntVarArray SlotForJob(nJobs+1,0,nSlots);

Arithmetic and relational operators and the “subscripting operator”[] are the same
in AMPL and in C++. As a result, there is a pronounced similarity betweenAMPL and
SOLVER constraint declarations:

subj to ComplTimeFinalDefn:
ComplTime[JobForSlot[nSlots]] = dueTime[JobForSlot[nSlots]];

IlcPost(
ComplTime[JobForSlot[nSlots]] == dueTime[JobForSlot[nSlots]]);

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 23

For indexed collections of constraints, the indexing expression delimited by{ } in
AMPL has as its analogue a C++for loop:

subj to Precedence
{j in 1..nJobs: classOf[j-1] = classOf[j]}:

SlotForJob[j-1] < SlotForJob[j];

for (j = 1; j < nJobs+1; j++)
if (classOf[j-1] == classOf[j])

IlcPost(SlotForJob[j-1] < SlotForJob[j]);

The C++ functionIlcPost directs SOLVER to set up a constraint, and hence serves
much the same purpose asAMPL’s subj to.

Two-dimensional arrays are more of a challenge to SOLVER. In our example, the
analogue ofAMPL’s two-dimensional parametersetupTime is a one-dimensional
C++ array of corresponding size:

param setupTime {0..nClasses,1..nClasses};

setupTime = IlcIntArray((nClasses+1)*(nClasses+1));

With the help of a simple auxiliary function,

IlcIntExp classesOf(IlcIntVar job1, IlcIntVar job2){
return (classOf[job1] * (nClasses+1) + classOf[job2]);

}

the SOLVER definition of theComplTime variables can be made remarkably similar to
the corresponding AMPL statement:

subj to ComplTimeDefn {k in 0..nSlots-1}:
ComplTime[JobForSlot[k]] =

min (dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- setupTime[classOf[JobForSlot[k]],classOf[JobForSlot[k+1]]]
- procTime[JobForSlot[k+1]]);

for (k = 0; k < nSlots; k++)
IlcPost(ComplTime[JobForSlot[k]] ==

IlcMin(dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- setupTime[classesOf(JobForSlot[k],JobForSlot[k+1])]
- procTime[JobForSlot[k+1]]));

SOLVER’s approach does involve a certain amount of low-level programming that has
no counterpart inAMPL, however. As an alternative, a SOLVER user can achieve
the effect of a two-dimensional data array by declaring a C++ array of objects of type
IlcIntArray. Individual setup times can then be accessed by expressions of the form

24

setupTime[i1][i2], but SOLVER’s overloading of the[] operator is not currently
sufficient to permit general integer expressions in place of bothi1 andi2.

Both AMPL and SOLVER can express the objective function by defining arrays of
variables representing earliness penalties,

var DCost {j in 1..nJobs}
= duePen[j] * (dueTime[j] - ComplTime[j]);

IlcIntVarArray DCost(nJobs+1); DCost[0] = IlcIntVar(0,0);
for (j = 1; j < nJobs+1; j++)

DCost[j] = duePen[j] * (dueTime[j] - ComplTime[j]);

and setup costs,

var SCost {k in 1..nSlots}
= setupCost[classOf[JobForSlot[k-1]],classOf[JobForSlot[k]]];

IlcIntVarArray SCost(nSlots+1); SCost[0] = IlcIntVar(0,0);
for (k = 1; k < nSlots+1; k++)

SCost[k] = setupCost[classesOf(JobForSlot[k-1],JobForSlot[k])];

The full objective is then written as summation + summation:

minimize TotalCost:
sum {j in 1..nJobs} DCost[j] + sum {k in 1..nSlots} SCost[k];

IlcIntVar TotalCost = IlcSum(DCost) + IlcSum(SCost);

In both cases, the introduction of the auxiliary variablesDCost andSCost need not
increase the dimension of the problem that is ultimately sent to an optimizing algorithm.
AMPL also offers the option of dispensing with these variables by substituting them
explicitly into the summations:

minimize TotalCost:
sum {j in 1..nJobs} duePen[j] * (dueTime[j] - ComplTime[j]) +
sum {k in 1..nSlots}

setupCost[classOf[JobForSlot[k-1]],classOf[JobForSlot[k]]];

SOLVER cannot avoid the auxiliary variables, however, because itsIlcSum function
currently requires an argument of typeIlcIntVarArray in order to be applied to
integer variables.

The SOLVER user clearly must work around a variety of C++ limitations. Most
seriously, C++ only weakly supports many aspects of sets and indexing that enable
AMPL to express large-scale optimization models naturally and clearly, such as:

Indexing over arbitrary sets of numbers or objects.

Multidimensional indexing.

Indexing of “sparse” arrays over pairs, triples, and longer tuples.

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 25

SOLVER remedies these omissions to a limited extent, by supplying C++ class declara-
tions that implement several set data types and functions. Even so,AMPL offers a much
richer variety of facilities for computing sets, for indexing model components over sets,
and for iterating operators over sets. (Indeed, set and indexing facilities account for
many of the characteristics that most clearly distinguish algebraic modeling languages
like AMPL from other computer languages.)

SOLVER’s flexibility is also restricted by the fundamentally executable nature of
C++, in contrast to the declarative nature of model formulations for optimization. In
the illustration above, this difference has been played down by showing only the C++
statements that are most nearly analogous toAMPL statements. The C++ program does
not actually define the arraydueTime, for example, by simply executing

dueTime = IlcIntArray(nJobs+1);

Rather, it first definesnJobs and sets its value; then executes the above statement
(which calls a constructor to allocate an array of the desired size); then reads and assigns
values for the array elementsdueTime[j]. Only after these steps maydueTime be
used in SOLVER expressions for the constraints and objective. By contrast, anAMPL
model need only declare

param nJobs integer > 0;
param dueTime {0..nJobs} >= 0;

References todueTime may then appear in any objective and constraint declaration
statements. TheAMPL translator does not require that values fornJobs or each
dueTime[j] be specified before it reads and processes the model; reading the data
and instantiating the constraints are handled by a subsequent phase of translation, which
also allocates storage automatically for the proper number of array elements.

As a result ofAMPL’s more declarative design, a clean separation of model and
data can be more readily maintained, and the correctness of the model can be more
easily verified. The inherent difficulties of maintaining an executable representation
of a model have long been appreciated, as discussed in [9].

In addition to the difficulties cited so far, SOLVER users face the challenge of work-
ing in the C++ language. Although the class hierarchy hides many complications,
eventually a SOLVER program must be submitted to a C++ compiler, and the program’s
author must be prepared to deal with relatively low-level error messages such as:

The operation "long*[IlcIntVar]" is illegal.
IlcIntVar::operator=(IlcIntExpI*) is not accessible from main().
Could not find a match for IlcConstraint::IlcConstraint(void).
Cannot assign long to IlcIntExp.

Successful use of SOLVER thus depends on a clear understanding of conversions, over-
loading, constructors, and other fundamental C++ concepts.

26

These comments suggest that C++’s lack of desirable optimization modeling features
is not merely an oversight in design, but is rather due to fundamental differences between
the design criteria of object-oriented programming languages and algebraic modeling
languages. In particular, a modeling language is designed above all to allow people to
work with models using the same terms in which they conceive of them. Thus modeling
languages have highly developed model declaration features, such asAMPL’s many set
and indexing alternatives, that would be redundant for the purposes of a more generally
applicable programming language.

Using SOLVER for general-purpose optimization

In light of the preceding observations, it makes sense to consider using a modeling
language as a “front end” to the optimization techniques provided by ILOG SOLVER.
The SOLVER class library would then serve as a tool for writing theAMPL/SOLVER

interface routines.
When applied to the more general forms of models that would be received from

AMPL, however, SOLVER’s features for declaring particular models are stretched some-
what beyond their original purpose. As a test of the applicability of these features,
we have constructed a SOLVER interface forAMPL integer programs. Since integer
programs are already supported byAMPL, this experiment could be carried out with-
out any of the modifications to the language that would be needed for the proposed
combinatorial extensions.

Results have been favorable, in that a robust and efficient working interface has
been successfully constructed. The following code suffices, for example, to generate a
SOLVERconstraint from theith linearAMPL constraint, in the case where all coefficients
are integral:

for (nonz = 0, cg = Cgrad[i]; cg; nonz++, cg = cg->next);

IlcIntArray a(nonz);
IlcIntVarArray Y(nonz);

for (k = 0, cg = Cgrad[i]; cg; k++, cg = cg->next) {
a[k] = cg -> coef;
Y[k] = X[cg -> varno];
}

if (loConBnd[i] < upConBnd[i] && loConBnd[i] > negInfinity)
IlcPost(IlcScalProd(a,Y) >= (IlcInt) loConBnd[i]);

if (upConBnd[i] < Infinity)
if (loConBnd[i] < upConBnd[i])

IlcPost(IlcScalProd(a,Y) <= (IlcInt) upConBnd[i]);
else

IlcPost(IlcScalProd(a,Y) == (IlcInt) upConBnd[i]);

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 27

The centralfor loop extracts nonzero constraint coefficients and corresponding vari-
able indices fromAMPL’s sparse data structureCgrad, and packs them into SOLVER

objectsa andY of typeIlcIntArray andIlcIntVarArray, respectively. The ap-
propriate constraint on the scalar product of these two arrays is then posted by one of
theif statements. Similar but separate statements are required for the case in which
some of the coefficients might not be integer.

AMPL’s standard mechanism for conveying options to optimization codes is readily
hooked to the various predefined options for SOLVER’s search procedure. Thus for
example the user can give theAMPL command

option ilog_solver_options ’choose_var=2 gen_var=1’;

to modify SOLVER’s procedure for constructing the search tree. (In SOLVER’s terms,
these options say to use the enumeration functionIlcBestGeneratewith the variable
choice functionIlcChooseMaxSizeInt as an argument.)

5 IMPLEMENTABILITY OF COMBINATORIAL
AMPL EXTENSIONS THROUGH ILOG SOLVER

We now return to theAMPL extensions proposed in sections 2 and 3, to consider
which ILOG SOLVER functions and classes might be useful in implementing them.
The correspondences are mostly quite close, suggesting that the proposed extensions
are of practical interest and that anAMPL/SOLVER interface is a sensible idea. Issues to
be faced in going from this proposal to an implementation are discussed in section 6.

Names beginning inIlc in the following discussion represent C++ types and func-
tions defined in version 3.2 of SOLVER.

Logical operators

SOLVER provides analogues forAMPL’s and, or, andnot operators by overloading
the C++ operators&&, ||, and!, respectively. Thus for example thisAMPL constraint
expression using theor operator as proposed in Section 2,

Start[i2] >= Start[i1] + t_offset[i1,i2] or
Start[i1] >= Start[i2] + t_offset[i2,i1]

can be written in the same way in SOLVER:

Start[i2] >= Start[i1] + t_offset[i1][i2] ||
Start[i1] >= Start[i2] + t_offset[i2][i1]

The two overloaded>= operators return values of typeIlcConstraint. Thus||
is overloaded to accept two operands of typeIlcConstraint and to return an
IlcConstraint.

28

The effect ofAMPL’s iterated logical operators,forall and exists, can be
achieved as special cases of SOLVER’sIlcCard function; see the discussion of counting
operators below.

Conditional operators

SOLVER can directly define if-then constraints by use of either a specialized constraint-
posting function (IlcIfThen) or an implication operator (<=). There is no direct
support for if-then-else constraints, however; they have to be built from two calls to
IlcIfThen or an equivalent constraint expression using several logical operators.

AMPL’s operator of the formif logical-exprthen expr1else expr2has a direct
analogue in C++’s ternary conditional operatorlogical-expr? expr1: expr2. The latter
cannot be overloaded, however, to specialize its behavior when applied to SOLVER’s
constraint data types.

Counting operators

SOLVER’s analogue toAMPL’s cardinality operators is theIlcCard function. This
function acts likeAMPL’s card when called with one argument representing a set
of integers (typeIlcIntSetVar) or objects (typeIlcAnySetVar). It acts like the
proposedAMPL count when called with an index (typeIlcIndex) and a constraint
using that index (typeIlcConstraint). The special case of the proposedAMPL
countof(k) operator is implemented efficiently through Solver’sIlcDistribute
function.

With two arguments,IlcCard acts like a highly restricted form ofAMPL’s pro-
posedcount operator. Its first argument defines only one index, which may be
used in its second argument only to subscript objects of typeIlcIntVarArray and
IlcAnyVarArray that are all of the same size.AMPL’s count would have no such
restrictions, being defined to use anyAMPL indexing expression and constraint expres-
sion as its two arguments. A SOLVER program could get the same effect, however, by
summing a specially constructed array of auxiliary variables, each being 1 or 0 if its
corresponding constraint is or isn’t satisfied. Though such an array may be less con-
venient, it is easy to set up using SOLVER’s “metaconstraint” feature that automatically
associates a binary integer variable with any expression of typeIlcConstraint.

Pairwise operators

SOLVER provides functions that correspond closely to the proposedAMPL pairwise
operators. FunctionIlcAllDiff specifies that the components of an array of integers
(type IlcIntVarArray) or an array of objects (typeIlcAnyVarArray) must be
pairwise different. FunctionIlcAllNullIntersect specifies that the components
of an array of integer sets (typeIlcIntSetVarArray) or an array of object sets

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 29

(type IlcAnySetVarArray) must be pairwise disjoint. SOLVER’s solution search
procedure handles these relationships directly in an efficient way.

Variables in subscripts

SOLVER’s arrays of integers (typeIlcIntArray) and arrays of integer variables (type
IlcIntVarArray) have a subscripting operator that admits any integer expression
(typeIlcIntExp) as its argument. Since an integer expression may in general contain
variables, subscripts containing variables can implemented straightforwardly, as seen
in section 4’s sequencing example. This observation also extends to SOLVER’s arrays
of objects (typesIlcAnyArray andIlcAnyVarArray).

Object-valued variables

SOLVER provides “constrained enumerated variables” (typeIlcAnyVar and type
IlcAnyVarArray) whose values are C++ generic (void*) pointers. Since point-
ers of this type may reference any type of C++ object, they can directly implement the
proposedAMPL object-valued variables.

SOLVER’s integer-valued variables can also be used in contexts where each integer
stands for an object (rather than for a numerical value that participates in arithmetic
expressions). TheIlcAllDiff operator applies in the same way to object and to
integer arrays.

Set-valued variables

SOLVER provides data types for sets of pointers (IlcAnySet) and sets of integers
(IlcIntSet). Set-valued variables are provided by corresponding constrained set
variables of pointers (typesIlcAnySetVar andIlcAnySetVarArray) and integers
(typesIlcIntSetVar andIlcIntSetVarArray).

SOLVER incorporates functions corresponding to all of theAMPL set operators,
including membership (IlcMember, IlcNotMember), containment (IlcSubset,
IlcSubsetEq), union (IlcUnion), intersection (IlcIntersection), and cardinal-
ity (IlcCard). Specialized functions are also provided to define constraints restricting
a given set to equal the union (IlcEqUnion) or intersection (IlcEqIntersection)
of two other given sets.

None of these functions provides a convenient way of implementingAMPL sums
indexed over set variables, as in the constraintsum {i in Knapsack} weight[i]
<= capacity from the knapsack example in section 3. Where the knapsack members
are represented by integers, however, new forms of the functionIlcSum have been
implemented to express summations of this kind in a particular client’s application.
These forms are likely to be included in future versions of the general ILOG SOLVER

release.

30

6 DIRECTIONS FOR FURTHER DEVELOPMENT

This study has introduced a variety of alternatives for extending an algebraic modeling
language to better support general-purpose combinatorial optimization. Evidence for
the usefulness of these extensions has been presented through sample models (sections
2 and 3) and through examples from ILOG SOLVER’s independently designed features
(section 5). The comparison with SOLVER has also served to provide evidence for the
implementability of these extensions.

The next step in this line of investigation will be to add the syntax of the proposed
extensions toAMPL, and to create a general-purpose optimizer for models that use
the extensions, working through an interface that exploits the corresponding SOLVER

functions and data types. This work may face new challenges resulting from the
application of SOLVER in a more general-purpose environment than originally intended.
Experience with a SOLVER interface for integer programming (section 4) nevertheless
suggests that the difficulties should be manageable.

Implementation will also require extensions toAMPL’s data structures for convey-
ing model instances to optimizers.AMPL currently uses two kinds of structures: lists
of nonzero coefficients for linear expressions, and directed acyclic graphs (represent-
ing parse trees) for nonlinear expressions [14]. The latter are sufficiently general to
represent most of the extensions proposed in this paper, but some refinements may be
desirable to allow the interface to SOLVER to be faster or more effective. For example,
many of the operands of the proposed operator extensions are in fact linear constraint
expressions, for which a coefficient list would be more useful than a general subgraph.
A more difficult problem is posed by constructs such as variables in subscripts and
summations over set-valued variables, which require a new kind of expression to be
included in the data structure. It would seem that subscripting in an expression like
procTime[JobForSlot[k]] orFinishTime[JobForSlot[k-1]] could be han-
dled as another kind of operator, for example, much as in C++; but unlike all current
AMPL operators, it would not be operating on any one particular parameter or variable,
but rather on the whole indexed collectionprocTime or FinishTime.

After an interface has been completed using SOLVER’s predefined types and func-
tions, performance might be improved by selectively defining new classes of objects.
It would be possible, in particular, to define new constraint classes. A custom-defined
constraint class might be able to implement certainAMPL extensions more effectively
than a combination of predefined constraints. This advantage might be achieved by per-
mitting a more efficient conversion from the originalAMPL constraint representation,
or by defining member functions that do a better job of propagating the constraint’s
effects through the search tree.

Performance can also often be improved by experimenting with SOLVER’s search
criteria. Access to predefined search options is readily provided fromAMPL’s environ-
ment, as noted in section 4. SOLVER also provides for user-defined, problem-specific

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 31

search criteria through definition of certain new functions and object subclasses. At the
same time, an algebraic modeling language is well-suited to expressing many search
criteria, as shown by numerous examples in [3]. Thus a further extension toAMPL
might permit the user to write algebraic expressions that define such choices as branch-
ing variable and direction.

Another possibility along these lines, also explored in [3], would be to supply alge-
braic expressions for bounds at the search nodes. These bounds would play the same
role in pruning the search tree as the LP relaxation bounds computed by integer pro-
gramming solvers. They could be tailored to specific combinatorial models, however,
for which no useful analogue to the LP relaxation might be available. SOLVER does not
currently incorporate any special mechanism for communicating bounds to its search
procedures, but this is a feature that might not be hard to add.

Finally, it should be remarked that the ideas of this paper can be extended to models
that have some real-valued decision variables. ILOG SOLVER supports such variables
through appropriate C++ classes (IlcFloatVar andIlcFloatVarArray), which
have been used to implement a mixed-integer generalization to theAMPL/SOLVER

interface described in section 4. In fact this interface has been further extended to send
mixed integer programs to ILOG PLANNER, a companion to SOLVER that incorporates
a simplex method, computes LP relaxations, and carries out a standard mixed-integer
branch-and-bound search. The search schemes of SOLVER and PLANNER can optionally
be applied together, often more effectively than either one alone. Thus it is reasonable to
expect that they could be used together to construct a general-purpose solver suitable
for mixed-integer AMPL models that employ some of the combinatorial extensions
described in this paper.

32

Appendix: Examples

The following pages exhibit many of the models from which examples in this paper
were taken. Models are arranged alphabetically according to the filenames by which
they are referenced in the text. All are inAMPL except for one (seq.cc) that is an
ILOG SOLVER C++ program.

assign0.mod
Assignment: Using n^2 zero-one variables
--

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cost {JOBS,MACHINES} > 0;
var Assign {JOBS,MACHINES} binary;

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,k] * Assign[j,k];

subj to OneMachinePerJob {j in JOBS}:
sum {k in MACHINES} Assign[j,k] = 1;

subj to OneJobPerMachine {k in MACHINES}:
sum {j in JOBS} Assign[j,k] = 1;

assign1.mod
Assignment: Using n integer variables,

with the "alldiff" operator
--

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cost {JOBS,MACHINES} > 0;

var MachineForJob {JOBS} integer >= 1, <= n;

minimize TotalCost:
sum {j in JOBS, k in MACHINES}

if MachineForJob[j] = k then cost[j,k];

subj to OneJobPerMachine:
alldiff {j in JOBS} MachineForJob[j];

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 33

assign2.mod
Assignment: Using n integer variables,

with variable in subscript in the objective
--

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cost {JOBS,MACHINES} > 0;

var MachineForJob {JOBS} integer >= 1, <= n;

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,MachineForJob[j]];

subj to OneJobPerMachine:
alldiff {j in JOBS} MachineForJob[j];

assign3.mod
Assignment: Using n object-valued variables,

with variable in subscript in the objective
--

set JOBS;
set MACHINES;

check card (JOBS) = card (MACHINES);

param cost {JOBS,MACHINES} > 0;

var MachineForJob {JOBS} in MACHINES;

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,MachineForJob[j]];

subj to OneJobPerMachine:
alldiff {j in JOBS} MachineForJob[j];

34

flowshp0.mod
Flow Shop: Integer programming formulation
--

set JOBS ordered;
set ALL_MACH ordered;

set MACH {JOBS} ordered within ALL_MACH;

param t_proc {i in JOBS, MACH[i]} > 0;

param t_cum {i in JOBS, j in MACH[i]} :=
sum {jj in MACH[i]: ord(jj) <= ord(j)} t_proc[i,jj];

param t_offset {i1 in JOBS, i2 in JOBS: i1 <> i2} :=
max {j in MACH[i1] inter MACH[i2]}

(t_cum[i1,j] - t_cum[i2,j] + t_proc[i2,j]);

param M > 0;

var End >= 0;
var Start {JOBS} >= 0;
var Precedes {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)} binary;

minimize Makespan: End;

subj to Makespan_Defn {i in JOBS}:
End >= Start[i] + sum {j in MACH[i]} t_proc[i,j];

subj to No12_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] + t_offset[i1,i2] - M * (1 - Precedes[i1,i2]);

subj to No21_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] + t_offset[i2,i1] - M * Precedes[i1,i2];

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 35

flowshp1.mod
Flow Shop: Using disjunctive constraints
--

set JOBS ordered;
set ALL_MACH ordered;

set MACH {JOBS} ordered within ALL_MACH;

param t_proc {i in JOBS, MACH[i]} > 0;

param t_cum {i in JOBS, j in MACH[i]} :=
sum {jj in MACH[i]: ord(jj) <= ord(j)} t_proc[i,jj];

param t_offset {i1 in JOBS, i2 in JOBS: i1 <> i2} :=
max {j in MACH[i1] inter MACH[i2]}

(t_cum[i1,j] - t_cum[i2,j] + t_proc[i2,j]);

var End >= 0;
var Start {JOBS} >= 0;

minimize Makespan: End;

subj to Makespan_Defn {i in JOBS}:
End >= Start[i] + sum {j in MACH[i]} t_proc[i,j];

subj to No_Conflict {i1 in JOBS, i2 in JOBS: ord(i1) < ord(i2)}:
Start[i2] >= Start[i1] + t_offset[i1,i2] or
Start[i1] >= Start[i2] + t_offset[i2,i1];

36

multicom0.mod
Multicommodity transportation:
Using auxiliary zero-one variables
--

set ORIG;
set DEST;
set PROD;

param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= 0;

check {p in PROD}:
sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];

param limit {ORIG,DEST} >= 0;
param minload >= 0;
param maxserve integer > 0;

param vcost {ORIG,DEST,PROD} >= 0;
var Trans {ORIG,DEST,PROD} >= 0;

param fcost {ORIG,DEST} >= 0;
var Use {ORIG,DEST} binary;

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Max_Serve {i in ORIG}:
sum {j in DEST} Use[i,j] <= maxserve;

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 37

multicom1.mod
Multicommodity transportation:
Using conditional expressions and a counting operator
--

set ORIG;
set DEST;
set PROD;

param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= 0;

check {p in PROD}:
sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];

param limit {ORIG,DEST} >= 0;
param minload >= 0;
param maxserve integer > 0;

param fcost {ORIG,DEST} >= 0;
param vcost {ORIG,DEST,PROD} >= 0;
var Trans {ORIG,DEST,PROD} >= 0;

minimize Total_Cost:
sum {i in ORIG, j in DEST}

(if sum {p in PROD} Trans[i,j,p] > 0
then fcost[i,j] + sum {p in PROD} vcost[i,j,p] * Trans[i,j,p]);

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subj to MaxServe {i in ORIG}:
atmost(maxserve) {j in DEST} sum {p in PROD} Ship[i,j,p] > 0;

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi_Min_Ship {i in ORIG, j in DEST}:
if sum {p in PROD} Trans[i,j,p] > 0 then

min_load <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];

38

sched0.mod
Scheduling: Using n^2 zero-one variables
--

param n integer > 0; set JOBS := 1..n;
set MACHINES := 1..n;

param cap {MACHINES} integer >= 0;

param cost {JOBS,MACHINES} > 0;
var Assign {JOBS,MACHINES} binary;

minimize TotalCost:
sum {j in JOBS, k in MACHINES} cost[j,k] * Assign[j,k];

subj to OneMachinePerJob {j in JOBS}:
sum {k in MACHINES} Assign[j,k] = 1;

subj to CapacityOfMachine {k in MACHINES}:
sum {j in JOBS} Assign[j,k] <= cap[k];

sched1.mod
Scheduling: Using n integer variables,

with the "count" operator
--

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cap {MACHINES} integer >= 0;
param cost {JOBS,MACHINES} > 0;

var MachineForJob {JOBS} integer >= 1, <= n;

minimize TotalCost:
sum {j in JOBS, k in MACHINES}

if MachineForJob[j] = k then cost[j,k];

subj to CapacityOfMachine {k in MACHINES}:
count {j in JOBS} (MachineForJob[j] = k) <= cap[k];

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 39

sched2.mod
Scheduling: Using n integer variables,

with the "countof" operator
--

param n integer > 0;

set JOBS := 1..n;
set MACHINES := 1..n;

param cap {MACHINES} integer >= 0;
param cost {JOBS,MACHINES} > 0;

var MachineForJob {JOBS} integer >= 1, <= n;

minimize TotalCost:
sum {j in JOBS, k in MACHINES}

if MachineForJob[j] = k then cost[j,k];

subj to CapacityOfMachine {k in MACHINES}:
countof(k) {j in JOBS} MachineForJob[j] <= cap[k];

40

seq0.mod
Sequencing: Using n^2 zero-one variables
--

param nJobs integer > 0;
param nClasses integer > 0;

param duePen {0..nJobs} >= 0;
param dueTime {0..nJobs} >= 0;
param procTime {0..nJobs} >= 0;
param classOf {0..nJobs} in 0..nClasses;

param setupTime {0..nClasses,1..nClasses};
param setupCost {0..nClasses,1..nClasses};

param BIG := max {j in 0..nJobs} dueTime[j];

var Seq {j1 in 0..nJobs, j2 in 1..nJobs+1: j1 <> j2} binary;
var ComplTime {j in 0..nJobs} >= 0, <= dueTime[j];

minimize TotalCost:
sum {j in 1..nJobs} duePen[j] * (dueTime[j] - ComplTime[j]) +
sum {j1 in 0..nJobs, j2 in 1..nJobs: j1 <> j2}

setupCost[classOf[j1],classOf[j2]] * Seq[j1,j2];

subj to OneAfter {j1 in 0..nJobs}:
sum {j2 in 1..nJobs+1: j1 <> j2} Seq[j1,j2] = 1;

subj to OneBefore {j2 in 1..nJobs+1}:
sum {j1 in 0..nJobs: j1 <> j2} Seq[j1,j2] = 1;

subj to NoOverlap {j1 in 0..nJobs, j2 in 1..nJobs: j1 <> j2}:
ComplTime[j1] + setupTime[classOf[j1],classOf[j2]] + procTime[j2]

<= ComplTime[j2] + BIG * (1 - Seq[j1,j2]);

subj to Precedence
{j1 in 0..nJobs-1, j2 in j1+1..nJobs: classOf[j1] = classOf[j2]}:

Seq[j2,j1] = 0;

subj to Initialization: ComplTime[0] = 0;

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 41

seq1.mod
Sequencing: Using 2n integer variables,
with variables in subscripts
--

param nJobs integer > 0;
param nSlots integer := nJobs;
param nClasses integer > 0;

param duePen {0..nJobs} >= 0;
param dueTime {0..nJobs} >= 0;
param procTime {0..nJobs} >= 0;
param classOf {0..nJobs} in 0..nClasses;

param setupTime {0..nClasses,1..nClasses};
param setupCost {0..nClasses,1..nClasses};

param BIG := max {j in 0..nJobs} dueTime[j];

var JobForSlot {k in 0..nSlots} in 0..nJobs;
var SlotForJob {j in 0..nJobs} in 0..nSlots;
var ComplTime {j in 0..nJobs};

var DCost {j in 1..nJobs}
= duePen[j] * (dueTime[j] - ComplTime[j]);

var SCost {k in 1..nSlots}
= setupCost[classOf[JobForSlot[k-1]],classOf[JobForSlot[k]]];

minimize TotalCost:
sum {j in 1..nJobs} DCost[j] + sum {k in 1..nSlots} SCost[k];

subj to JobSlotInit: JobForSlot[0] = 0;
subj to JobSlotDefn {k in 0..nSlots}: SlotForJob[JobForSlot[k]] = k;

subj to ComplTimeInitDefn: ComplTime[0] = 0;

subj to ComplTimeDefn {k in 0..nSlots-1}:
ComplTime[JobForSlot[k]] =

min (dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- setupTime[classOf[JobForSlot[k]],classOf[JobForSlot[k+1]]]
- procTime[JobForSlot[k+1]]);

subj to ComplTimeFinalDefn:
ComplTime[JobForSlot[nSlots]] = dueTime[JobForSlot[nSlots]];

subj to Precedence {j in 1..nJobs: classOf[j-1] = classOf[j]}:
SlotForJob[j-1] < SlotForJob[j];

42

seq.cc
Sequencing: ILOG Solver C++ representation for seq1.mod
--

#include <ilsolver/ilcint.h>

IlcInt dummy = IlcInit();

IlcInt nJobs;
IlcInt nSlots;
IlcInt nClasses;

IlcIntArray duePen; IlcIntArray dueTime;
IlcIntArray procTime; IlcIntArray classOf;

IlcIntArray setupTime; IlcIntArray setupCost;

IlcIntExp classesOf(IlcIntVar job1, IlcIntVar job2){
return (classOf[job1] * (nClasses+1) + classOf[job2]);

}

void readData(char* filename){
FILE* data = fopen(filename,"r");
if (!data) {

cerr << "No such file: " << filename << endl; exit(1);
}

IlcInt i, j;

fscanf(data,"%d%d",&nJobs,&nClasses); nSlots = nJobs;

duePen = IlcIntArray(nJobs+1); duePen[0] = 0;
dueTime = IlcIntArray(nJobs+1); dueTime[0] = 0;
procTime = IlcIntArray(nJobs+1); procTime[0] = 0;
classOf = IlcIntArray(nJobs+1); classOf[0] = 0;

for (j = 1; j < nJobs+1; j++)
fscanf(data,"%d%d%d%d",

&duePen[j],&dueTime[j],&procTime[j],&classOf[j]);

setupTime = IlcIntArray((nClasses+1)*(nClasses+1));
setupCost = IlcIntArray((nClasses+1)*(nClasses+1));

for (i = 0; i < nClasses+1; i++)
for (IlcInt j = 1; j < nClasses+1; j++)

fscanf(data,"%d",&setupTime[i*(nClasses+1)+j]);

for (i = 0; i < nClasses+1; i++)
for (IlcInt j = 1; j < nClasses+1; j++)

fscanf(data,"%d",&setupCost[i*(nClasses+1)+j]);

fclose(data);
}

A MODELING LANGUAGE FOR COMBINATORIAL OPTIMIZATION 43

int main(int argc, char **argv){
IlcInt j, k;
if (argc >= 2)

readData(argv[1]);
else{

IlcOut << "No filename specified!" << endl; return 2;
}

IlcIntVarArray JobForSlot(nSlots+1,0,nJobs);
IlcIntVarArray SlotForJob(nJobs+1,0,nSlots);
IlcIntVarArray ComplTime(nJobs+1,0,IlcMax(dueTime));

JobForSlot[0].setValue(0);

for (k = 0; k < nSlots+1; k++)
IlcPost(SlotForJob[JobForSlot[k]] == k);

for (k = 0; k < nSlots; k++)
IlcPost(ComplTime[JobForSlot[k]] ==

IlcMin(dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]

- setupTime[classesOf(JobForSlot[k],JobForSlot[k+1])]
- procTime[JobForSlot[k+1]]));

IlcPost(
ComplTime[JobForSlot[nSlots]] == dueTime[JobForSlot[nSlots]]);

for (j = 1; j < nJobs+1; j++)
if (classOf[j-1] == classOf[j])

IlcPost(SlotForJob[j-1] < SlotForJob[j]);

// These constraints are redundant but do speed the search
IlcPost(IlcAllDiff(JobForSlot));
IlcPost(IlcAllDiff(SlotForJob));

IlcIntVarArray DCost(nJobs+1); DCost[0] = IlcIntVar(0,0);
for (j = 1; j < nJobs+1; j++)

DCost[j] = duePen[j] * (dueTime[j] - ComplTime[j]);

IlcIntVarArray SCost(nSlots+1); SCost[0] = IlcIntVar(0,0);
for (k = 1; k < nSlots+1; k++)

SCost[k] = setupCost[classesOf(JobForSlot[k-1],JobForSlot[k])];

IlcIntVar TotalCost = IlcSum(DCost) + IlcSum(SCost);

IlcGoal goal = IlcGenerate(JobForSlot);

if (IlcMinimize(goal, TotalCost))
IlcOut << "Optimal Solution: " << TotalCost.getValue() << endl;

else
IlcOut << "No Solution" << endl;

IlcEnd(); return 0;
}

44

References

[1] E.M.L. Beale and J.A. Tomlin, Special Facilities in a General Mathematical Pro-
gramming System for Non-Convex Problems Using Ordered Sets of Variables.
In J. Lawrence, ed.,OR 69: Proceedings of the Fifth International Conference on
Operational Research,Tavistock Publications, London (1970) 447–454.

[2] J.J. Bisschop and R. Entriken,AIMMS: The Modeling System.Paragon De-
cision Technology, Haarlem, The Netherlands (1993). See alsohttp://
www.paragon.nl/.

[3] J.J. Bisschop and R. Fourer, New Constructs for the Description of Combina-
torial Optimization Problems in Algebraic Modeling Languages.Computational
Optimization and Applications6 (1996) 83–116.

[4] J.J. Bisschop and A. Meeraus, On the Development of a General Algebraic Mod-
eling System in a Strategic Planning Environment.Mathematical Programming
Study20 (1982) 1–29.

[5] A. Brooke, D. Kendrick and A. Meeraus,GAMS: A User’s Guide, Release 2.25.
Duxbury Press/Wadsworth Publishing Company, Belmont, CA (1992). See also
http://www.gams.com/.

[6] A. Colmerauer, An Introduction to Prolog III.Communications of the ACM33
(1990) 69–90.

[7] K. Darby-Dowman, J. Little, G. Mitra and M. Zaffalon, Constraint Logic Program-
ming and Integer Programming Approaches and Their Collaboration in Solving
an Assignment Scheduling Problem.Constraints1 (1997) 245–264.

[8] ECRC GmbH,ECLiPSe 3.5: ECRC Common Logic Programming System: User
Manual. European Computer-Industry Research Centre, M¨unchen (1995). See
alsohttp://www.ecrc.de/research/projects/eclipse/.

[9] R. Fourer, Modeling Languages versus Matrix Generators for Linear Program-
ming.ACM Transactions on Mathematical Software9 (1983) 143–183.

[10] R. Fourer, Software Survey: Linear Programming.OR/MS Today24:2 (April
1997) 54–63.

[11] R. Fourer and D.M. Gay, Expressing Special Structures in an Algebraic Modeling
Language for Mathematical Programming.ORSA Journal on Computing7 (1995)
166–190.

[12] R. Fourer, D.M. Gay and B.W. Kernighan, A Modeling Language for Mathemat-
ical Programming.Management Science36 (1990) 519–554.

REFERENCES 45

[13] R. Fourer, D.M. Gay and B.W. Kernighan,AMPL: A Modeling Language for
Mathematical Programming.Duxbury Press/Wadsworth Publishing Company,
Belmont, CA (1992). See alsohttp://www.ampl.com/ampl/.

[14] D.M. Gay, Hooking Your Solver to AMPL. Technical report, Bell Laboratories,
Murray Hill, NJ (1993; revised 1994, 1997).

[15] E. Hadjiconstantinou and G. Mitra, A Linear and Discrete Programming Frame-
work for Representing Qualitative Knowledge.Journal of Economic Dynamics
and Control18 (1994) 273–297.

[16] ILOG S.A., ILOG Solver User Manual,Version 3.2;ILOG Solver Reference
Manual,Version 3.2. ILOG, Inc., Mountain View, CA (1996). See alsohttp://
www.ilog.com/.

[17] C. Jordan and A. Drexl, A Comparison of Constraint and Mixed-Integer Program-
ming Solvers for Batch Sequencing with Sequence-Dependent Setups.ORSA
Journal on Computing7 (1995) 160-165.

[18] B. Kristjansson,MPL Modelling System User Manual,Version 2.8. Maximal Soft-
ware Inc., Arlington, VA (1993). See alsohttp://www.maximal-usa.com/.

[19] J.-L. Lauriere, A Language and a Program for Stating and Solving Combinatorial
Problems.Artificial Intelligence10 (1978) 29–127.

[20] K. McAloon and C. Tretkoff, 2LP: Linear Programming and Logic Programming.
In V. Saraswat and P. Van Hentenryck, eds.,Principles and Practice of Constraint
Programming,MIT Press, Cambridge, MA (1995) 101–116.

[21] K.I.M. McKinnon and H.P. Williams, Constructing Integer Programming Models
by the Predicate Calculus.Annals of Operations Research21 (1989) 227–246.

[22] G. Mitra, C. Lucas, S. Moody and E. Hadjiconstantinou, Tools for Reformulating
Logical Forms into Zero-One Mixed Integer Programs.European Journal of
Operational Research72 (1994) 262–276.

[23] J.P. Paul, LINGO/PC: Modeling Language for Linear and Integer Programming.
OR/MS Today16:2 (1988) 19–22. See alsohttp://www.lindo.com/.

[24] J.-F. Puget, A C++ implementation of CLP.Proceedings of SPICIS 94,Singapore
(1994).

[25] B.M. Smith, S.C. Brailsford, P.M. Hubbard and H.P. Williams, The Progressive
Party Problem: Integer Linear Programming and Constraint Programming Com-
pared.Constraints1 (1996) 119–138.

46

[26] L. Sterling and E. Shapiro,The Art of Prolog: Advanced Programming Techniques,
2nd ed. MIT Press, Cambridge, MA (1994).

[27] J.A. Tomlin, Branch and Bound Methods for Integer and Non-Convex Program-
ming. In J. Abadie, ed.,Integer and Nonlinear Programming,American Elsevier
Publishing Company, New York (1970) 437–450.

[28] P. Van Hentenryck,Constraint Satisfaction in Logic Programming.MIT Press,
Cambridge, MA (1989).

