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Algebraic modeling languages have become a standard tool in the development
of linear and nonlinear programming applications [17], but they have had much less
influence in the area of combinatorial or discrete optimization. Their one great con-
tribution in that area has been to help analysts develop integer linear programming
models for solution by general-purpose branch-and-bound procedures. Although
this approach has been applied successfully in many cases, formulations as integer
programs often lack the intuitive connection to the modeler’s original concept of
the problem that was the motivation for modeling languages to begin with. Branch-
and-bound codes still have great difficulty solving many integer programs, moreover,
particularly ones that derive from highly combinatorial problems whose formulations
involve great numbers of zero-one variables.

The idea of a modeling language is not necessarily in conflict with the needs of
discrete optimization. Indeed the concept of a modeling language for combinatorial
problems appears as early as the 70s as the central idea of Lauriere’s ALICE [18]:

. the computer receives as data not only numerical values of some parame-
ters but also and mainly the formal descriptive statement of distinct problems
belonging to a rather large area.

Much of the underlying structure for expressing linear or integer programs, including
simple and multidimensional sets, data indexed over sets, and basic mathematical
operations on numbers and sets, is equally useful in describing combinatorial con-
straints. Integer-valued variables also have a natural role in various combinatorial
problems. An extension to permit set-valued variables was shown by Bisschop and
Fourer [1] to extend the naturalness of an algebraic modeling language to a vari-
ety of discrete problem types. Other kinds of extensions specifically motivated by
constraint programming were proposed by Coullard and Fourer [3] and Fourer [4].
Hirlimann’s LPL [12] augmented the standard features of an algebraic language
by implementing a variety of logical and counting operators useful to combinatorial



problems, with the option of automatic conversion to equivalent integer program-
ming problems.

The principal barrier to extensions of these kinds did not lie in their lack of
expressiveness, but in their lack of connections to solvers that could deal generally
and directly with a variety of combinatorial objective and constraint types. Solvers
that could satisfy this need were in fact under development, but independently,
as the focus of what came to be known as constraint programming [19, 22]. Like
branch-and-bound, constraint programming solvers were based on a tree search,
but using domain reduction heuristics rather than LP subproblem bounds to prune
the tree to manageable size. Their branching strategies and pruning procedures
were tailored to a variety of general modeling operators and structures valuable in
modeling discrete optimization problems.

Constraint programming solvers are used within modeling environments based
on a variety of languages, notably Prolog and C++. Most recently, their suitability
for supporting combinatorial extensions to the customary algebraic modeling lan-
guage notation has been demonstrated by the OPL language [23], which, through
the associated OPL Studio software [15], supports both ILOG’s CPLEX [14] for
linear and integer programming and its Solver [16] for constraint programming. In
addition to language extensions for model formulation, OPL incorporates a syntax
for providing nondeterministic directives to guide the tree search.

Given these developments, there is reason to be confident that algebraic mod-
eling languages will make an increasingly valuable contribution to the formulation
and testing of combinatorial models. Nevertheless, to fully realize their potential
these languages will have to be extended not only in the variety of problems that
they can express, but also in the variety of solvers that they can support. The
ability to support a diverse range of competing solvers has been a strong force be-
hind the popularity of modeling languages for linear and integer programming, and
the user of these languages will expect no less as they continue to be extended.
Yet the approaches currently employed to interface modeling languages to a range
of linear and nonlinear solvers are inadequate to the needs of constraint program-
ming solvers, because information about objective and constraint functions is not
conveyed directly to the solvers, but rather indirectly through function evaluations.

The goal of this paper is thus to elucidate the mechanisms that algebraic model-
ing languages will require, if their current flexibility is to be extended for convenient
connections to varied constraint programming solvers. We begin by discussing (in
Section 1) the design and use of conventional modeler-solver interface libraries that
provide connections to existing linear and nonlinear solvers. Our description em-
phasizes in particular how solver-specific drivers interact with a general-purpose
interface library to accommodate the requirements of diverse algorithms and their
data structures. We then introduce (in Section 2) the kinds of complications to be
expected in writing drivers for constraint programming solvers, particularly the need
to recursively “walk” an expression-tree representation within the driver code so as
to provide solvers with function descriptions rather than evaluations. This material
is applicable not only to constraint programming for combinatorial optimization but
to other global search solvers, such as those that have recently been developed for
global optimization of continuous nonlinear functions.

We subsequently present detailed discussions of the issues raised by particular ex-
tensions for “logical” constraints (Section 3), for constraints that employ “counting”



operators (Section 4), for special-structure constraints such as “all different” (Sec-
tion 5), and for expressions using variables in the “subscripts” of model parameters
and variables (Section 6). Our account concludes (in Section 7) with a summary of
other extensions being implemented and brief indications of the difficulties involved.

We illustrate our ideas by reference to a driver for the AMPL modeling language
[5, 6] that we have implemented via ILOG’s Concert Technology C++ interface [13]
to solve constraint programs using ILOG Solver [16]. We use examples of AMPL
declarations and Concert code to make our points explicit, but we have tried to
choose and present these examples in a way that will permit the reader to appreciate
their essential features even without prior knowledge of AMPL or C++.

Our discussion also addresses the general issues involved, in a way that we
hope will encourage other applications of algebraic modeling languages in con-
straint programming. Although AMPL and ILOG Solver are proprietary, source
code for the AMPL-to-solver interface libraries and for the driver routines described
herein is publicly available from netlib.bell-labs.com/netlib/AMPL/solvers or
www.netlib.org/AMPL/solvers. Over a dozen other AMPL drivers are also pro-
vided at these sites and have been used extensively over the past decade.

We use CP as an abbreviation for constraint program or constraint program-
ming, and IP for integer program or integer programming, which we take to include
the “mixed” case in which some variables are integer and others continuous. We fol-
low the mathematical programming terminology that a solution is any assignment
of values to variables, a feasible solution is one that satisfies all constraints, and an
optimal solution is a feasible solution that minimizes or maximizes the objective.

1. Modeling language interfaces to solvers

Optimization systems based on algebraic modeling languages maintain a problem
in the form of a symbolic model together with explicit data. Both the model and
data can be entered and manipulated in various ways, but our main concern here is
with what happens when the user asks to solve the current problem.

This section gives a top-down summary of current solver interfaces for modeling
languages that are intended to work with a variety of solvers. We first review the
solver invocation process in general terms, then describe the interface code — the
solver “driver” — in more detail. Finally, we describe the forms in which individual
constraints are represented.

Overall flow of control. Upon receiving a “solve” request, the modeling system
generates from the current model and data a particular optimization problem, or
problem instance, in a format that has been designed to be flexible and easy to
generate. In contrast, the input format required by a solver is designed to concisely
express the kinds of problems handled by that solver, in a form that is convenient for
that solver to process. Thus the instance representation created by a general-purpose
modeling system cannot be appropriate for direct input to any solver. Instead, the
instance must be sent to a driver, an interface that converts between the modeling
system’s representation and the representation required by the solver. Typically
each solver connected to the system has its own driver, which performs a series of
conversions before it invokes the solver.

In the case of the AMPL modeling system that serves as our example, the



commands leading up to an invocation of a solver named SuperSolv might be:

option solver supersolv;
option supersolv_options "maxiter=10000";
solve;

The solve command causes a problem instance to be generated from the current
model and data and to be written to a temporary file in AMPL’s general “nl”
format. AMPL generates an arbitrary name or stub — say, at13151 — and names
the file at13151.nl. It then invokes SuperSolv’s driver by executing the command

supersolv at13151 -AMPL

The driver in turn reads at13151.n1 and any solver directives in supersolv_options,
transforms the representation of the instance as necessary, passes the transformed
instance to the routines of SuperSolv, and retrieves the solution that SuperSolv re-
ports. Finally the driver writes a representation of the solution information to a
second file, at13151.s0l, and terminates. Upon the driver’s termination, AMPL
reads at13151.s0l, prints a brief summary, and stores the rest of the information
for retrieval by subsequent commands.

Other modeling systems communicate with drivers through data structures in
memory rather than through explicit files, but either way this is a design that
favors flexibility. A driver is “installed” simply by placing its executable anywhere
in the current search path. Once a problem instance has been written and a solver
driver has been invoked, the entire solution-finding process runs independently of the
modeling system. Usually the modeling system remains an active process while the
driver and solver are running, but even that is not necessary. The driver is typically
compiled together with its solver, but the driver can also be an independent program
that sends problem instances to some remote location where the solver runs.

The alternative is to tightly integrate the solver with the modeling system, so
that the driver is no longer a separate component. Although such an approach has
a potential to be more efficient, the prospective gain in efficiency is often small,
because solving time tends to dominate communication time. The main advantage
of tight integration is to trade some flexibility for a greater degree of control. As
a result this approach is most attractive for integrating a modeling language and
solvers that belong to the same developer, as in the case of ILOG’s OPL Studio [15].

Structure of the driver. Each driver must contain some parts written specifically
for the solver being interfaced. A driver may also use code that is common to all
drivers for a particular modeling system. This latter code, comprising interface
routines and header files for an interface data structure, makes up an interface
library typically supplied by the modeling system’s developer. In the case of AMPL,
an AMPL-solver interface library written in C is freely available from netlib; our
examples will refer to this library as ASL and to its components as the ASL routines
and ASL data structures.

In terms of the solver-specific code and the interface library routines, the essential
steps of a driver can be described as follows:

> Call interface routines to load a problem instance from the modeling
system into the interface data structure.



> Apply solver-specific processing to convert information from the
interface data structure to the forms and structures that the solver
requires as its input.

> Invoke the solver and wait for it to complete its run.

> Apply solver-specific processing to convert the solver’s output back
to the form of the interface data structure.

> Call interface routines to send the results back to the modeling
system.

For linear, quadratic, and related optimization solvers that receive all of their infor-
mation about the problem from data structures passed as input arrays, the interface
routines are used only as indicated in these steps. In the case of more general non-
linear programming, however, the situation is more complex.

A traditional nonlinear solver generates a series of trial solutions, or iterates,
and requires the values of nonlinear objective and constraint functions only at those
iterates. Thus the solver typically requires each user to provide a routine, in a
programming language such as C or Fortran, that can be called with the values of
the variables at the current iterate, and that returns the objective and constraint
function values and optionally their derivative values. The calling conventions for
this routine differ from one solver to the next, while the body of the function is
entirely specific to the problem to be solved.

When a traditional nonlinear solver is hooked to a driver, the developer of the
driver supplies a generic function evaluation routine to take the place of the routine
that would otherwise be provided by users. This generic routine adheres to the
solver’s particular calling conventions, but it performs the function evaluations by
passing the variables’ values to the interface library’s evaluation routine, which
computes the function values and derivatives by use of the interface data structure
that the driver previously set up. Thus the interface routines and data structure are
used not only by the driver program, but also by the solver as it evaluates iterates
on the path toward a solution.

Representation of constraints. Any constraint written in an algebraic modeling
language can be converted to a standard algebraic form,

lower-bound < linear-expr + nonlinear-expr < upper-bound.

FEach modeling system performs a conversion to this or a very similar form as part
of its translation from model and data to problem instance. Hence this form is
explicit in the format of the interface library’s data structure. (Objectives are also
expressed as linear-expr + nonlinear-expr, but without the bounds. The extensions
to the expression forms described in this paper are applicable to objectives as well
as constraints, but overall the consequences for constraint forms and processing
are much more significant.) The constraint lower-bound and upper-bound are nu-
merical values that occupy arrays in the interface data structure. Single-inequality
constraints have one of these bounds equal to an “infinite” value (defined in the
interface library’s headers), while equality constraints have the two bounds equal.
Each linear-expr represents the linear part of a constraint or objective expression.
In the interface data structure, the linear-exprs for all constraints are gathered
together into a sparse coefficient list. This information can be made available to



the driver in the usual format for coefficients of a linear program, consisting of a
column-wise pair of arrays that hold coefficient values and row indices, plus an array
to indicate where the values for each column begin. The same information might
alternatively be provided in a row-wise linked list of nonzero coefficients, with an
array of pointers specifying the beginning of each linked list, an arrangement that
is more convenient for generating input to some nonlinear solvers.

Each nonlinear-expr has a representation as an expression tree, with internal
nodes representing operators or functions and leaf nodes standing for individual
variables or constants:

x [5] 75

The interface data structure must incorporate a concise representation of such a tree
that will be convenient for evaluation of the nonlinear-expr given values of the vari-
ables. For traditional nonlinear solvers that rely on the differentiability of constraint
and objective functions, the data structure must also facilitate concurrent compu-
tation of derivatives by efficient techniques of automatic differentiation [10, 11].

In the case of AMPL, the expression tree is represented in the nl-file by a Polish
prefix notation, and in the ASL data structure as a directed acyclic graph that is con-
ceptually identical to the tree but with one leaf node for each independent variable.
Nodes are implemented as C structures connected by pointers. There are about 10
different node structures in all, corresponding to different kinds of operators and
functions as well as variables and constants. A few fields are added to hold inter-
mediate information required in automatic differentiation. Finally, one additional
array contains a pointer to the root node of each constraint expression tree.

For efficiency in handling the common case of a sum of terms within a nonlin-
ear expression, AMPL recognizes a special summation node. For example, in the
expression tree for

(target - sum j in 1..n cost[j] * Buy[jl) ** 2

there is one summation node with n children representing the n summands, rather
than a cascade of n-1 binary + nodes. No special attempt is made to distinguish
summations that are actually (like this one) linear subexpressions from those that
have nonlinear terms.

AMPL’s evaluation of a nonlinear-expr and its derivatives at given values of the
variables can be accomplished efficiently by a straightforward recursive “walk” of
its tree [8]. The developer of a driver can choose among several ASL evaluation
routines that provide different amounts and formats of first and second derivative
information [9]. For any particular problem, the ASL routines for function and
derivative evaluation are likely to be slower than compiled C or Fortran routines
that have been hand-coded or that have been automatically generated from an nl-
file by use of the nlc utility [8], but the difference is only a moderate linear factor
[7]. The convenience and reliability of expressing nonlinear functions by means of



a modeling language and performing evaluations via expression trees are almost
always sufficient to outweigh any drawbacks due to slower evaluation.

2. Extending modeling language interfaces
for global search solvers

The representation of nonlinear expressions described above is sufficient for driv-
ing traditional nonlinear solvers, because the methods employed by those solvers are
forms of local search. They basically progress through a series of trial points and
need only the function (and derivative) values at those points.

The methods used by CP solvers are, by comparison, an example of global search.
They progressively subdivide the feasible region into smaller subproblems until each
subproblem is able to be solved. This approach cannot rely on function evaluations
alone; it rather requires access to the actual forms of the functions, from which
optimal solutions to nontrivial subproblems can be deduced efficiently.

(We distinguish global search from global optimization, which refers to any
method for seeking the best objective value over all feasible solutions. Global search
methods are necessarily a subset of global optimization methods, but global opti-
mization methods may also involve local search — although usually with weaker op-
timality properties. Heuristic approaches such as simulated annealing, tabu search,
evolutionary methods, and a variety of others [2, 20] are examples of global opti-
mization methods that use local search.

The one method of global search commonly supported by algebraic modeling
languages is branch-and-bound. In their role as IP solvers, branch-and-bound codes
get all of the information they need from coefficient-list representations of linear
expressions as described in the previous section. Most of these codes also handle
extensions, however, such as for variables that have arbitrary finite domains and for
separable piecewise-linear expressions. (The mechanisms for doing so are known as
special ordered sets of various types.) The presence of these extensions must also
be communicated explicitly to the branch-and-bound solver, and indeed that is the
motivation for the piecewise-linear notation in several modeling languages.

To support the more general methods of global search characteristic of constraint
programming, a driver must also convert non-linear information in the expression
trees to forms that the solver requires. This conversion has to be completed before
the solver is invoked, so that the solver has all the information it needs at the
outset. Thus in most cases a complete scan of the constraint expression trees must be
performed by the solver-specific code in the driver, rather than being left to interface
function-evaluation routines that are later called back from the solver as it iterates.

The remainder of this section introduces expression-tree processing in drivers for
global search solvers, by considering applications to expressions already available
in algebraic modeling languages. We first briefly introduce the example we will
be using, and then describe the general code for constraint generation and the
specific cases that make up the tree-walk routine. Subsequent sections will address
complications that are introduced by CP extensions.

A driver example. To provide a concrete illustration, we describe a driver that
uses ILOG’s Concert Technology C++ interface [13]. The Concert interface pro-
vides tools for constructing a problem data structure specific to ILOG’s optimization



products. For the work described here, our interest is in using Concert to build an
AMPL driver for ILOG Solver [16], which is capable of applying global search meth-
ods to a broad variety of nonlinear, integer, and constraint programming problems.
The design of such a driver necessarily brings up many key challenges of constraint
programming via an algebraic modeling language.

The Concert Technology interface uses C++ object classes and operator over-
loading to provide an expression and constraint syntax that has some resemblance
to algebraic notation. Thus a C++ expression of the form exSum += exCoef *
exVar [k] resembles the adding of a linear term to a partial sum. When the enti-
ties involved have certain Concert object types, however, this expression actually
adds a Concert representation of a linear term to a Concert representation of an
expression. Specifically, the * operator is overloaded so that when its left operand
exCoef is an object of type IloNum and its right operand exVar[k] is an object
of type IloNumVar, the result is an object of type I1oExpr. When the overloaded
operator += has this I1oExpr object on its right and another I1oExpr object exSum
on its left, the effect is to update the left I1oExpr to reflect the addition of the term
represented by the right I1oExpr.

As another example, in the C++ statement exIneq[i] = (exSum <= exBnd[i]),
the <= operator is overloaded so that when its left operand exSum is an object of
type IloExpr and its right operand exBnd[i] is of type IloNum, the result is an
IloRange object. IloRange is a subclass of IloConstraint that represents alge-
braic equations and inequalities in the same way that algebraic modeling languages
do, as an expression subject to lower and upper bounds. The overloaded assignment
operator = then gives the value of the I1loConstraint expression on its right to the
IloConstraint-valued variable exIneq[i] on its left.

Like any C++ class library, Concert represents objects through data structures
whose internal details need not concern the writer of the driver. Objects are created
and manipulated entirely by member functions and operators. Even the expression
exVar [k] above, which would appear to be an element selected from an array, is in
fact an overloading of the subscripting operator [] applied to the I1oNumVarArray
object exVar and the int k, returning an object of type I1loNumVar as its result.

Processing constraints. Given the arrangement we have described, the driver’s
work is to convert the contents of the ASL data structure to C++ Concert code. The
top-level statements for this purpose simply declare an I1oNumVarArray containing
the appropriate numbers of continuous and integer variables:

Var = IloNumVarArray (env,n_var);

for (j = 0; j < n_var - n_var_int; j++)

Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j]l, ILOFLOAT);
for (j = n_var - n_var_int; j < n_var; j++)

Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOINT);

Then the constraint processing loop is easily written like this:



IloRangeArray Con(env,n_con);
for (i = 0; 1 < n_con; i++) {
IloExpr conExpr(env) ;
for (cg = Cgrad[il; cg; cg = cg->next)
conExpr += (cg -> coef) * Var[cg -> varno];
if (i < nlc)
conExpr += build_expr (con_deli].e);

Con[i] = (loConBnd[i] <= conExpr <= upConBnd[i]);
}

Following initialization of an I1oRangeArray object Con of appropriate length, each
pass through the loop builds and saves an I1oRange object Con[i] corresponding to
one of the AMPL constraints. The loop’s first statement creates an empty expression
object, the second and third statements add the linear and nonlinear parts to the
expression object, respectively, and the fourth uses the expression object to create
and save the appropriate Concert constraint object.

More specifically, any linear part of the expression object conExpr is built term
by term in the second loop statement, by stepping through the ASL linked list of
coefficients starting at Cgrad[i]. If there is a nonlinear part, the driver’s func-
tion build_expr is called in the third loop statement to construct an object of
type IloExpr that corresponds to the ASL expression tree at con_del[i].e, and
this object is added to conExpr. Finally, conExpr together with the lower and up-
per constraint bounds from the ASL data structure is used to create an IloRange
constraint that is saved as Con[i].

Walking the expression trees. The routine build_expr must be written by us
as part of the driver. It takes as its argument an expression tree, and returns an
I1loExpr object that is equivalent to the expression represented by the tree:

I1oExpr build_expr (expr *e)
{
opnum = (int) e->op;
switch(opnum) {
case PLUS_opno:
case MINUS_opno:

}

More specifically, this function’s argument points to an instance e of an ASL struc-
ture, expr, that represents expression tree nodes. The opnum, extracted from a field
of e, indicates which of the many AMPL operators and functions is represented.
Hence each case of the switch on opnum handles a different operation.

Most cases are handled recursively, by calling build_expr to create IloExpr
objects for each argument or operand, and then returning the appropriate Concert
expression as the result. Because AMPL and Concert use many of the same standard
algebraic operators and functions, many cases require only a single statement:



case PLUS_opno: // x +y
return build_expr (e->L.e) + build_expr (e->R.e);

case LOG_opno: // log x
return IloLog (build_expr (e->L.e));

Even where there is no exact match, an appropriate Concert expression is not hard
to construct.

The special ASL node for an iterated sum specifies an array of nodes whose
associated expressions are to be summed. Thus the code for this case resembles the
accumulation of linear terms previously shown in our example from the main driver
program. The difference is that the I1oExpr object for each term is now created
not by a multiplication operator, but by a recursive call to build_expr:

case SUMLIST_opno: // iterated sum
partSum = IloExpr(env);
for (ep = e->L.ep; ep < e->R.ep; *ept+)
partSum += build_expr (*ep);
return partSum;

Similar code handles other iterated operators, though sometimes with additional
complications due to differences between AMPL operators and Concert functions.

Two kinds of leaf nodes provide the base cases for the recursion. A node that
corresponds to a numerical constant causes build_expr to return an expression
defined to be fixed at the constant’s value:

case NUM_opno: // constant
return IloExpr (env, ((expr_n*)e)->v);

A node that corresponds to a decision variable causes build_expr to return an
IloNumVar from Var, our Concert IloNumVarArray of variables:

case VARVAL opno: // variable
return Var[e->a];

Concert provides for an IloNumVar to be converted to the specified return type
IloExpr. If returning an IloExpr object for each constant or variable proved to
be a serious inefficiency, then the other cases could instead be modified to test for
operands that are merely constants or variables and to handle those cases specially
without a recursive call to build_expr.

3. Extensions for logical constraints

Logical operators are already a standard feature of algebraic modeling languages,
as they are necessary for specifying conditions that define the membership of index-
ing sets. In that context they apply only to the data, however. AMPL goes further
by allowing constraints to contain a kind of if-then-else expression whose value
depends on a condition involving variables:

subject to logRel {j in 1..N}:
(if X[j] < -delta || X[j] > delta
then log(1+X[jl) / X[j] else 1 - X[j] / 2) <= logLim;

The condition following if may use any of the arithmetic relational operators (like <)
and logical operators (like || for “or”). Relational and logical operators may thus
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appear in the resulting expression tree, but for traditional nonlinear solvers they
are involved only in conventional function evaluation. Given a particular iterate
produced by the solver, the condition following if is tested to determine whether
the expression following then or following else will be evaluated to determine the
value of the entire if-then-else expression.

If variables are allowed more generally within expressions that use logical oper-
ators, then an algebraic modeling language can express the much broader variety of
logical constraints that are to be found in CP formulations. An AMPL user formu-
lating a scheduling problem might want to write two inequalities that are arguments
to the || (or) operator, for instance:

subject to NoOverlap {jl in 1..nJobs, j2 in ji1+1..nJobs}:
Start[j2] >= Start[j1] + setTime[j1,j2] ||
Start[j1] >= Start[j2] + setTimel[j2,j1];

A modeler developing an assignment problem could use a combination of ! (not)
and &% (and) to rule out solutions that unnecessarily “isolate” any individuals:

subject to NoIsolation {(il,i2) in ISOPAIRS, j in GROUPS}
! (Assign[il,i2,j] =1 &&
sum {iil in ADJ[i1], (ii1,i2) in TYPE} Assign[iil,i2,j] = 0);

AMPL also provides an iterated operator, forall, that has the effect of connecting
an indexed collection of operands by a series of and operations. Thus forall can
be used in a constraint to represent the assertion that all equalities in some indexed
collection must hold, as in this example from a transshipment model:

subject to BuildDefn {i in CENTERS}:

(Build[i] 1 &% sum {j in CUST} Shipl[i,j] <= caplil) ||
(Build[i] 0 && forall {j in CUST} Ship[i,j] = 0);

A similar exists operator connects equations or inequalities by a series of || op-
erators. AMPL’s forall and exists have the same syntax as sum, and bear the
same relationship to the binary logical operators that sum bears to the + operator.

New logical operators of these kinds are readily added to a modeling language’s
constraint syntax. In our AMPL illustrations, their general forms are

' constraint-expr

constraint-expr || constraint-expr
constraint-expr && constraint-expr
exists {indexing} constraint-expr
forall {indexing} constraint-expr

where constraint-expr is any valid expression for a constraint, whether a simple
equation or inequality or a more complex assertion built from arithmetic relations
already connected by logical operators. (Parenthesization and operator precedence
are handled in the usual ways.) It is convenient to think of the logical operators
as “taking constraints as operands” even though the operands do not stand by
themselves as constraints on the problem to be solved.

Because logical operators take constraints as operands, logical constraints do
not fit the customary algebraic form of an expression between bounds. Hiirlimann’s
LPL modeling language [12] was the first (to our knowledge) to attack this problem,

11



by running each logical constraint through a series of transformations that convert
it to a conjunctive normal form and then to an algebraic constraint in zero-one vari-
ables, which can be sent to any branch-and-bound solver for integer programming.
Substantial transformations like this are less appealing for constraint programming,
however, as they may hide from the solver some useful information about the mod-
eler’s choice of formulation. Moreover, any standard form adequate for the logical
operators will again be insufficient as the language is expanded with further types
of operations and constraints motivated by constraint programming.

We thus anticipate that algebraic modeling languages will follow a more flexible
strategy, by generalizing their existing expression tree representations so as to record
logical constraints in more-or-less the same form as the modeler writes them. This
is a particularly straightforward extension in the case of AMPL, since nodes for
logical operators (&%, ||, !) and for binary relational operators (<, <=, =, >=
>, 1=) have already been defined to meet the needs of the previously discussed
if-then-else expressions. Instances of forall and exists are represented by new
node types analogous to those for sum. A double inequality is converted to an &&
between two single inequalities (1o[j] <= X[j] <= hi[j] becomes lo[j] <=X[j] &&
X[j] <=hi[j], for instance), but it would not be hard to introduce more specialized
nodes corresponding to double inequalities, if that would be helpful to some solvers.

By taking this approach, we introduce a kind of non-algebraic constraint that is
represented in its entirety within an expression tree. Top-level processing for such a
constraint is particularly simple, since all of the relevant information can be reached
from its tree’s root node. In our Concert driver, a pointer to the root of each
constraint’s expression tree is merely passed to our driver routine build_constr
that returns an equivalent IloConstraint:

IloConstraintArray LCon(env,n_lcon);

for (i = 0; i < n_lcon; i++) {
LCon[i] = build_constr (lcon_del[i].e);
}

The object returned from build_constr does not require any further processing,
because logical constraints do not have components — like an algebraic constraint’s
linear coefficients and bounds — that are maintained in arrays or lists outside of
the expression tree.

The build_constr routine for our example looks much like the previously de-
scribed build_expr, though with an IloConstraint rather than IloExpr return
type and with cases for operators that create non-algebraic constraints:

IloConstraint build_constr (expr *e)

{
opnum = (int) e->op;
switch(opnum) {
case OR_opno:
case AND_opno:
3
}
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Cases for the comparison operators are handled straightforwardly by their coun-
terparts in C++, which are overloaded by Concert to take I1oExpr operands and
return an IloConstraint result:

case GE_opno: // >=
return build_expr (e->L.e) >= build_expr (e->R.e);

The logical operators are handled similarly, but their arguments are what we have
called constraint-exprs. Concert overloads their C++ counterparts so that they take
IloConstraint operands, which we can also build by calls to build_constr:

case OR_opno: // || (or)
return build_constr (e->L.e) || build_constr (e->R.e);

Thus build_constr is used recursively to build up more complex logical constraints
from simpler constraint expressions. Base cases for build_constr are via its even-
tual calls to build_expr, as there are no “true” or “false” literal values in the tree
that AMPL sends to the driver.

Once a framework of this sort has been set up, it is a straightforward matter to
add other logical operations, such as xor and implication, that might be convenient
for modeling. The if-then-else operator that returns a numerical value, as de-
scribed at the beginning of this section, can also be accommodated for CP purposes
by adding an appropriate case to the build_expr routine.

4. Extensions for counting

Most algebraic modeling languages can define the set of all objects or numbers
that satisfy given logical conditions. By counting the number of members in a set
that has been so defined, a modeling language can in effect count the number of
conditions in a given collection that are satisfied. If sets were allowed to be defined
in terms of variables, then modeling languages could apply counting to conditions
on the variables — that is, they could count the number of constraints in a given
collection that were satisfied. Counting expressions of this kind are an important
component of CP formulations. The incorporation of variables into set definitions is
arguably too general an extension for this purpose, however; instead it makes sense
to define “counting” operators specially.

As an illustration, in a transshipment problem the number of customers that
have at least min_ctn cartons of demand could be represented for all products p by
applying AMPL’s card (cardinality) operator to the appropriate set expression:

param num_min_ctn {p in PROD} :=
card {c in CUST: demand[c,p] > min_ctn};

Allowing variables in this sort of expression would amount to allowing the condition
after the colon to be any constraint-expr as defined previously. Then to require,
for instance, that the number of warehouses shipping a given product to a given
customer may not exceed max_store, an AMPL model could state:

subj to Max_Whse_Used {p in PROD, c¢ in CUST}:
card {w in WHSE: Ship[w,c,p] > 0} <= max_store;

The use of card for this purpose is arguably unnatural, since we think of the con-
straint in terms of the number of conditions that are satisfied, without reference to
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any kind of set. Also, since set expressions are used in many contexts throughout
the AMPL language, allowing variables to appear in them in only certain contexts
in certain constraint expressions would entail new and potentially confusing rules.

We thus begin by describing an extension that provides a more specialized
integer-valued counting operator for use as an expression in constraints. Even this
operator can be awkward in common circumstances, however, and thus we subse-
quently describe alternative operators that generate constraints directly by fixing or
bounding specified counts.

Counting expressions. Like any modeling language operator that works with a
collection or list, a counting operator is fundamentally an indexed operator. Indeed,
it works much like summation, except that instead of summing the numerical values
of its operands, it sums 1 for each operand that holds and 0 for each that does not.
Thus an algebraic modeling language could provide this operator by adapting its
summation syntax, but with constraint expressions replacing numerical ones.

We have basically followed this approach in designing a new AMPL operator,
count, that expresses the constraint shown above by:

subj to Max_Whse_Used {s in STORE, p in PROD}:
count {w in WHSE} (Shipl[w,s,p] > 0) <= max_store;

Thus count is in fact written much like sum, except that the argument following the
indexing expression must be parenthesized (to avoid certain grammatical ambigui-
ties). To provide more flexibility in the list of constraints to be counted, however,
we provide an unindexed as well as an indexed form:

count (constraint-list)
count {indexing} (constraint-list)

The constraint-list can be a single constraint-expr as in our example above, or more
generally a list that may itself contain indexed sub-lists. This is consistent with the
forms of other kinds of lists in AMPL, such as lists of arguments to user-defined
functions and lists of items in display statements — as well as lists in other new
operators motivated by constraint programming. We expect that the simple indexed
count will be the most widely used, however.

Like other iterated operators in constraints, count is translated by AMPL to
provide an explicit list of operands in the problem sent to the solver. Thus the ASL
data structure accommodates count by defining a new kind of node that identifies
an array of constraint nodes, each processed by a call to build_constr. The result
of the count operation is an arithmetic value, however, and so it is processed in
build_expr to return an IloExpr object. In fact the C++ code for the case of
count is nearly the same as previously shown for iterated sums:

case COUNT_opno: // count
partSum = IloExpr(env);
for (ep = e->L.ep; ep < e->R.ep; *ept+)
partSum += build_constr (*ep);
return partSum;

The only difference is the substitution of build_constr for build_expr inside the
loop. This works because the Concert interface reduces counting to the kind of sum-
mation that we previously described; specifically, it overloads arithmetic operators
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(like +=) so that they treat IloConstraint operands as 1 if they are true and 0 if
they are false.

With the implementation of count, the build_expr and build_constr routines
each call the other under certain circumstances. Thus they can be regarded as two
pieces of a single recursive tree-walk procedure.

Counting constraints. Even with the use of count, our Max_Whse_Used con-
straint example ends awkwardly with the sequence

. > 0) <= max_store;

Thus, given that the purpose of modeling languages is to describe people’s models
in natural terms, there is reason to prefer a more direct way to say that there are at
most max_store warehouses shipping any given product to a given store. This leads
to the definition of the atmost operator, with which our AMPL constraint becomes

subj to Max_Whse_Used {s in STORE, p in PROD}:
atmost max_store {w in WHSE} (Shipl[w,s,p] > 0);

Similar operators atleast and exactly have the obvious analogous meanings. The
syntax is the same as for count, except for the insertion of an arithmetic expression
after the keyword.

These alternative operators return constraints that are merely bounds on the
value of the corresponding count operator. Hence their realization in the LPL
modeling language [12] simply reduces them to bounds on the kinds of sums that
arise from counting operators. Since for a CP driver we prefer to preserve more of the
original structure, our AMPL driver for Concert breaks each atmost, atleast, or
exactly expression into an arithmetic expression and a count expression, which are
processed within build_constr by the standard calls to build_expr. For example,
the code for the case of atmost is:

case ATMOST opno: // at most
return build_expr (e->L.e) >= build_expr (e->R.e);

This is in fact identical to the code for the AMPL >= operator previously shown.

5. Structure constraints

“All-different” constraints, stating that a specified list of expressions must all
take different values, are a common component of CP model formulations. They
are one example of structure constraints that jointly restrict the values of many
variables in a highly regular way. (They are called global constraints in the CP
literature, but we avoid that term here so as not to compound the confusion that
already exists between the terms “global convergence” and “global optimization” in
mathematical programming.)

From the modeler’s point of view, a structure constraint is attractive when it
concisely states a condition that would otherwise require a great number of other
(usually algebraic) constraints. To also be attractive for CP solvers, a structure
constraint must be associated with a fast algorithm for pruning large parts of the
search tree. That is, given reduced domains for a structure constraint’s variables
at some node of the search, there must be efficient ways to deduce further domain
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reductions, to determine that no feasible solution is possible, or to remove domain
values that cannot appear in any feasible solution constructed from the current
domains. This process of domain reduction and filtering — akin to the presolving
and probing employed by some branch-and-bound codes — is typically applied at
each node in the course of the CP solver’s tree search.

We describe here two structure constraints — all-different and its generalization,
number-of — that are readily provided to modeling language users through the
introduction of new operators. We then review the issues involved in deciding which
structure constraints merit support in a general-purpose modeling language.

All-different. For the all-different constraint, the appeal to modelers is clear:
a single list of the expressions that must all take different values replaces a much
larger number of inequalities between all pairs of such expressions. The filtering
process is simply a series of assignment (or matching) problems.

A modeling language extension for all-different is similarly straightforward. It re-
quires only a new keyword and a way to specify a list of expressions. Lists of expres-
sions are already familiar to AMPL users, through their use in display statements
for viewing results. They are readily adapted to give a syntax for an all-different
constraint:

alldiff C(expression-list)
alldiff {indexing} (expression-list)

This is essentially the same as for count, atmost, and other new operators previously
described, except that it specifies an expression-list rather than a constraint-list.

As an example, a simple production scheduling problem might be modeled in
terms of variables that specify a machine for each waiting job. A corresponding
AMPL model could define, for each job j, a variable MachineForJob[j] whose
value would be the machine-number of that job’s assigned machine:

param nJobs integer > O;
param nMachines integer > 0;

var MachineForJob {1..nJobs} >= 1, <= nMachines;

To say that each machine is to be assigned to a different job, we could list all of the
inequalities explicitly,

subject to AssignJobsO {j1 in 1..nJobs, j2 in ji1+1..nJobs}:
MachineForJob[j1] != MachineForJob[j2];

Or, by converting the constraint to the equivalent statement that each machine is
assigned at most one job, we could employ one of the previously described counting
operators, either count,

subject to AssignJobsl {i in 1..nMachines}:
count {j in Jobs} (MachineForJob[j] = i) <= 1;

or atmost:

subject to AssignJobs2 {i in 1..nMachines}:
atmost 1 {j in Jobs} (MachineForJob[j] = i);

Using the alldiff operator, however, we can convert the original statement of the
constraint clearly and naturally into its statement in AMPL:
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subject to AssignJobs:
alldiff {j in Jobs} (MachineForJob[jl);

Simple all-different lists like this will be perhaps the most common, especially in
introductory examples, but the AMPL expression-list syntax allows for much more
general lists that might arise in complex applications.

Since alldiff is not an algebraic constraint, our AMPL driver for Concert must
handle it as a case of build_constr. Its processing is much the same as what we
previously showed for the sum operator, however. For each of a list of operands,
we call build_expr to construct a corresponding IloExpr object. Then instead of
the operands being summed, they are gathered together to be sent to I10A11Diff,
Concert’s constructor for all-different constraints. By explicitly constructing an all-
different constraint at this point, we ensure that the efficient filtering mechanisms
for such constraints will be applied; were we to instead use the atmost formulation,
the CP solver would receive a separate constraint for each machine and would not
recognize the presence of the all-different structure.

Number-of. A more flexible kind of production scheduling allows each machine
to accept multiple jobs, up to some specified capacity. In AMPL this could entail
defining a capacity parameter,

param cap {1..nMachines} integer > 0;

and then replacing the constant 1 by the relevant capacity in either of our previous
constraint examples,

subject to AssignCapJobsl {i in 1..nMachines}:
count {j in Jobs} (MachineForJob[j] = i) <= caplil;

or

subject to AssignCapJobs2 {i in 1..nMachines}:
atmost capl[i] {j in Jobs} (MachineForJobl[j] = i);

Again we have an indexed collection of constraints that might be expressed more
cleanly and handled more efficiently if it were treated instead as a single structure
constraint. In a CP solver, the filtering process would solve a kind of network-flow
problem (which generalizes the assignment problem used for all-different).

It seems logical that an algebraic modeling language should extend to this case
as well, but the situation is not nearly as straightforward as in the case of alldiff.
A single constraint stating that “machine i can serve at most cap[i] jobs j” would
have to incorporate the set of machines and their capacities, as well as the set of
jobs and the list of job assignments. In the style of AMPL, the syntax might be

subject to AssignCapJobs2:
atmost {i in 1..nMachines} capl[i]
of 1 in {j in 1..nJobs} (MachineForJob[jl);

Alternatively, the syntax might have more of a functional form, with a keyword
followed by listed arguments in parentheses as in the style of OPL [23, 15]. Whatever
the syntax, however, the resulting statement falls short in both convenience and
naturalness. It tries to cram all of the indexing within the single constraint, whereas
in fact what the modeler has in mind is a restriction for each machine on the number
of jobs assigned to it.
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This analysis suggests that we really do want to define an indexed collection for
the constraints we have in mind, only using a constraint syntax more natural and
specific for the intended purpose. In fact the only new syntax we require is for an
alternative counting operator, one that counts the number of times that a specified
value appears in a specified list of values. For AMPL, we can use a syntax like that
of atmost, but with an expression-list like that of alldiff:

numberof target-expr in (expression-list)

In our example, we want to count the number of times that machine i appears in a
the list of machines {j in 1. .nJobs} MachineForJob[j]:

subject to AssignCapJobs {i in 1..nMachines}:
numberof i in ({j in 1..nJobs} MachineForJob[j]) <= capl[il;

Here we only constrain the result of the numberof operator to be less than or equal
to a constant, but it could be used just as well anywhere that a numerical value
involving variables would be allowed.

A straightforward adaptation of our build_expr case for count suffices to handle
numberof in any situation. A Concert IloExpr object corresponding to the ASL
expression tree for the target-expr is built and assigned to targetExpr. Then the
loop accumulates in partSum the number of right operands to += that are true:

case NUMBEROF_opno: // number of
partSum = IloExpr(env);
ep = e—>L.ep;
targetExpr = build_expr (*ep);
for (xept+; ep < e->R.ep; *ep++)
partSum += (build_expr (*ep) == targetExpr);
return partSum;

The main difference is that the right operand to +=, which was build_constr (*ep)
for the case of count, is instead given by build_expr (*ep) == targetExpr, which
contributes a 1 to the sum when and only when a value from the numberof operator’s
expression-list is equal to the value of the operator’s target-expr.

We need a more intricate implementation to handle a targetExpr that is a
constant, however, since this is the situation in which a structure constraint is
relevant. Specifically, a structure constraint of the kind relevant to numberof is
built by a call to the Concert interface’s constructor IloDistribute, which takes
three array arguments:

> list, an array of variables;
> target, an array of constants; and

> count, an array of variables of the same length as target.

These are interpreted to assert that each element count[k] equals the number of
times that target [k] appears in 1ist. A single call to IloDistribute thus repre-
sents all of an AMPL model’s numberof operators that have the same expression-list,
and permits more effective domain reduction and filtering than would be possible if
each numberof occurrence were to be handled separately.

For our scheduling example, the I1loNumVar objects in the 1ist array correspond
directly to the MachineForJob[j] variables in the AMPL model, and each constant
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target [k] equals k, so count [k] is simply the number of times that k appears in the
schedule. Our implementation for the AMPL driver is more general, however. The
members of the 1list array may be new IloNumVars set up to equal more general
items in the numberof operator’s expression-list. For each occurrence of numberof
that has this expression-list, the constant target-expr is placed in the target array,
and the corresponding IloNumVar object is added to the count array to be returned
by build_expr as the value of some numberof operation.

All of the activity surrounding the processing of a numberof node is encapsu-
lated in a driver function build_numberof, so that the case for this operator in
build_expr is extended by only a few lines:

case NUMBEROF_opno: // number of
ep = e—>L.ep;
if ((int) *ep->op == CONST_opno) // target is a constant
return build_numberof (e);

else {
// same as shown previously

}

In brief, the major work of build_numberof is to check whether the current node’s
expression-list has been seen before; this requires a recursive comparison func-
tion for determining whether the subtrees beneath two nodes are the same. Also
build_numberof creates a data structure, specific to the driver, that keeps track
of the expression-lists and target-expr constants encountered, and the IloNumVar
objects created. Its return value is the I1loNumVar that will hold the result value
of the numberof operation; hence, as seen above, this value can be returned by
build_expr without any further processing.

When the tree-walks for all of the AMPL model’s constraints are complete, the
contents of the 1ist, target, and count arrays for each of the relevant structure
constraints are completely represented in the driver data structure. They are readily
extracted and passed via IloDistribute to complete the representation required
by the constraint solver.

General issues. We have taken the trouble to describe the handling of number-of
in some detail, because it illustrates several of the issues that algebraic modeling
languages face in providing modelers with the benefits of structure constraints.

First, concepts most naturally handled by the modeler through specialized ex-
pressions may be best processed as structure constraints by a CP solver. We have
seen that the numberof operator falls into this category. Piecewise-linear functions
of individual variables provide another example. An objective function of piecewise-
linear cost terms could be written in AMPL as

minimize Total_Cost: sum {i in ORIG, j in DEST}
<<limi[i,jl, 1im2[i,jl; rtli,jl, r2[i,j], r3[i,j1>> Trans[i,jl;

If the terms are not convex then this is a hard problem, traditionally solved by
use of a specialized mechanism (so-called special ordered sets of type 2) in branch-
and-bound codes for integer programming. Recently the handling of these terms in
the context of constraint programming has received increasing attention. For CP
purposes, however, each term in the above sum is treated as if replaced by a vari-
able y[i,j] subject to a structure constraint y[i,j] = <<1lim1[i,j], 1im2[i,j];
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r1[i,jl, r2[i,jl, r3[i,jl>> Trans[i,j]. Constraints of this kind have been
shown to admit highly effective domain reduction procedures [21].

Second, there may be a tradeoff between making a modeling concept easy to
state and making the corresponding structure constraint easy to detect. The design
philosophy of AMPL has been to favor naturalness of expression, as in the numberof
example, so long as structure detection can be kept reasonably fast. This approach
has left more work to the writer of each driver, however. An attractive compromise
may be to move some of this work to specialized routines included with the driver
interface library, if such work is likely to be the same from one driver to the next.
But it is not so clear whether our build_numberof routine would be suitable for
this treatment.

Finally, every new structure-constraint syntax added to a modeling language
introduces some extra complexity, for which it must offer sufficient benefit in com-
pensation. The extension may make the modeling language easier and more natural
to use across a reasonably broad variety of applications, for instance. In the case
of languages like AMPL, the extension should also offer the prospect of support
through drivers for a range of solvers. For general and widely useful structure
constraints such as all-different and number-of, the benefits of these kinds seem rea-
sonably clear. But there are many more specialized structure constraints, and for
each modeling language the line will have to be drawn somewhere among them. The
current Concert interface alone provides functions to construct structure constraints
of four additional distinct kinds:

> IloAllMinDistance: Any two among a specified collection of nu-
merical values must be at least a certain distance apart.

> IloInverse: For two specified arrays x and y, x[i] equals j if and
only if y[j] equals i.

> IloPathLength: For a specified path structure in a network, speci-
fied cumulative costs along the paths are consistent with a specified
table of node-to-node transit costs.

> IloSequence: For argument arrays list, target, count as in
IloDistribute, each sequence of a specified length within 1list
must contain a number of different values that is within specified
lower and upper bounds.

Language designers might well disagree as to the generality of the structures treated
by these constraints, but at least it seems unlikely that anyone will consider them
all to be equally general.

6. Variables in subscripts

In many situations where an IP formulation would define zero-one variables, the
corresponding CP formulation uses fewer variables having larger domains. This is
perhaps the most characteristic modeling difference between the two approaches.
To make CP formulations of this kind work, however, an extension of the usual
algebraic notation is almost always necessary.

As an example, consider a location-distribution problem that involves mCLI
clients and nLOC possible warehouse locations. An IP formulation in AMPL would
typically define zero-one variables for each location and for each client-location pair,
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var Open {1..nLOC} integer >= 0, <= 1;
var Serve {1..mCLI, 1..nLOC} integer >= 0, <= 1;

with the convention that Open[j] is 1 if and only if a warehouse is opened at
location j, and Servel[i,j] is 1 if and only if client i is served from location j.
Using these variables and correspondingly indexed costs, a linear objective function
for this problem would be written as follows:

minimize TotalCost:
sum {j in 1..nLOC} opnCost[j] * Open[j] +
sum {i in 1..mCLI, j in 1..nLOC} srvCostl[i,j] * Serveli,jl;

If we require that each client be served by one open warehouse, then the constraints
can be expressed as

subject to OneEach {i in 1..mCLI}:
sum {j in 1..nLOC} Servel[i,j] = 1;

subject to OpenEach {i in 1..mCLI, j in 1..nLOC}:
Serve[i,j] <= Open[j];

where the first specifies that each client be served from one location, and the second
insures that a warehouse is opened at any location serving a client.

In the analogous CP formulation, the Serve variables are indexed only over
clients, but take values from the set of location numbers,

var Open {1..nLOC} integer >= 0, <= 1;
var Serve {1..mCLI} integer >= 1, <= nL0C;

so that Serve[i] is the location assigned to serve client i. The service cost in the
objective function is then the total, over all clients, of the cost of serving each client
from its assigned location:

minimize TotalCost:
sum {j in 1..nLOC} opnCost[j] * Open[j] +
sum {i in 1..mCLI} srvCost[i,Servel[il];

The definition of the variables implicitly allows for only one location serving each
client, and the requirement that the warehouse serving each client be open is very
directly written as

subject to OpenEach {i in 1..mCLI}:
Open[Serve[i]] = 1;

This is a formulation that could not be written in AMPL (or other conventional
algebraic modeling languages), because it relies on an extension to allow a variable,
Serve[il, to serve as an index to a parameter (srvcost, in the objective) or to
another variable (Open, in the constraints).

From a mathematical standpoint, such an extension involves using a variable
as a “subscript” to a constant or another variable. A notation of this kind can be
found, for example, in the use of terms such as H,;), where o(i) is a variable for
each 4, in the scheduling formulations employed by Woodruff and Spearman [24].
The usefulness of variable-in-subscript formulations is not limited to this simple
case, moreover. The objective function in [24] includes a term C(Ky(—1), Ks(:))
that indexes the setup-cost table C' by the job families of successive jobs, K;(;_1)
and K, (;), which are themselves parameters having variables for subscripts. In the
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style of AMPL this term might be written as
setupCost [class0f [JobForSlot[i-1]],class0f [JobForSlot[i]]]

where the two levels of variables in indexing can be clearly seen.

This and other examples strongly suggest that, once the concept of variables
in subscripts has been accepted as a useful extension for modeling languages, it
is difficult to restrict subscripts to contain variables only in certain contexts or in
certain kinds of expressions. Any rules for this purpose are likely to be awkward
for users to understand and for the modeling language software to apply. Instead, a
general and convenient design would incorporate any subscript expression involving
variables into the expression tree for the containing objective or constraint. The
presence of such an indexing expression would be signaled by a new type of node
that would take the place of the standard node for a variable or constant.

To handle indexing expressions that contain variables, CP solvers proceed once
again by way of a structure constraint for which effective domain reduction and
filtering procedures can be devised. In this case the new constraint is described by
an element function that takes three arguments:

> selector, a nonnegative integer variable;
> array, an array of constants or of variables; and

> result, a variable.

The general idea is that the element constraint should be satisfied precisely when
array[selector] equals result. Formally, the element function returns true if and
only if the value of selector is a valid index into array, and the element of array
indexed by the value of selector has the value of result. A reduction in the
domain of selector or of result can be deduced from a reduction in the domain
of the other, and if array contains variables then any reduction in their domains
can be taken into account as well. These relationships can serve as a foundation for
effective filtering procedures.

Given this framework, the job of a solver driver is to process variable-in-subscript
nodes from the model translator into the element constraints that the solver requires.
This is straightforward in principle, but specific cases pose problems not encountered
in other modeling language extensions.

The case of a variable subscripted by a variable is the most straightforward.
As a concrete example, suppose that our AMPL location-distribution problem is
to be solved for data having mCLI = 40 clients and nLOC = 15 potential warehouse
locations. The model translator will read the symbolic model and the data and
will generate a problem instance, which the driver will then read and set up in
an instance of the ASL data structure as described previously. At that point, all
variables will have been mapped into one long array of variables, known to the
Concert interface through the I1oNumVarArray object Var seen in earlier examples;
suppose that the Serve variables will be Var[0] through Var[39] and the Open
variables will be Var [40] through Var [54].

Consider how a variable-in-subscript expression like Open[Serve[7]] should be
handled by way of an element constraint. The value of this expression can be
expressed equivalently, in terms of the Var array alone, as Var [39+Var[6]]. Thus
the model translator should create a variable-in-subscript node that points to the
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expression tree for 39 + Var[6]. In the associated element constraint, the array
argument should be Var, and the selector argument should be an IloIntVar object
defined to have the numbers 40 through 54 as its domain and constrained to equal
39 + Var[6]. The result argument should be a new IloNumVar object, which will
be passed back from build_expr as the Concert counterpart of Open[Serve[7]].

In the Concert interface, the C+4 code for an element constraint has the form
result == array(selector), where the () operator for I1oNumVarArrays has been
overloaded to take an IloIntVar operand. Thus our build_expr case for a variable
with variables in its subscript can be written as follows:

case VARSUBVAR_opno: // variables in subscript of a variable
esub = (expr_subx)e;

selectVar = IloIntVar (env, esub->L0.en->v, esub->UP.en->v);
mod.add (selectVar == build_expr (esub->SUB.e));
resultVar = IloNumVar (env, -IloInfinity, IloInfinity);

mod.add (resultVar == Var(selectVar));
return (resultVar);

What we have called the select and result arguments are set up in lines 3-4 and
line 5, respectively, and our element constraint is added in line 6. The recursive call
to build_expr in line 4 processes whatever subscripting expression the AMPL trans-
lator has provided. Hence this code can handle subscript expressions of arbitrary
complexity, giving us the degree of generality that we seek. The only limitation is
that AMPL be able to provide the appropriate selector expression for line 4, which
will be the case so long as the variable being subscripted back in the model is in-
dexed over an integer interval (and remains so after presolving). A generalization of
the relevant concepts to indexing by two or more subscripts is also straightforward,
but we will skip the details here.

The situation is much the same for a parameter subscripted by an expression
involving variables, except that the IloNumVarArray object Var must be replaced
by an IloNumArray object listing the values the parameter may take. This is a new
kind of information that must be conveyed to the driver, as otherwise parameter
values are reflected in constants scattered throughout a problem instance’s linear co-
efficients and nonlinear expression trees. It does not necessarily increase the amount
of information to be conveyed to the driver, however. In our location-distribution
example, all of the parameter values srvCost[i,j] will need to be conveyed to the
solver to permit handling of the term srvCost[i,Serve[il]; but if the IP formu-
lation were used instead, the same values would be conveyed in the form of linear
coefficients for the objective terms srvCost[i,j] * Servel[i, j].

Throughout this discussion we have been assuming that if an expression involving
variables is employed to index a variable or parameter, then that expression is
implicitly constrained to take only valid index values. In fact this assumption is built
into the definition that we have given for the element constraint, and is enforced by
explicit bounds placed on the selector variable by our driver code. As a result we do
not have to be concerned that the CP solver will encounter a “subscript out of range”
error, in the way that a nonlinear solver might detect a division by zero. For our
simple example the model itself ensures that any computed subscript will be valid,
by putting bounds 1 and nLOC on the variables Serve[i], even though these bounds
would have been imposed anyway, because Serve[i] is used to represent a subscript
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that can only take the values 1 through nLOC. In the presence of more complicated
indexing expressions, these implicit validity constraints may not be so trivial.

Although the framework we have described captures many useful modeling sit-
uations, it stops short of handling cases in which the indexing sets are not integer
intervals or products of integer intervals. Suppose for example that we wish to in-
dex the service costs over only a set ABLE of client-location pairs (i,j) such that
location j is able to serve client i:

set ABLE within {1..mCLI, 1..nLOC};
param srvCost {ABLE} > O;

Then the rest of the model can be written as before, and the presence of the term
srvCost[i,Serve[i]] in the objective implicitly constrains the pair (i,Servel[i])
to lie in the set ABLE for each i. But there is no longer a simple function that
maps i and Serve[i] to a location within an array of srvCost values. In this
situation the only reliably efficient implementation, at least when ABLE contains a
small fraction of all possible client-location pairs, is to provide the solver with a list of
all valid (client, location, service cost) combinations. The Concert interface provides
a function IloTableConstraint for the purpose of building constraints based on
tuple lists of this kind. This approach extends to larger numbers of subscripts
and to similarly subscripted variables, but it must be recognized by both language
translator and driver as an entirely separate case.

7. Other extensions

We conclude by summarizing further constraint programming extensions cur-
rently under study and likely to be implemented in publicly available modeling
language drivers for constraint programming and other global search solvers.

Object-valued variables are a natural extension once variables are allowed in sub-
scripts. Rather than artificially numbering the locations and clients in our location-
transportation model, for example, we can declare:

set LOC; # set of possible warehouse locations
set CLI; # set of clients

Then the Open variables are indexed over LOC, and the Serve variables over CLI.
Moreover, since Serve[i] is the location assigned to serve client i, the Serve vari-
ables must be declared to take values from LOC:

var Open {LOC} integer >= 0, <= 1;
var Serve {CLI} in LOC;

Since the “object” values of such a variable are not meaningful in numerical expres-
sions, its main use is to appear is subscripts within the objective and constraints:

minimize TotalCost:
sum {j in LOC} opnCost[j] * Open[j]l +
sum {i in CLI} srvCost[i,Servelil];

subject to OpenEach {i in CLI}:
Open[Serve[i]] = 1;

Object values are typically represented by character strings in a modeling language,
but they could be converted to numbers by the language translator so that object-
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valued variables might be handled by drivers in much the same way as integer-valued
variables.

Set-valued variables are natural to a range of combinatorial optimization prob-
lems, as suggested in [1]. Again, the variety of set and indexing forms in algebraic
modeling languages gives rise to a variety of design and implementation challenges.

Finally, tree-search directives are critical in many cases to efficient performance
of constraint programming solvers, at least at their current stage of development.
ILOG’s OPL modeling language [15, 23] incorporates a collection of search state-
ments capable of describing quite sophisticated search strategies. With this power
comes the ability to specify incomplete searches, however, possibly unintentionally.
It remains to be seen how solver-independent search directives should be designed
to offer the best tradeoff between power and “safety” of searches.
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