
EXPRESSING COMPLEMENTARITY PROBLEMS IN AN
ALGEBRAIC MODELING LANGUAGE

AND COMMUNICATING THEM TO SOLVERS∗

MICHAEL C. FERRIS† , ROBERT FOURER‡ , AND DAVID M. GAY§

Abstract. Diverse problems in optimization, engineering, and economics have natural formu-
lations in terms of complementarity conditions, which state (in their simplest form) that either a
certain nonnegative variable must be zero or a corresponding inequality must hold with equality, or
both. A variety of algorithms have been devised for solving problems expressed in terms of comple-
mentarity conditions. It is thus attractive to consider extending algebraic modeling languages, which
are widely used for sending ordinary equations and inequality constraints to solvers, so that they
can express complementarity problems directly. We describe an extension to the AMPL modeling
language that can express the most common complementarity conditions in a concise and flexible
way, through the introduction of a single new “complements” operator. We present details of an
efficient implementation that incorporates an augmented presolve phase to simplify complementarity
problems, and that converts complementarity conditions to a canonical form convenient for solvers.
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1. Introduction. After equations and inequalities, complementarity conditions
are one of the most common kinds of constraints formulated in terms of decision
variables. In their simplest form, they state that either a certain nonnegative variable
must be zero or a corresponding inequality must hold with equality, or both.

Complementarity conditions play a key role in the theory of convex optimization,
being the natural form for optimality conditions in inequality-constrained problems.
They also arise in a variety of applications from engineering to economics. As a re-
sult, various algorithms have been proposed to solve complementarity problems whose
constraints consist partly or entirely of complementarity conditions. Several of these
algorithms have been developed into large-scale, robust implementations of solvers for
complementarity problems.

The work described in this paper is not concerned with the details of any particu-
lar algorithm for complementarity problems, but with the broader concern of helping
people communicate such problems to a variety of solvers. We consider specifically
the possibilities for extending algebraic modeling languages, which are widely used in
communicating equality and inequality constraints, so as to express linear and nonlin-
ear complementarity conditions. We show how the introduction of a “complements”
operator enables a modeling language to express a variety of these conditions clearly
and concisely for human modelers, while remaining amenable to efficient translation
to forms required by solvers.

As a practical illustration of this approach, we describe its implementation in
the AMPL modeling language. We touch upon a number of practical concerns, such
as the extension of the presolve phase for simplifying problems, and the design of a
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canonical form for communicating problems to solvers.
Relevant background in complementarity and in modeling languages is summa-

rized in §2 below. The kinds of complementarity conditions that we aim to represent
are surveyed in §3, along with a critique of previous representations for complemen-
tarity in modeling languages. Our new AMPL representation is then presented in §4
and is evaluated with respect to specific design criteria.

The remainder of this paper addresses further aspects of our complementarity
enhancements to the AMPL design, including extension of the presolve phase (§5),
canonical forms for communication with solvers (§6), and extensions of related con-
straint notations and representations (§7). All of these features have been imple-
mented as part of a recent release of the AMPL software; a demonstration version,
including a link to the PATH solver, can be tried out through a Web interface as
explained in our concluding remarks in §8.

2. Background. The significance of our topic stems from the existence of ap-
plications and algorithms for complementarity problems, together with modeling lan-
guages capable of expressing such problems. We begin by briefly reviewing each of
these areas.

2.1. Applications. Complementarity relations arise in a variety of engineering
and economics applications [17, 18, 26], most commonly to express an equilibrium of
quantities such as forces or prices.

One standard application in engineering arises in contact mechanics, where com-
plementarity expresses the fact that friction occurs only when two bodies are in con-
tact. Other applications are found in structural mechanics, structural design, traffic
equilibrium and optimal control [18].

Interest among economists in solving complementarity problems is due in part to
increased use of computational general equilibrium models [33], where complemen-
tarity is used to express Walras’ Law, and to the equivalence of various games to
complementarity problems [10].

Some generalizations of nonlinear programming, such as multilevel optimization
— in which auxiliary objectives are to be minimized — may be reformulated as
problems with complementarity conditions [1, 2, 3, 14]. There is a growing literature
on these and other mathematical programming problems with equilibrium constraints,
or MPECs [28, 29].

2.2. Solvers. The demands of applications have motivated a variety of algo-
rithms for complementarity problems [4]. Modelers currently have a choice of robust
and efficient implementations such as MILES [32] and PATH [12, 16].

Recent research in this area can be divided into two general algorithmic ap-
proaches [4]. One approach transforms complementarity problems so that they can be
solved using existing methods for differentiable optimization or equation-solving. The
other generalizes existing methods — including Newton-type methods, path search
methods, projection and proximal methods, and interior-point methods — to apply to
complementarity problems of certain kinds. In particular, many standard techniques
have been extended to deal with the special forms of nonsmoothness that naturally
appear when formulating complementarity problems. No comprehensive survey of al-
gorithms for complementarity problems is currently available, but extensive references
to algorithms can be found in [17, 18, 26].

2.3. Modeling languages. Constructing problem descriptions suitable for sol-
vers is a substantial task that can easily consume more time and expense than finding
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problem solutions. Modeling languages have become a popular means of streamlining
this task. They allow people to work with general models expressed in a natural
and convenient form, while leaving for the language processor the work of translating
models and communicating problem instances to solvers.

We are concerned in particular with algebraic modeling languages, which describe
expressions, equations and inequalities by use of familiar algebraic terms and opera-
tors. As an example, a collection of inequality constraints defined by∑

r∈R Tru ≥ q0
c

∏
j∈M(Pju/p0

j )
ecj , for all c ∈ C, u ∈ U

could be transcribed to the AMPL language [22, 23] as

subject to ineq1 {c in C, u in U}:

sum {r in R} T[r,u] >=

q0[c] * prod {j in M} (P[j,u] / p0[j]) ** e[c,j];

or, using somewhat more mnemonic identifiers, as

subject to CrudeSupply {cr in CRUDES, u in USERS}:

sum {r in REFIN} Trans[r,u] >=

q0[cr] * prod {co in COMOD} (P[co,u] / p0[co]) ** esub[cr,co];

Other AMPL statements define the index sets, numerical data, and variables that
appear in such an expression, as seen in the illustration of an AMPL complementarity
problem in Figure 1 of §4. Algebraic languages, such as AMPL, AIMMS [5], GAMS

[6, 8], and LINGO [34], are currently the most popular type of modeling language for
describing linear and nonlinear optimization problems.

With the specification of the objective omitted, algebraic modeling languages are
equally useful for describing problems of finding feasible solutions to systems of equal-
ity and inequality constraints. We thus approach complementarity conditions as an
additional kind of constraint to which modeling languages may be extended. The
design of any such extension involves many tradeoffs between the goal of making the
language natural and convenient for people, and the requirement that the language
be processed with reasonable efficiency by a computer system. We have previously
described the tradeoffs involved in various extensions to AMPL [19, 21]; similar con-
siderations have influenced our extensions for complementarity, as we next explain.

3. Design issues. To motivate our choice of a modeling language representation
for complementarity conditions, we first describe the variety of conditions that we want
the language to be able to represent. We then take a critical look at representations
that have been used previously in the GAMS and AMPL languages.

3.1. Forms of complementarity. A few fundamental forms account for almost
all of the complementarity conditions that people want to use in models. The simplest
of these forms can be written in terms of a variable xj and an associated function
gj(x), where x is a vector of variables that contains xj .

The classical form of complementarity condition is the one described at the be-
ginning of this paper. It requires that

(1)
either xj = 0 and gj(x) ≥ 0,

or xj > 0 and gj(x) = 0.

This condition can be viewed as consisting of the inequalities xj ≥ 0 and gj(x) ≥ 0,
together with the complementarity restriction that at least one of these must hold
with equality. The complementarity restriction can be written equivalently as
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xj · gj(x) = 0,

or as the nonsmooth equation

min(xj , gj(x)) = 0.

If conditions of this sort are imposed for every j ∈ J , then they may also be written
jointly as x ≥ 0, g(x) ≥ 0, and xT g(x) = 0.

The more general mixed complementarity condition on a bounded variable `j ≤
xj ≤ uj and a function gj(x) states that

(2)
either xj = `j and gj(x) ≥ 0,

or xj = uj and gj(x) ≤ 0,
or `j < xj < uj and gj(x) = 0.

This form generalizes the classical complementarity condition, which is the special
case in which `j = 0 and uj =∞. It can be expressed equivalently as the variational
inequality problem of finding xj ∈ [`j , uj ] such that

(yj − xj) · gj(x) ≥ 0 for all yj ∈ [`j , uj ],

or, where there is such a condition for each j ∈ J , as the joint problem of finding
x ∈ [`, u] such that (y − x)T g(x) ≥ 0 for all y ∈ [`, u]. A mixed complementarity
condition can be split into two of the classical conditions, but only through the addi-
tion of auxiliary variables. Thus it is desirable for a modeling language to represent
mixed complementarity directly, rather than requiring that all mixed conditions be
transformed to classical ones. The greater simplicity of classical complementarity (as
in (1)) argues that it should also be represented directly, however, rather than having
to be written as a special case of the mixed form with an infinite bound.

For completeness, our collection of fundamental complementarity conditions also
includes the trivial case

(3) xj “free” and gj(x) = 0,

which can be seen to be another special case of mixed complementarity, with `j = −∞
and uj = +∞.

The above forms may be extended by substituting a function fj(x) for the in-
dividual variable xj . Thus a generalized classical complementarity condition can be
written

(4)
either fj(x) = 0 and gj(x) ≥ 0,

or fj(x) > 0 and gj(x) = 0,

and a generalized mixed complementarity condition has the form

(5)
either fj(x) = `j and gj(x) ≥ 0,

or fj(x) = uj and gj(x) ≤ 0,
or `j < fj(x) < uj and gj(x) = 0.

Complementarity conditions in these forms can be transformed to the simpler forms
(1) and (2), but only by adding a variable and a defining equation. Thus it is desirable
that a modeling language be able to directly represent these forms as well.

The above forms allow a modeler to express not only models that are well formed,
solvable and stable, but also models that are poorly specified or badly behaved. For
gj(x) as simple a function as 1−xj , the complementarity condition (1) is equivalent to
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specifying that xj can take only the values zero and one. This gives some indication
of the difficulties associated with solving complementarity problems; the “tightness”
requirement is combinatorial in nature and the solution set of a complementarity
problem need not be convex or even connected.

It is possible to avoid undesirably hard cases by placing some restrictions on the
functions involved. Just as there are classes of well behaved nonlinear optimization
problems that involve convex functions, for complementarity problems there is a cor-
responding notion of a monotone function gj , which satisfies

(y − x)T (gj(y)− gj(x)) ≥ 0

for all x and y [26, 31]. Current modeling languages largely avoid such restrictions,
however, in the interest of keeping their design simple and general. Especially in
working with nonlinear problems, a modeler is expected to be aware that solvers
frequently have difficulties if the model is poorly specified or if the initial point is
far from a solution. Some assistance may be provided by routines that test functions
for desirable properties, but they are typically incorporated into individual solvers or
related analysis tools such as MProbe [9].

3.2. Modeling language representations. The GAMS modeling language
[6, 8] was the first (to our knowledge) to provide for specification of complementarity
problems. As explained in [33], GAMS does not express complementarity through any
modification to its constraint syntax, but rather by an extension to its model-defining
statement. The list of constraints in its model statement is generalized to allow the
specification of complementary constraint-variable pairs, as in the following example
from pies.gms in MCPLIB [13]:

model pies / delc.c, delo.o, delct.ct, delot.ot, dellt.lt, delht.ht,

dembal.p, cmbal.cv, ombal.ov, lmbal.lv, hmbal.hv, ruse.mu /;

The specification delc.c, for example, indicates that the constraints delc,

delc(creg,ctyp) ..

ccost(creg,ctyp) + sum(R, cruse(R,creg,ctyp) * mu(R) =g= cv(creg);

are complementary to the variables c having lower bounds 0,

positive variables

c(creg,ctyp), . . .

and having upper bounds assigned from a data table,

c.up(creg,ctyp) = cmax(creg,ctyp);

From the fact that c has finite lower and upper bounds, GAMS infers that a certain
mixed complementarity condition is intended; from the expression in the delc con-
straint statement, GAMS determines what we have been calling the function gj(x).
Thus explicit conditions of the form (2) need not be added to the model. Analo-
gous inferences allow variables that have only one finite bound to induce classical
complementary conditions of the form (1).

These simple conventions provide sufficient expressiveness to describe a consid-
erable variety of applications, as evidenced by the over 50 GAMS complementarity
models collected in MCPLIB. The design of these extensions also promotes the reuse
of equations previously declared, thus helping modelers to transform existing models
into the complementarity framework.
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Nevertheless, several aspects of the GAMS approach remain problematical. A full
description of any one complementarity condition tends to be spread over several sec-
tions of the GAMS model, as seen in the example above. Generalized complementarity
conditions can only be represented via transformations to simpler forms. Finally, and
most seriously, the sense of the inequality in a complementary constraint is deter-
mined from the bounds on the corresponding variable, not by the inequality actually
written in the statement of the constraint. As a result, both mixed and classical
complementarity conditions may be interpreted by the GAMS processor in ways that
are counterintuitive to modelers.

For the mixed case, the function gj(x) in (2) must be specified by means of a
GAMS constraint declaration, even though it is not subject to any inequality. For
example, although the delc statement above appears to define =g= (≥) constraints,
the implied complementarity condition allows the left-hand side of delc(creg,ctyp)
to be < the right-hand side when the corresponding variable c(creg,ctyp) is at upper
bound. (The GAMS result listing marks a constraint as “redefined” if it is violated
by the solution in this way.)

For the classical case, it is up to the modeler to correctly state the inequality on
gj(x) in (1). As another example (also from pies.gms), the nonnegative variables
ct(creg,users) are defined as being complementary to the constraints

delct(creg,users) ..

ctcost(creg,users) + cv(creg) =g= p("C",users);

Because the ct variables have finite lower bounds but not finite upper bounds, the
relational operator in this case must be =g=. The mathematically equivalent constraint

delct(creg,users) ..

p("C",users) =l= ctcost(creg,users) + cv(creg);

is rejected as an error, because the relational operator =l= (≤) is not compatible with
complementary variables having only a finite lower bound. This distinction is hard
to impress upon modelers, who see the above statements as two ways of saying the
same thing.

A similar complementarity representation has been implemented in [11, chapter 2]
for the AMPL modeling language [22, 23], though with some differences in the nature of
the extension. Complementarity is indicated by writing a constraint in the equivalent
multiplicative form xj · gj(x) = 0, with bounds on the variable xj specified in the
declaration for the variable. Thus no new syntax is added to any part of the AMPL

language (a key requirement of the design in [11]) and the existing AMPL translator
can process the model and create a problem file in its usual format. Detection of
complementarity conditions is left to the solver, or more accurately to the AMPL

driver (or interface routines) for the solver. The driver examines the expression tree
for each constraint to determine the variable xj , and then generates an appropriate
complementarity constraint for the solver, depending on which bounds of xj are finite,
using much the same logic as the GAMS implementation.

This design also has much the same drawbacks as the GAMS one. Most seriously,
constraints that appear in the model are not necessarily enforced by the complemen-
tarity solver. The conditions actually enforced must be inferred from information that
is partly in one place (a constraint) and partly in another (a variable’s bounds). Gen-
eralized complementarity conditions must be handled by transformation to a simpler
form.
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4. A new representation. In creating a new form for complementarity condi-
tions, we have sought to address the drawbacks of previous designs while preserving
the existing strengths of the AMPL language. We begin this section by describing the
representation that we have ended up choosing. We then consider the extent to which
our representation satisfies a range of design criteria.

Of particular importance for our discussion is the variety of arithmetic constraint
expressions that AMPL recognizes. They can be summarized as

expr1 <= expr2

expr1 >= expr2

expr1 = expr2

const1 <= expr <= const2

const1 >= expr >= const2

where expr is any valid arithmetic expression, possibly involving variables (linearly or
nonlinearly), and const is an arithmetic expression that does not contain variables.

Illustrations in this section are taken from pies.mod, the previous GAMS ex-
ample’s AMPL counterpart, which is shown in Figures 1 and 2. Additional AMPL

complementarity models and corresponding data files can be found in MCPLIB [13]
and at http://www.ampl.com/ampl/NEW/COMPLEMENT/.

4.1. Design specifics. The key to our design is the realization that the different
complementarity forms (1), (2) and (3) have the same general structure. In each case,
a variable is complementary, in some sense, to a function of variables; and in each
case, exactly two inequalities are involved (counting one equality as two inequalities).
The function can be defined by a modeling language expression, and the inequalities
are corresponding modeling language constraints. The same observations apply to
the generalized forms (4) and (5), except that the variable is replaced by a second
function.

These observations suggest that all of the fundamental complementarity condi-
tions identified in §3.1 can be represented by AMPL expressions of the form

item1 complements item2

The keyword complements is a new operator. Its operands item1 and item2 may be
AMPL arithmetic expressions, or may be AMPL arithmetic constraints of any of the
types listed above, provided that they contain together exactly two inequalities. A
solution satisfies such an expression if it satisfies the constraints among the operands to
complements and also the appropriate kind of complementarity between the operands.

If a constraint of this new kind has two single inequality operands, as in

subject to delct {c in CREG, u in USERS}:

0 <= Ct[c,u] complements ctcost[c,u] + Cv[c] >= P["C",u];

then it specifies a classical complementarity condition. Both inequalities must hold,
at least one with equality.

If a constraint of this kind has instead one double inequality operand and one
expression operand, as in

subject to delc {c in CREG, t in CTYP}:

0 <= C[c,t] <= cmax[c,t] complements

ccost[c,t] + sum {res in R} cruse[res,c,t] * Mu[res] - Cv[c];

then it specifies a mixed complementarity condition. Again both inequalities must
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Fig. 1. An AMPL model of a complementarity problem, part 1: declarations of sets, numerical
data, and decision variables.

set COMOD := {"C","L","H"}; # coal and light and heavy oil

set R; # resources
set CREG; # coal producing regions
set OREG; # crude oil producing regions
set CTYP; # increments of coal production
set OTYP; # increments of oil production
set REFIN; # refineries
set USERS; # consumption regions

param rmax {R}; # maximum resource usage
param cmax {CREG,CTYP}; # coal prod. limits
param omax {OREG,OTYP}; # oil prod. limits
param rcost {REFIN}; # refining cost
param q0 {COMOD}; # base demand for commodities
param p0 {COMOD}; # base prices for commodities
param demand {COMOD,USERS}; # computed at optimality
param output {REFIN,COMOD}; # % output of light/heavy oil
param esub {COMOD,COMOD}; # cross-elasticities of substitution
param cruse {R,CREG,CTYP}; # resource use in coal prod
param oruse {R,OREG,OTYP}; # resource use in oil prod
param ccost {CREG,CTYP}; # coal production cost
param ocost {OREG,OTYP}; # oil production cost
param ctcost {CREG,USERS}; # coal transportation costs
param otcost {OREG,REFIN}; # crude oil transportation costs
param ltcost {REFIN,USERS}; # light oil transportation costs
param htcost {REFIN,USERS}; # heavy oil transportation costs

var C {CREG, CTYP}; # coal production
var O {OREG, OTYP}; # oil production
var Ct {CREG, USERS}; # coal transportation levels
var Ot {OREG, REFIN}; # crude oil transportation levels
var Lt {REFIN, USERS}; # light transportation levels
var Ht {REFIN, USERS}; # heavy transportation levels
var P {COMOD, USERS}; # commodity prices
var Mu {R}; # dual to ruse: marginal utility
var Cv {CREG}; # dual to cmbal
var Ov {OREG}; # dual to ombal
var Lv {REFIN}; # dual to lmbal
var Hv {REFIN}; # dual to hmbal

hold, but the nature of the complementarity is somewhat different. Either the lower
inequality holds with equality and the expression is nonnegative, or the upper in-
equality holds with equality and the expression is nonpositive, or neither inequality
holds with equality and the expression is zero.

A single equality constraint may take the place of the double inequality:

subject to cmbal {c in CREG}:

Cv[c] complements

sum {t in CTYP} C[c,t] = sum u in USERS Ct[c,u];

This form of constraint merely imposes the equality. It has no effect on the expression
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Fig. 2. An AMPL model of a complementarity problem, part 2: declarations of complementarity
conditions.

subj to delc {c in CREG, t in CTYP}:
0 <= C[c,t] <= cmax[c,t] complements
ccost[c,t] + (sum {res in R} cruse[res,c,t] * Mu[res]) - Cv[c];

subj to delo {o in OREG, t in OTYP}:
0 <= O[o,t] <= omax[o,t] complements
ocost[o,t] + (sum {res in R} oruse[res,o,t] * Mu[res]) - Ov[o];

subj to delct {c in CREG, u in USERS}:
0 <= Ct[c,u] complements
ctcost[c,u] + Cv[c] >= P["C",u];

subj to delot {o in OREG, r in REFIN}:
0 <= Ot[o,r] complements
otcost[o,r] + rcost[r] + Ov[o] >=

output[r,"L"] * Lv[r] + output[r,"H"] * Hv[r];

subj to dellt {r in REFIN, u in USERS}:
0 <= Lt[r,u] complements
ltcost[r,u] + Lv[r] >= P["L",u];

subj to delht {r in REFIN, u in USERS}:
0 <= Ht[r,u] complements
htcost[r,u] + Hv[r] >= P["H",u];

subj to dembal {co in COMOD, u in USERS}: # excess supply of product
.1 <= P[co,u] complements
(if co = "C" then sum {c in CREG} Ct[c,u]) +
(if co = "L" then sum {r in REFIN} Lt[r,u]) +
(if co = "H" then sum {r in REFIN} Ht[r,u]) >=

q0[co] * prod {cc in COMOD} (P[cc,u]/p0[cc])**esub[co,cc];

subj to cmbal {c in CREG}: # coal material balance
Cv[c] complements
sum {t in CTYP} C[c,t] = sum {u in USERS} Ct[c,u];

subj to ombal {o in OREG}: # oil material balance
Ov[o] complements
sum {t in OTYP} O[o,t] = sum {r in REFIN} Ot[o,r];

subj to lmbal {r in REFIN}: # light material balance
Lv[r] complements
sum {o in OREG} Ot[o,r] * output[r,"L"] = sum {u in USERS} Lt[r,u];

subj to hmbal {r in REFIN}: # heavy material balance
Hv[r] complements
sum {o in OREG} Ot[o,r] * output[r,"H"] = sum {u in USERS} Ht[r,u];

subj to ruse {res in R}: # resource use constraints
0 <= Mu[res] complements
rmax[res] >=

sum {c in CREG, t in CTYP} C[c,t] * cruse[res,c,t] +
sum {o in OREG, t in OTYP} O[o,t] * oruse[res,o,t];
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operand, which could just as well be omitted (along with the complements operator).
It does have some value in exhibiting “square” models (like pies.mod), where each
constraint is paired with a different complementary variable; squareness is required
by some solvers, as discussed further in §6.2.

Although the first operand to complements in the above examples involves only
a single variable, our definitions make no mention of this fact, and indeed it is not a
requirement of our representation. So long as the total number of inequality operators
is two, our representation allows each operand to be any arithmetic expression or
constraint.

4.2. Design criteria. Our representation’s introduction of the complements
operator is valuable in several respects. Its presence clearly distinguishes complemen-
tarity constraints from other types, and its operands contain all of the information
necessary to define a complementarity condition. The definition of an AMPL com-
plementarity constraint (or indexed collection of constraints) thus appears all in one
place, rather than being divided among different statements as in earlier designs.

There is also no question as to which kind of complementarity is intended by
our representation, since the classical and mixed forms are readily distinguished by
the position of the inequalities relative to the complements operator. Nor is there
any question as to which two inequalities are implied, since both appear explicitly as
operands to complements. Earlier designs’ practice of inferring such information from
the number of finite bounds is avoided entirely. At the same time, the interpretation
of existing AMPL constraint forms — ones that do not contain the complements
operator — is left unchanged, and existing models are unaffected.

The incorporation of existing AMPL expression and constraint forms into the new
representation is also valuable. By allowing operands to complements to be any AMPL

arithmetic expressions and constraints, subject only to the two-inequality restriction,
we keep our language rules simple to apply and easy to remember. The constraint
delct above, for example, may be written in any obviously equivalent fashion, such as

subject to delct {c in CREG, u in USERS}:

Ct[c,u] >= 0 complements ctcost[c,u] + Cv[c] >= P["C",u];

or

subject to delct {c in CREG, u in USERS}:

0 >= P["C",u] - ctcost[c,u] - Cv[c] complements Ct[c,u] >= 0;

We also make no special distinction for inequalities that happen to be bounds on
individual variables. As a result, the generalized complementarity forms (4) and (5)
are specified as easily as their more restricted counterparts (1) and (2), without any
of the transformations required by earlier designs.

Our representation does require the modeler or reader to remember the rules for
deriving a complementarity condition from complements and its operands. In this
respect, complements is a primitive operator, like + or <=, whose meaning must be
furnished from a user’s knowledge of the modeling language. The alternative would
be to write out the complementarity requirement more explicitly, perhaps in forms
(1) or (2) or their generalizations. As an example, the constraint delc introduced
above might be declared equivalently in the following form motivated by (2):

var Cdual {c in CREG, t in CTYP}

= ccost[c,t] + sum {res in R} cruse[res,c,t] * Mu[res];



EXPRESSING COMPLEMENTARITY PROBLEMS 11

subject to delc {c in CREG, t in CTYP}:

C[c,t] = 0 and Cdual[c,t] >= Cv[c] or

C[c,t] = cmax[c,t] and Cdual[c,t] <= Cv[c] or

0 <= C[c,t] <= cmax[c,t] and Cdual[c,t] = 0;

This representation clearly states the entire complementarity condition using only
existing AMPL operators. However, its adoption would require that AMPL be ex-
tended to allow variables in the operands to boolean operators (such as and and or).
Such an extension would introduce a great variety of constraint types unrelated to
complementarity, making complementarity constraints much harder for the modeler
(and AMPL processor) to recognize. We could further modify the design to preserve
recognizability, but only by introducing complex new rules on the use of variables
with boolean operators. In light of this and similar examples, we have decided that
the drawbacks of having a primitive complements operator are greatly outweighed by
the advantages.

5. Extending presolve. Often it is worthwhile to simplify an optimization
problem before sending it to a solver. Brearley, Mitra and Williams [7] describe a
set of simplification techniques based on iteratively tightening the bounds on vari-
ables and constraint expressions. These “presolve” techniques have been found to
work well for linear programs, and are provided as an option by many commercial
linear programming solvers.

The AMPL modeling language processor also incorporates a primal presolve phase
[20] that applies the ideas of [7] to linear constraints. (Nonlinearities are handled, but
in a naive way. Because AMPL may send several objectives to the solver, we have
not yet exploited the opportunities described in [7] to use dual information.) An
integrated presolver is useful to a modeling language system in several respects. By
identifying constraints involving only one variable, the presolver makes it irrelevant
whether one states bounds on a variable in the variable’s declaration or in a separate
constraint declaration. Presolving sometimes results in a significantly smaller problem
to convey to the solver, reducing communication time. Presolving on the modeling
language side can also benefit any solver that does not have its own presolve phase.

Complementarity constraints introduce new information that we can exploit in
AMPL’s presolve routines. For instance, given a constraint of the form

expr1 >= 0 complements expr2 >= 0,

if we can deduce a positive lower bound on expr1, then we can infer that it is strictly
positive for all feasible points, and we can replace the constraint by

expr2 = 0.

Similarly, for a constraint of the form

const1 <= expr2 <= const3 complements expr4,

there are various possibilities. If we can deduce that, say, expr2 < const3 for all
feasible points, then we can replace the constraint by

const1 <= expr2 complements expr4 >= 0.

If we can deduce that always const1 < expr2 < const3, then we can replace the
constraint by

expr4 = 0.
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Conversely, if we can deduce that expr4 < 0, then we can replace the constraint by

expr2 = const3,

and so forth.
Each of these deductions can be triggered by presolve’s manipulations of variable

and constraint bounds. There are many combinations to be considered, but they are
straightforward to enumerate and fast to check. As a simple illustration, consider the
model

var x1;

var x2;

var x3;

subj to f1: x1 >= 0 complements x1 + 2*x2 + 3*x3 >= 1;

subj to f2: x2 >= 0 complements x2 - x3 >= -1;

subj to f3: x3 >= 0 complements x1 + x2 >= -1;

proposed by Todd S. Munson [private communication] and called munson1.mod in
MCPLIB [13]. The first inequalities in the complementarity constraints imply that
all the variables are nonnegative. Then the second constraint in f3 must always be
slack, which implies that x3 = 0, whence the second constraint in f2 must always
be slack, which implies that x2 = 0. The second constraint in f1 now reduces to
x1 ≥ 1, which implies that the first inequality in f1 must always be slack, which
implies x1 = 1, and the presolver completely determines the solution. Our results in
§6 identify two larger test problems for which presolve’s simplifications are significant.

Presolve folds together all bounds on a variable, whether specified in an ordinary
var or subj to declaration or as an operand to complements. The user has the option
of turning off most of presolve’s logic, in which case separate bounds on some variables
may remain separate. However, regardless of the presolve setting, AMPL detects when
bounds given in a var declaration are redundant due to the same or tighter bounds
being given as an argument to complements in a subsequent constraint. For example,
to enhance the definition of variable Ct in Figure 1, we could add bounds,

var Ct {CREG, USERS} >= 0;

even though Figure 2 defines the same bounds in a subsequent complementarity con-
straint:

subj to delct {c in CREG, u in USERS}:

0 <= Ct[c,u] complements ctcost[c,u] + Cv[c] >= P["C",u];

The redundant bounds do not make any difference to the form of the problem seen
by the solver.

6. Communicating problems to solvers. Since a modeling language is de-
signed for the convenience of human modelers, the language processing software must
do a certain amount of transformation to put problems into the forms required by ef-
ficient solvers. We describe in this section the transformations performed by AMPL’s
language processor to yield a canonical complementarity form useful for a variety of
solvers. We then briefly comment on specific drivers for the PATH solver and for
solvers written in MATLAB.

6.1. Transformation to canonical form. To simplify the task of presenting
complementarity problems to solvers, we have arranged for the AMPL processor to
transform general complementarity constraints to the form
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(6) `1 ≤ expr ≤ u1 complements `2 ≤ variable ≤ u2,

where the complemented variables are all distinct, and exactly two of the constants
`1, u1, `2, u2 are finite. Ignoring the infinite bounds, this representation clearly
describes a classical or mixed complementarity condition by the rules previously given.

This canonical form has the advantage of allowing the left operand and right
operand of complements to be communicated to the solver as an ordinary constraint
and an ordinary variable, respectively, as described in [24]. The complementarity
extension can then be implemented by sending the solver only one new array, cvar,
which pairs constraints with variables. Specifically, if the ith constraint seen by the
solver has arisen by a complementarity relationship of the form (6) with the jth
variable, then cvar[i] is set to j. Otherwise, the ith constraint has not arisen from
any complementarity relation, and cvar[i] is set to an index that does not correspond
to any variable.

The form of the transformation to (6) is straightforward, though it sometimes
involves adding a new variable and an equality constraint defining the new variable.
An expression complementing a general double-inequality constraint, for example, is
transformed by

expr1 complements ` ≤ expr2 ≤ u
=⇒ −∞ ≤ expr1 ≤ +∞ complements ` ≤ z ≤ u, z = expr2,

where z is the new variable. In the common case of a bounded variable v comple-
menting a single inequality, it is unnecessary to introduce a new variable and equality
constraint, so long as v has not already been used as the canonical variable in another
complementarity constraint. For example,

v ≥ 0 complements expr ≥ 0

=⇒ 0 ≤ expr ≤ +∞ complements 0 ≤ v ≤ +∞.

But if v is used in two such constraints, then it can serve as the canonical variable
for the first, but a new variable w must be introduced as the canonical variable of the
second:

v ≥ 0 complements expr1 ≥ 0, v ≥ 0 complements expr2 ≥ 0

=⇒ 0 ≤ expr1 ≤ +∞ complements 0 ≤ v ≤ +∞,
0 ≤ expr2 ≤ +∞ complements 0 ≤ w ≤ +∞, w = v.

Other cases are similarly straightforward. All of AMPL’s transformations to canonical
form preserve the property of monotonicity described in §3.1, ensuring that the com-
plementarity problem sent to a solver will tend to be as well behaved as the problem
originally formulated by the modeler.

6.2. Interface to PATH. Some current solvers, such as PATH [12, 16], want
to see only complementarity conditions. If a problem is “square” in the sense that
the number of variables equals the number of equality constraints plus the number
of canonical complementarity conditions (6), then it is straightforward to create an
equivalent pure complementarity problem in which all constraints have the form (6).

First, each finite bound on an unassociated variable (one not yet associated with
a canonical complementarity constraint) is removed from the variable and added as a
separate inequality constraint instead. Then each equality constraint can be converted
to a complementarity condition by the transformation
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expr = const

=⇒ const ≤ expr ≤ const complements −∞ ≤ v ≤ +∞,

where v is any unassociated variable. The squareness of the problem insures that every
equality can be covered by a different variable in this way. Finally, a new variable
is associated with each of the inequality constraints (including the aforementioned
constraints created from variable bounds), after which the inequalities can also be
converted to complementarity conditions. For example,

expr ≥ const
=⇒ const ≤ expr ≤ +∞ complements 0 ≤ z ≤ +∞,

where z is the new variable. The other inequality forms are handled similarly.
We have implemented an interface (or driver) that, when compiled with PATH,

produces an AMPL solver path for square complementarity problems. It can be used
in the AMPL command environment in the same way as other solvers:

ampl: model pies.mod;

ampl: data pies.dat

ampl: option solver path;

ampl: solve;

PATH 3.0: Solution found.

14 iterations (1 for crash); 28 pivots.

30 function, 16 gradient evaluations.

The driver reads a problem in the canonical form (6) and applies the manipulations
described above, to produce a problem consisting entirely of complementarity condi-
tions as the PATH solver requires. Instructions and C source for this driver are freely
available from ftp://netlib.bell-labs.com/netlib/ampl/solvers/path.

Table 1 shows the results of running path on some AMPL problems from MCPLIB
[13]. Certain problems are supplied with several starting guesses, as distinguished in
the start column. Results are given both with (“yes”) and without (“no”) deduction of
bounds by AMPL’s presolver, in the two cases (choi and pies) where presolving makes
a difference. The columns headed nv, ncc, and nsc give the numbers of variables,
complementarity constraints (6), and side constraints seen by the solver (before it
makes the previously described manipulations). The nfunc and ngrad columns report
the numbers of function and gradient (Jacobian) evaluations.

6.3. Interface to MATLAB. Often it is convenient to use MATLAB [25, 30]
implementations to experiment with algorithms. The examples associated with [24]
include source for MATLAB mex functions that provide various information about op-
timization problems expressed in AMPL, such as dimensions, bounds, starting guesses,
and function, gradient (or Jacobian matrix), and Lagrangian Hessian values. To en-
courage experiments with complementarity algorithms, we have extended these mex
functions to also make available the cvar array of complementarity relations (as de-
fined in §6.1).

7. Related notations. The complementarity extensions to AMPL constraints
necessitate corresponding extensions to notations for referring to constraints. This
section briefly describes extensions to the “dot suffix” notation for constraint-related
quantities, and to “synonyms” for constraint names.
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Table 1
Tests of the path solver for AMPL.

problem start presolve nv ncc nsc iters pivots nfunc ngrad

bertsek 1 — 15 10 5 5 13 25 6
bertsek 2 — 15 10 5 4 5 10 6
bertsek 3 — 15 10 5 6 12 14 8
bertsek 4 — 15 10 5 5 13 25 6
bertsek 5 — 15 10 5 4 3 10 6
bertsek 6 — 15 10 5 5 13 25 6
choi 1 no 14 13 2 4 7 10 6
choi 1 yes 13 13 0 4 3 10 6
ehl def 1 — 101 100 1 5 6 12 7
ehl kost 1 — 101 100 1 5 6 12 7
josephy 1 — 4 4 0 8 18 29 10
josephy 2 — 4 4 0 10 16 27 12
josephy 3 — 4 4 0 16 22 34 18
josephy 4 — 4 4 0 5 4 13 7
josephy 5 — 4 4 0 3 2 8 5
josephy 6 — 4 4 0 10 31 26 12
josephy 7 — 4 4 0 10 16 25 12
josephy 8 — 4 4 0 2 1 6 4
kojshin 1 — 4 4 0 10 21 26 12
kojshin 2 — 4 4 0 13 34 68 16
kojshin 3 — 4 4 0 16 36 34 18
kojshin 4 — 4 4 0 1 0 4 3
kojshin 5 — 4 4 0 5 6 12 7
kojshin 6 — 4 4 0 15 29 39 17
kojshin 7 — 4 4 0 10 27 25 12
kojshin 8 — 4 4 0 4 5 10 6
nash 1 — 10 10 0 6 5 14 8
nash 2 — 10 10 0 6 5 14 8
nash 3 — 10 10 0 5 4 12 7
nash 4 — 10 10 0 3 2 8 5
obstacle 1 — 2500 2500 0 7 1 14 9
pies 1 no 42 34 16 14 150 30 16
pies 1 yes 42 34 8 14 28 30 16

7.1. Suffixes. As an aid to evaluating and understanding computed solutions,
it is convenient to have notations for quantities such as lower and upper bounds,
slack values (distances from bounds), and reduced costs associated with variables
and constraints. The AMPL language admits various .suffix notations to denote
these quantities. In particular, AMPL puts each constraint into the canonical form
` ≤ body ≤ u, in which ` and u are constants (possibly −∞ and +∞), with ` = u
for equality constraints, after which the most frequently used .suffix options can be
defined as shown in Table 2.

For dealing with complementarity constraints, we extend the .suffix notations in
several ways. A complementarity constraint Goo may be viewed as consisting of a
“left” and “right” constraint, Goo.L and Goo.R, with a complementarity condition
between them. To indicate quantities associated with Goo’s left and right constraints,
we introduce the notations Goo.Lsuf and Goo.Rsuf, where suf is any suffix permitted
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Table 2
Most frequently used suffixes for a constraint Foo, in terms of the canonical form ` ≤ body ≤ u.

notation meaning

Foo.body body
Foo.lb `
Foo.ub u
Foo.lslack body − `
Foo.uslack u− body
Foo.slack min(Foo.lslack, Foo.uslack)

for an ordinary constraint. For showing how close a complementarity condition is to
holding, we also introduce the notation Goo.slack, whose meaning depends on Goo’s
nature. If Goo.L and Goo.R involve one explicit inequality each, then

Goo.slack = min(Goo.Lslack, Goo.Rslack).

Otherwise Goo has one of the forms

Goo.Lbody complements ` <= Goo.Rbody <= u,

` <= Goo.Lbody <= u complements Goo.Rbody.

In the former case,

Goo.slack =


min(Goo.Lbody, Goo.Rbody− `) if Goo.Rbody ≤ `,
min(−Goo.Lbody, u− Goo.Rbody) if Goo.Rbody ≥ u,
−|Goo.Lbody| otherwise;

the latter case is defined analogously. Clearly Goo.slack is zero when the comple-
mentarity condition is satisfied. If Goo.L and Goo.R involve one inequality each,
Goo.slack can be positive (if both constraints are strictly satisfied) or negative (if
at least one is violated), so its sign conveys some information. In the other cases
Goo.slack is always nonpositive.

7.2. Synonyms. Models are usually most conveniently described in terms of
several kinds of differently named (and indexed) constraints, as seen in Figure 2. But
sometimes it is helpful to address the variables and constraints with a uniform nota-
tion. For this purpose, AMPL offers generic synonyms for constraints (as well as vari-
ables and objectives). The synonym _con[i ] denotes the ith constraint as the modeler
sees constraints (before presolve), for i = 1, . . . , _ncons, and _scon[i ] denotes the ith
constraint that the solver sees (after presolve), for i = 1, . . . , _sncons. The notations
_conname[i ] and _sconname[i ] denote the corresponding names of these constraints.

After considering several possibilities, we have found it most convenient to intro-
duce separate synonyms for complementarity constraints, reserving _con and other
existing synonyms for “ordinary” constraints (including each of the pair of con-
straints involved in a complementarity constraint declaration). The new synonyms are
_ccon[i ] for the ith complementarity constraint before presolve, and _cconname[i ]
for its name, both for i = 1, . . . , _nccons. We also define _scvar[i ] as the index of
the complementing variable associated with constraint i in the canonical form (6) sent
to the solver. As an example of the use of these synonyms, one can see the extent to
which the current solution satisfies the constraints of a complementarity problem by
issuing the AMPL command
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display max {i in 1.._nccons} abs(_ccon[i].slack),

min {i in 1.._ncons} _con[i].slack;

to show the maximum complementarity violation and, over all constraints, the maxi-
mum constraint violation (negative values of .slack indicating violations).

8. Concluding remarks. Modeling languages make it easy for people to go
from a familiar mathematical formulation to the solution of a specific problem in-
stance, without worrying about computer programming details such as the data struc-
tures that solvers require. Thus modelers can focus on choosing the right model in-
stead of worrying over lower-level aspects of implementation. Modeling languages have
hitherto been used mainly for expressing conventional linear and nonlinear programs.
The present work describes an extension to a wider class, including complementarity
problems and mathematical programming problems with equilibrium constraints.

We hope that experience with and reaction to the present work will guide us in
designing other useful extensions. One obvious possibility concerns expressing bi-level
and multi-level optimization problems. These can be transformed to complementar-
ity problems of the kind we have addressed, but only by means of a cumbersome
conversion that requires one to write hand-coded derivative expressions in the com-
plementarity constraints. It might be possible instead to introduce a simple extension
that allows a constraint to reference the values of lower-level objectives.

An implementation of AMPL that includes the new complementarity extensions
can be accessed through Web interfaces at either of the following:

http://www.ampl.com/ampl/TRYAMPL/

http://www.mcs.anl.gov/home/otc/Server/

Although they differ in details, both of these interfaces accept AMPL models, data,
and commands for execution on a remote computer, with PATH as one option for the
choice of solver. Both then generate a web page showing the results. Thus it is not
necessary to have AMPL running locally to experiment with the new complementarity
features.
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