
OR Counterparts to AI Planning

Robert Fourer
Department of Industrial Engineering and Management Sciences

Northwestern University
2145 Sheridan Road

Evanston, Illinois 60208-3119
4er@iems.nwu.edu

Abstract

The term Planning is not used in Operations Research
in the sense that is most common in Arti"cial Intelli-
gence. AI Planning does have many features in com-
mon with OR scheduling, sequencing, routing, and as-
signment problems, however. Current approaches to
solving such problems can be broadly classi"ed into
four areas: Combinatorial Optimization, Integer Pro-
gramming, Constraint Programming, and Local Search.
These areas have developed somewhat independently;
they have characteristic strengths and weaknesses, and
have been commercially developed to varying degrees.

Any comparison of the operations research (OR) and arti-
"cial intelligence (AI) approaches to planning must start by
addressing a discrepancy in the key terminology. The term
AI Planning refers to the study of a distinct class of prob-
lems for which a technical de"nition can be given (Nareyek
2000):

The basic planning problem is given by an initial world
description, a partial goal world description and a set
of actions/operators that map a partial world descrip-
tion to another partial world description. A solution is
a sequence of actions that leads from the initial world
description to the goal world description and is called
a plan. The problem can be enriched by including fur-
ther aspects, like temporal or uncertainty issues, or by
requiring the optimization of certain properties.

In OR and related "elds such as management science and
industrial engineering, �planning� is a more informal term.
To the extent that it is well de"ned, moreover, it describes
something very different from planning in AI. As an exam-
ple, a recent article on OR consulting (Crowder 1997) gives
the following advice:

Scheduling involves short time periods, disaggregated
data, small segments of the business, and answers op-
erational kinds of questions of interest to people who
actually do work. Planning involves longer time peri-
ods, aggregated data, larger business units, and gives
solutions to strategic kinds of problems of interest to
people who only talk about doing work.

Copyright c© 2000, American Association for Arti"cial Intelli-
gence (www.aaai.org). All rights reserved.

The OR analogue to AI planning would thus seem to be
scheduling. Terms such as sequencing, routing, and assign-
ment are also widely used to describe more specialized kinds
of scheduling. Planning in OR, on the other hand, would
seem to be more nearly the opposite of what it is in AI!
This article thus aims to describe the OR views of

scheduling and related problems, which readers may "nd to
provide some interesting analogies to the AI view of plan-
ning. Still, it is worth keeping in mind that the analogy is
imperfect at best, as terms in either "eld carry certain conno-
tations absorbed from the most common applications. Thus
one paradigm for AI planning could be robot control, a prob-
lem almost unknown in OR circles. On the other hand, typ-
ical examples of OR scheduling involve work assignments
such as jobs to machines or crews to #ights, which would ap-
pear to lie outside of the standard de"nitions of AI Planning.
Techniques borrowed from AI have started to prove useful
for these OR scheduling problems, however, and hence I
will take scheduling in the OR sense as the starting point
for comparisons in this article.
There is no one way of scheduling in OR. The classi"ca-

tion that I adopt here distinguishes four main ways of ap-
proaching the task of "nding a solution:

• Combinatorial Optimization
• Integer Programming
• Constraint Programming
• Local Search

Although these can be viewed as merely solution methods,
any of which could be applied to any scheduling problem, in
practice each tends to be associated with certain scheduling
applications and modeling techniques.

Combinatorial Optimization
Virtually any scheduling task can be viewed as a combinato-
rial (or discrete) optimization problem to which established
complexity theory may be applied. Thus there is a huge
body of complexity results for scheduling, addressing the
minimization of makespan, total tardiness, weighted com-
pletion time, and other objectives under different combina-
tions of processor numbers and times, release dates, prece-
dences, preemption rules, due dates, and many other charac-
teristics. The variety of combinations has been suf"cient to
support specialized terminology, classi"cation schemes, and

even software for keeping track of known results (Lageweg
et al. 1982, Brucker and Knust 2000). The technical litera-
ture on the subject began as theoretical computer science but
has long been based mainly in OR-related publications.
As in other areas of combinatorial optimization, the core

of the effort has been to divide problems into those that can
be solved with polynomially-bounded work and those that
can be proved to be NP-hard. There is also a concern with
reducing the size of bounds on the worst-case effort of op-
timal algorithms (for polynomial problems) and heuristics
(for HP-hard problems).
Problems of practical interest tend to involve many kinds

of complications speci"c to the situation at hand. As a result,
practical scheduling problems often fail to precisely match
any of those that have been studied mathematically. Prac-
tical combinatorial optimization for scheduling tends to be
more of an empirical science, based on the creation of iter-
ative schemes that work well for given applications. Evalu-
ation of these schemes naturally focuses more on their aver-
age behavior than on the worst case, while the role of the-
ory is to establish which subproblems are amenable to being
solved or approximated ef"ciently. Little can be said about
these schemes in general terms, however, as their design and
implementation tends to be highly problem-speci"c.

Integer Programming
Virtually any combinatorial optimization problem � hence
any scheduling problem� can be written as a minimization
or maximization of integer decision variables, subject to lin-
ear equalities and inequalities in the variables. Problems of
this latter sort are known as integer programs, or as mixed
integer programs or MIPs when additional continuous deci-
sion variables are also employed.

Branch-and-Bound
Powerful general-purpose MIP solvers have been re"ned
over several decades, and are capable of solving problems
in thousands of integer variables. They employ a kind of
divide-and-conquer strategy that builds a tree of progres-
sively more restricted problems, terminating with speci"c
solutions at the leaf nodes. The potentially exponential
work of searching the whole tree is greatly reduced through
analysis of the relatively easy linear program that results
upon relaxing the integrality requirement for each node's
restricted problem. (The linear program's solution can be
further speeded up by starting from the solution of its par-
ent's relaxation.) The relaxation's solution at a node some-
times turns out to be all-integer, and in other cases provides
a bound that is worse than some all-integer solution already
found; in either case, the tree can be �pruned� at that point.
A branch-and-bound strategy of this kind can be re"ned

through heuristic node and branch selection strategies for
building the tree and through simpli"cations of the restricted
problems at the nodes. Often these operations can make fur-
ther use of information provided by the solution of the linear
programming relaxation. Upper and lower bounds on the
optimal objective value can also be maintained, and the gap
between them shrinks as the search proceeds.

The integer programming approach has the appeal of us-
ing off-the-shelf software for formulating and solving. Con-
sider for example the just-in-time sequencing problem (Jor-
dan and Drexl 1995) in which jobs j ∈ J have processing
times pj and must be completed by due dates dj , but incur
an earliness penalty ej for each day that they are completed
early. Processing job i immediately after job j incurs both
a setup penalty sij and a setup delay tij . The problem of
choosing a job order that minimizes total penalty can be for-
mulated as a mixed integer program in terms of two groups
of variables:

• Continuous variables Uj are the completion times of
the jobs j ∈ J .
• Integer variables Vij are 1 if job j immediately fol-
lows job i, and zero otherwise, for all i ∈ J and
j ∈ J with i 6= j.

The objective and constraints can then be written as:

Min
∑
j∈J ej(dj − Uj) +∑
i∈J

∑
j∈J :i 6=j sijVij

Subj to
∑
i∈J Vij = 1, j ∈ J∑
i∈J Vji = 1, j ∈ J

Ui + tij + pj ≤ Uj +B(1− Vij),
i ∈ J , j ∈ J : i 6= j

0 ≤ Uj ≤ dj , j ∈ J
Vij ∈ {0, 1}, i ∈ J , j ∈ J : i 6= j

The constantB must be chosen suf"ciently large to make the
constraint in which it appears non-binding when Vij = 0.
(We should also be more precise in the formulation's han-
dling of the beginning and end of the job sequence, but in
the interest of simplicity we have omitted the details here
and in subsequent related examples.)
The use of integer programming has been further pro-

moted by the availability of modeling languages that en-
courage experimentation with alternative formulations. Cur-
rently the most popular among these are the algebraic mod-
eling languages (Kuip 1993) that permit MIP formulations
to be expressed in a common and natural mathematical form.
Here is the model above, for example, in the AMPL lan-
guage (Fourer, Gay and Kernighan 1990, 1993):

set J;

param d {J};
param e {J};
param p {J};

param s {J,J};
param t {J,J};

var U {j in J} >= 0, <= d[j];
var V {i in J, j in J: i <> j} binary;

param B;

minimize Total_Penalty:
sum {j in J} e[j] * (d[j] - U[j]) +
sum {i in J}

sum {j in J: i <> j} s[i,j] * V[i,j];

subj to OneBefore {j in J}:
sum {i in J} V[i,j] = 1;

subj to OneAfter {j in J}:
sum {i in J} V[j,i] = 1;

subj to NoOverlap {i in J, j in J: i <> j}:
U[i] + t[i,j] + p[j]
<= U[j] + B * (1 - V[i,j]);

More mnemonic names for parameters and variables could
be used if desired. A particular instance of this model would
be created by processing it along with speci"c values for the
declared set and parameters.
The key feature of modeling languages is their ability

to declare models and data without giving any procedu-
ral description of how a solution is to be computed. Thus
the optimization can be delegated to any of a variety of
MIP solvers. Modeling languages are typically implemented
within computing environments that provide support for
managing models, data, and solutions. Procedural exten-
sions for scripting series of solves and more elaborate itera-
tive schemes are also available, but the underlying descrip-
tion of the models remains declarative.
The chief drawback of the integer programming approach

is also seen in this example. Integer programming usu-
ally requires the construction of a formulation that is sig-
ni"cantly different from the scheduling problem's original
statement and that involves large numbers of additional vari-
ables and constraints. Worse yet, the performance of even
the most sophisticated branch-and-bound implementations
is highly sensitive to the formulation. Many simple and con-
cise formulations turn out to require too large a search tree
to be practical.
The construction of �good� formulations is something of

an art, often involving the addition of complex classes of
redundant constraints that make the formulation more suit-
able for branch-and-bound, though they leave the optimal
value of the integer program unchanged. Constraints that
reduce the number of optimal solutions by �breaking sym-
metries� are often effective in curtailing fruitless searching.
Other added constraints lead to tighter bounds from the re-
laxations, permitting more of the search tree to be pruned.
These latter constraints are known as cuts because they cut
off some of the fractional solutions of the relaxed prob-
lems. In addition to the problem-speci"c cuts introduced by
clever modelers, good branch-and-bound implementations
automatically generate cuts of various kinds.

Branch-and-Price
Even those integer programming formulations that would
seem to have an impossibly large number of variables can
be handled if the variables have some regular pattern.
As an example, consider the problem of scheduling work-

ers over a series of T days so that at least dt worker-hours
are scheduled on each day t. This could be formulated in
terms of variablesXit representing the number of hours that
person i works on day t, with constraints to ensure that suf-
"cient worker-hours are scheduled each day and that each
worker's schedule meets certain contract requirements. If
the requirements are the same for all workers, however, then

this leads to a highly symmetric formulation that is hard to
solve.
Instead, suppose we begin by listing all contractually ac-

ceptable work plans. We can let ajt, say, represent the num-
ber of hours that a person assigned to work plan j will put in
on day t. Then the variables are simply the numbers of peo-
ple Yj that are assigned to follow work plan j. If the total
pay for work plan j is cj , then the scheduler's problem can
be written as

Min
∑
j∈J cjYj

Subj to
∑
j∈J ajtYj ≥ dt, t = 1, . . . , T

Yj ∈ {0, 1, 2, 3, . . .}, j ∈ J
Unless the contract rules are highly restrictive, however, the
size of the set J is likely to grow exponentially with the
number of days, producing far too many variables to permit
this formulation to be used directly.
To deal with this situation, the branch-and-bound process

can be initiated with only a subset of work plans. Addi-
tional useful work plans can be generated as the search pro-
ceeds, by solving a pattern-generating subproblem at some
of the nodes; in fact this subproblem can itself be formu-
lated as a combinatorial optimization problem, in which the
variables Zt are the numbers of hours to be worked on day
t in the plan to be added, and the constraints enforce the
contract rules. The objective for this subproblem is properly
expressed in terms of the �dual prices� generated in solving
the restricted linear programming relaxations at the branch-
and-bound nodes, leading the overall scheme to be known as
branch-and-price. Space does not permit a discussion of the
details, which become quite complex for practical situations
such as the scheduling of airline crews.

Branch-and-Cut
A similar approach can be taken in cases where the number
of constraints is too large to handle.
An example is provided by the simple routing problem

known as the �traveling salesman� problem. Givenm cities
and distances dij between all pairs of cities i and j, a �tour�
of all the cities is desired such that the total distance trav-
eled is as small as possible. We can de"ne variables Xij ,
i < j, to be 1 if the tour goes directly between cities i and
j, and 0 otherwise. Then the total cost is the sum of the
terms dijXij ; for the constraints we need only say that the
tour goes directly between each city and exactly two other
cities, and that the solution cannot contain a �subtour� on
any subset of cities:

Min
∑m
i=1

∑m
j=i+1 dijXij

Subj to
∑k−1
i=1 Xik +

∑m
j=k+1Xkj = 2,

k = 1, . . . ,m∑
i∈S
∑
j∈S:i 6=j Xij ≤ |S| − 1,

S ⊂ {1, . . . ,m} with 3 ≤ |S| ≤ m/2
The idea of the �subtour elimination� constraints is that a
solution cannot contain a subtour on some subset S of cities
if it involves links between fewer than |S| pairs of cities in S.
The number of these constraints clearly grows exponentially

with the size of S, however, and hence is impossibly large
for all but the smallest problems.
Again, the problem of exponential growth in the formula-

tion can be handled by a strategy of incremental generation
� this time, of constraints. Basically, we start by attempting
to solve the integer program without the subtour elimination
constraints. But whenever we encounter a solution that con-
tains a subtour, we add the constraint that eliminates that
subtour. Experience suggests that the number of constraints
that need to be added in this way grows at a much more
reasonable rate than the total number of subtour elimination
constraints.
The same ideas can be used to incrementally generate cuts

that are redundant for the integer programming formulation
but that are advantageous to branch-and-bound as explained
previously. Hence this approach is known as branch-and-
cut. Studies of the traveling salesman problem have un-
covered intricate cut structures that permit branch-and-cut
to solve problems in thousands of cities (Applegate, Bixby,
Chvatal and Cook, 1998). For practical purposes, how-
ever, the interest is in more complicated routing problems
to which this approach can be applied. If we replace �cities�
by �jobs� and interpret dij as the setup time between jobs,
moreover, then the same formulation is seen to apply to
some kinds of machine scheduling.

Constraint Programming
Enumerative search methods were developed independently
in the AI community, initially for solving problems in
which the variables take only true-false values and are con-
nected into constraints by logical operators (such as �or�
and �not�). The extent of the search can be reduced in this
case by applying certain methods of �resolution� that can be
viewed as analogues to cut generation in branch-and-bound.
(There is no analogue for the idea of a bound, however.)
Extensions of this approach to more complex kinds of vari-
ables and constraints has produced a variety of constraint
programming languages and systems.
From an OR standpoint, the signi"cance of constraint pro-

gramming lies in permitting enumerative search to be ap-
plied to more natural formulations of combinatorial prob-
lems. A typical constraint programming formulation of the
preceding sequencing model, for example, would replace the
zero-one variables Vij by �job-valued� variables Wk, such
thatWk represents the job that is kth in the job sequence:

Min
∑
j∈J ej(dj − Uj) +

∑|J |
k=1 sWk,Wk+1

Subj to all-differentk∈J Wk

UWk
= min(dWk

, UWk+1 − pWk+1 − tWk,Wk+1)
k ∈ 1, . . . , |J |

Wk ∈ J , k ∈ 1, . . . , |J |
An expression such as UWk

is read directly as �the com-
pletion time of the kth job.� Such �variable in subscript� ex-
pressions permit the |J |2 variables Vij to be replaced by |J |
variablesWk, each having a larger domain. Linearity of the
expressions is not required, permitting the constraint that re-
lates production, setup, and completion times to be changed

from an inequality (in the integer programming formula-
tion) to an equality; this constraint now fully determines the
Uj variables once the Wk variables have been enumerated.
Finally, the all-different constraint replaces 2|J | individual
constraints from the integer program.
A constraint programming solver builds a search tree for

this problem directly, with branches restricting the solution
to different cases as appropriate. Each restriction is �propa-
gated� to further reduce the domains of the variables in de-
scendant nodes; this is the main device for keeping the size
of the search tree manageable. With a judicious choice of
the order in which variables are restricted to yield nodes and
branches, this approach can solve certain dif"cult scheduling
problems signi"cantly faster than branch-and-bound applied
to an integer programming formulation.
The initial idea of constraint programming was to em-

bed constraints into a full-featured programming language.
More recently, however, the idea of an algebraic model-
ing language has been extended to formulations like the
one above (Fourer 1998, Van Hentenryck 1999). Indeed,
there has been considerable cross-fertilization between in-
teger programming and constraint programming in recent
years, at the levels of both solving and modeling. Chances
are that they will become less distinct over time.

Local Search
The enumerative search methods of integer and constraint
programming are �global� in the sense that they are guaran-
teed to "nd the best of all possible schedules, sequences, or
assignments, if only they can be run long enough. The major
alternative is a �local� approach that "nds progressively im-
proved schedules by making incremental improvements of
some kind. Although local search cannot offer strong guar-
antees of optimality, it has compensating advantages in var-
ious practical situations.
In its simplest form, local search requires an admissible

solution (what would be called a �feasible� solution in inte-
ger programming) to start from, and a rule that de"nes for
each such solution a collection of �neighboring� solutions
that are also admissible. A step of the search then involves
moving from one solution to a neighboring solution that has
a better objective value. The search continues until it reaches
a solution whose objective value is at least as good as any of
its neighbors' values; at that point it has found a �locally
optimal� solution.
In many sequencing problems, for example, jobs may

miss their due dates, at the cost of incurring some penalty
to the objective. (In fact the entire objective may be to min-
imize total tardiness.) Then any sequence of jobs may be a
valid solution. The neighbors of a solution might be all those
obtained by exchanging some pair of jobs in the sequence,
or by moving some one job to a different place in the se-
quence. A similar analysis can be applied to the traveling
salesman problem, but in that case it might make more sense
to generate neighbors by replacing any two links i1 → i2
and j1 → j2 with i1 → j1 and i2 → j2. In general, we
would like the neighborhood rule to generate neighbors that
have a good chance of giving better objective values.

Unfortunately, most scheduling problems have huge num-
bers of locally optimal solutions that are far from the global
optimum. Even if local search is enhanced by choosing at
each step the neighbor with the best objective value � a
�greedy� algorithm� and by trying many starting solutions,
results are often disappointing.
Practical local search methods must thus incorporate

some device for getting away from local minimums. In-
deed, local search methods are categorized according to the
devices they use. Simulated annealing (van Laarhoven and
Aarts 1987) allows occasional steps to solutions with worse
objective values, according to a probability that is gradu-
ally reduced. Tabu search (Glover and Laguna 1997) also
permits steps to inferior solutions, but promotes eventual
progress by maintaining a list of recent solutions that may
not be revisited. Genetic algorithms (Liepins and Hilliard,
1989) start with a set of valid solutions; at each step new
solutions are constructed by combining parts from existing
pairs of solutions, and some existing solutions are discarded,
according to criteria that tend to promote the survival of the
best solutions. Other local search methods of current inter-
est include ant colony optimization, differential evolution,
immune system methods, memetic algorithms, and scatter
search (Corne, Dorigo and Glover 1999). Numerous re"ne-
ments have enabled such methods to adapt more readily to
varying circumstances and to deal with constraints.
Although a kind of asymptotic global optimality can be

assured for some local search methods, as a practical matter
these methods are used where circumstances do not require
or permit a guarantee of optimality or a bound on the cur-
rent solution's distance from optimality. They are particu-
larly attractive where the form of the objective function or
the set of valid solutions does not lend itself to the more an-
alytical approaches previously described. Local search can
also provide a way of computing good schedules quickly and
with limited investment in sophisticated software. If a good
starting solution is known, moreover, then the effort of local
search focuses speci"cally on improving it.
Local search methods represent general approaches more

than speci"c algorithms, however. Thus they typically re-
quire some amount of programming to be set up for spe-
ci"c problems. The construction of a good neighborhood
rule may also be dif"cult. Individual steps do tend to be
fast, but the number of steps can be very large, particularly
as there are no bounds generated to give a stopping rule.
Performance may be sensitive to the settings of parameters
that govern, say, the composition of a tabu search list or the
choice of solutions to be combined or discarded in a genetic
algorithm; repeated trial runs may be necessary to develop
good settings.

Availability
There is a long tradition of commercial integer programming
software. To provide good performance on a range of prob-
lems, effective branch-and-bound implementations must of-
fer a variety of carefully tuned options for preprocessing,
node and branch selection, cut generation, and other oper-
ations. The best codes are thus developed over a period of
years and are not easily reproduced; as a result, they tend to

be expensive (Fourer 1999). Practical constraint program-
ming software has similar characteristics, and appears to be
developing commercially in a similar way.
All of the widely used modeling languages and systems

are also commercial in nature. Typically they are usable for
planning as well as scheduling and for many other optimiza-
tion problems, via a diversity of features that have been de-
veloped over a long time. New languages are thus not read-
ily introduced, and again the software tends to be expensive.
Combinatorial scheduling algorithms and scheduling ap-

plications of local search tend to be more specialized, but
also more readily available as research codes at little or no
cost. There is no one best source of information for these
categories, but the software is not hard to track down by
means of a Web search.

Acknowledgments
This work has been supported in part by National Sci-
ence Foundation grants DMI-9414487 and DMI-9800077 to
Northwestern University.

References

D. Applegate, R. Bixby, V. Chvatal and W. Cook,
1998. On the Solution of Traveling Salesman Prob-
lems, Documenta Mathematica Journal der Deutschen
Mathematiker-Vereinigung, International Congress ofMath-
ematicians, 645�656; www.keck.caam.rice.edu/
tsp/index.html.

P. Brucker and S. Knust, 2000. Complexity Results
for Scheduling Problems, www.mathematik.uni-
osnabrueck.de/research/OR/class/.

D. Corne, M. Dorigo and F. Glover, eds., 1999. New Ideas
in Optimization, McGraw-Hill.

H.P. Crowder, 1997. Seven Helpful Hints for OR/MS Con-
sultants, OR/MS Today 24, 1 (February).

R. Fourer, 1998. Extending a General-Purpose Alge-
braic Modeling Language to Combinatorial Optimization:
A Logic Programming Approach. In D.L. Woodruff, ed.,
Advances in Computational and Stochastic Optimization,
Logic Programming, and Heuristic Search: Interfaces in
Computer Science and Operations Research, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 31�74.

R. Fourer, 1999. Software Survey: Linear Programming,
OR/MS Today 26, 4 (August) 64�65; lionhrtpub.com/
orms/orms-8-99/survey.html.

R. Fourer, D.M. Gay and B.W. Kernighan, 1990. A Model-
ing Language for Mathematical Programming, Management
Science 36, 519�554.

R. Fourer, D.M. Gay and B.W. Kernighan, 1993. AMPL:
A Modeling Language for Mathematical Programming,
Duxbury Press, Paci"c Grove, CA.

F. Glover and M. Laguna, 1997. Tabu Search. Kluwer Aca-
demic Publishers.

C. Jordan and A. Drexl, 1995. A Comparison of Con-
straint and Mixed-Integer Programming Solvers for Batch

Sequencing with Sequence-Dependent Setups, ORSA Jour-
nal on Computing 7, 160�165.

C.A.C. Kuip, 1993. Algebraic Languages for Mathematical
Programming, European Journal of Operational Research
67, 25�51.

B.J. Lageweg, J.K. Lenstra, E.L. Lawler and A.H.G. Rin-
nooy Kan, 1982. Computer-Aided Complexity Classi"ca-
tion of Combinatorial Problems, Communications of the
ACM 25, 817�822.

G.E. Liepins and M.R. Hilliard, 1989. Genetic Algorithms:
Foundations and Applications, Annals of Operations Re-
search 21, 31�57.

A. Nareyek, 2000. EXCALIBUR: Adaptive Constraint-
Based Agents in Arti"cial Environments � Planning,
www.ai-center.com/projects/excalibur/
documentation/intro/planning/.

P. van Hentenryck, The OPL Optimization Programming
Language. MIT Press, Cambridge, MA.

P.J.M. van Laarhoven and E.H.L. Aarts, 1987. Simulated
Annealing: Theory and Applications. D. Reidel, Norwell,
MA.

