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Abstract

When fitting complex models, such as finite element or discrete event simulations, the

experiment design should exhibit good properties of both projectivity and orthogonality. To

reduce experimental effort, sequential design strategies allow experimenters to collect data

only until some measure of prediction precision is reached. In this article, we present a batch

sequential experiment design method that uses sliced Full Factorial-Based Latin Hypercube

Designs (sFFLHDs), which are an extension to the concept of sliced Orthogonal Array-Based

Latin Hypercube Designs (OALHD). At all stages of the sequential design, good univariate

stratification is achieved. The structure of the FFLHDs also tends to produce uniformity

in higher dimensions, especially at certain stages of the design. We show that our batch

sequential design approach has good sampling and fitting qualities through both empirical

studies and theoretical arguments.
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1. Introduction

Computer simulations are frequently adopted in studying complex systems. For example,

engineers use fluid dynamics models to visualize air flow around an aircraft and Monte Carlo

simulations to optimize call center staffing. Although the power and speed of computers has

grown significantly in the recent decade, a single evaluation of some computer models can

take hours or even days. If the computer models are computationally expensive, metamodels,

sometimes referred to as surrogate models, are constructed to approximate the complex

computer models with sufficient accuracy. These metamodels replace the original computer

models in optimization or “what if” analyses.

Building metamodels for these computer simulations involves sampling a set of points

from the design space and fitting a model to the observed data. The focus of this paper will be

on design of experiments which is used to select which set of points to sample from the design

space. We will presume that kriging (or Gaussian process modeling), which has become

widely used for building metamodels of complex deterministic computer experiments, will be

used for the fitted model. Kriging, developed in geostatistics (Matheron 1963; Journel 1978),

assumes spatial correlation between points. Responses at unobserved points are predicted

using correlations between the observed points to create a response surface model. Recently

Ankenman et al. (2010) extended kriging to the case of stochastic simulation. Although our

approach is developed with kriging in mind, it is also appropriate for many other fitting

methods, especially when there is little known about the true underlying surface.

A variety of experiment designs have been presented in literature for supporting kriging

models. When the goal of the metamodel is to fully map the region of interest, designs utilize

certain space-filling criteria and seek to place points in the design space uniformly. McKay

et al. (1979) introduced Latin hypercubes for computer experiments where each level of each

variable is sampled exactly once. This idea has spawned many variants.

Tang (1993) and Owen (1994) proposed the concept of orthogonal array-based LHD
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(OALHD). An OALHD starts with an n-point OA of strength t for m columns (t < m),

each at L levels, denoted OA(n,m,L, t). For every t columns, the Lt level combinations

appear the same number of times. OALHDs built on OA(L2,m, L, 2)s have economical

sample sizes and are used most widely. To construct an OALHD, the set of values from

1 to L2 is partitioned into L groups: {1, . . . , L}, {L + 1, . . . , 2L}, . . . , {L(L − 1), . . . , L2}.

The levels in the OA correspond to each group. The levels in the OA in a given dimension

are replaced by distinct integer values from its corresponding group. The replacement each

time is random without replacement. OALHDs have good projectivity in any univariate and

bivariate subspace if strength 2 OAs are used in construction.

Other space-filling criteria have also been adopted when constructing designs. Johnson

et al. (1990) first defined the concept of minimax and maximin distance in the design of an

experiment. The maximin criterion tries to maximize the minimum distance between any

two points in the design. The minimax criterion minimizes the maximum distance between

any nondesign point in the design space S and the closest design point in the design. Morris

and Mitchell (1995) presented maximin LHDs which try to maximize the minimum distance

between design points while maintaining the desirable projective properties of an LHD. Qian

and Wu (2009) presented the idea of a sliced space-filling design. Each slice has good space-

filling properties while the whole design achieves good uniformity in higher dimensional

margins.

Sequential designs have gained popularity in recent research as experimenters desire the

ability to terminate early if some stopping criterion is reached. The stopping criterion is

usually based on an estimate of prediction variance or parameter estimation variance. In

particular, in the search for a global optimizer, Bernardo et al. (1992) used an initial design

to predict the response. If the predictor is not accurate, a subregion is chosen and explored.

Otherwise, the objective is optimized using the current fitted model. Ranjan et al. (2008)

presented sequential designs with the objective of contour estimation. Lam and Notz (2008)
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proposed sampling additional points which maximize the expected improvement in model

fit. Distance-based criteria also apply to the construction of sequential designs. Besides

maximin and minimax criteria, Johnson et al. (1990) examined a weighted distance criterion

for choosing new design points.

Recently, Loeppky et al. (2010) introduced the notion of batch sequential designs for com-

puter experiments, in particular the bin-based sequential design. The sequential bin structure

is established by a set of defining relations. The bins are used to construct augmenting sets

of runs that yield, as nearly as possible, aggregate designs that are Latin hypercube sampling

(LHS) with near maximin distance at each batch stage. A batch sequential experimental

design allows the experimenter to successively add batches of design points to an experiment.

The goal is that after any batch is added, the design has reasonably good projectivity and

orthogonality properties. The stopping criterion can be invoked when the desired precision

is reached.

In this paper, we present a batch sequential experiment design that uses the idea of sliced

space-filling designs from Qian and Wu (2009) and extends the work of Loeppky et al. (2010).

Like Loeppky et al. (2010)’s bin-based designs, our design possesses good orthogonality and

projectivity at intermediate stages and leads to an OALHD. However, our design does not

require preselection of a total number of runs. Instead, it allows for batches to be added

indefinitely. At certain stages of the design, which we call the golden stages, our design

achieves very special space-filling properties.

We now introduce the definition of a full factorial-based Latin hypercube design (FFLHD),

which our sequential design achieves at the golden stages. A D-dimensional n-point design

X with L levels is said to be an L-level FFLHD if two properties hold. First, when every di-

mension of X is partitioned into L evenly spaced levels of (0, 1]:(0, 1/L], (1/L, 2/L], . . . , ((L−

1)/L, 1], the resulting design is an L-level full factorial design. Second, when X is project-

ed onto any dimension, precisely one point falls within n equally spaced levels given by
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(0, 1/n], (1/n, 2/n], . . . , ((n− 1)/n, 1].

At each batch stage, one slice from an FFLHD is sampled. Therefore, we call our se-

quential design a sliced full factorial-based Latin hypercube design (sFFLHD). Three design

matrices are created in the process of sequential sampling: the big grid design, the interme-

diate grid design, and the small grid design. The big grid design preserves orthogonality,

while the small grid design preserves LHD projectivity. As the sequential design adds a large

number of design points, orthogonality on L levels becomes a weak criterion. The interme-

diate grid design allows the sequential design to build orthogonality on more than L levels.

At the golden stages, the sequential design achieves its best space-filling properties and is

an FFLHD.

The remainder of this paper is organized as follows. In Section 2 we introduce some

notation, provide an example of an sFFLHD, and present a general method for constructing

an sFFLHD. In Section 3 we derive some theoretical properties of sFFLHDs. In Section 4 we

compare the results obtained using different design procedures for several numeric examples

and propose some choices of stopping criteria for sFFLHD. In Section 5 we demonstrate an

application of sFFLHD to a logistics simulation model. We summarize our work and present

our conclusions in Section 6.

2. Sliced Full Factorial-based Latin Hypercube Design Construction

We begin with some notation.

General matrix notation

S.j: jth column of a matrix S
Si.: ith row of a matrix S
S[i:j,.]: Rows i to j of a matrix S
Sij: Element in the ith row and jth column of a matrix S

Parameters that are constant throughout sFFLHD

L: Levels of the big grid and also the batch size
D: Dimension (number of factors)
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Parameters that update after each batch of sFFLHD

b: Batch number
lb: Levels of the small grid after b batches
Lb: Levels of the intermediate grid after b batches
nb: Number of sampling points after b batches, nb = bL

Matrices used in sFFLHD

Ar: rth OA(L2, D, L, 2) such that Ar’s are non-overlapping
Ar

p: pth slice of Ar

arpij: jth element of ith row in Ar
p

Xb: Sequential design after b batches, xrpij’s are elements of Xb

Vb: Small grid design matrix after b batches, vrpij’s are elements
of Vb

Mb: Intermediate grid design matrix after b batches, mr
pij’s are

elements of Mb

Wb: Big grid design matrix after b batches, wr
pij’s are elements of

Wb

V.d: Set of levels in the small grid that have been observed in
dimension d after b batches (d = 1, 2, . . . , D), also the dth
column of Vb

To construct an sFFLHD, we consider a special type of orthogonal array OA(n,m,L, t),

t = 2, n = L2. For any two columns, all level combinations appear exactly once. Equation

(1) shows an OA(9, 4, 3, 2), which is an example of this type of orthogonal array.

Z =



0 0 0 0
0 1 1 2
0 2 2 1
1 0 2 2
1 1 0 1
1 2 1 0
2 0 1 1
2 1 2 0
2 2 0 2


(1)

If we partition Z to three slices by the first column, that is, rows 1-3, 4-6, 7-9 are

the three slices, columns 2-4 of each slice form a different Latin hypercube. In fact, an

OA(L2, D+1, L, 2) can always be partitioned into L slices of D-dimensional Latin hypercubes

by using one column to separate the slices.
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The batches (slices) of the sFFLHD design are constructed using a series of orthogonal

arrays A1, A2, . . . with strength t(t ≥ 2). Each orthogonal array is a non-overlapping fraction

of a full factorial design of L levels and D factors. The union of A1, A2, . . . forms the big

grid design. Ai is partitioned into L slices as demonstrated above, and provides L batches

for the big grid design. For more detail, consider the following example:

Run Batch
1
2 1
3
4
5 2
6
7
8 3
9
10
11 4
12
13
14 5
15
16
17 6
18
19
20 7
21
22
23 8
24
25
26 9
27

X9 =



0.281 0.172 0.193
0.343 0.400 0.695
0.681 0.953 0.403
0.149 0.885 0.878
0.648 0.303 0.575
0.922 0.662 0.034
0.062 0.472 0.483
0.484 0.747 0.315
0.810 0.036 0.987
0.128 0.213 0.748
0.587 0.413 0.547
0.957 0.991 0.262
0.077 0.676 0.442
0.545 0.134 0.109
0.972 0.535 0.832
0.322 0.607 0.049
0.462 0.805 0.713
0.772 0.050 0.650
0.001 0.266 0.356
0.629 0.486 0.250
0.712 0.849 0.785
0.217 0.913 0.145
0.376 0.092 0.917
0.866 0.578 0.625
0.226 0.341 0.948
0.431 0.726 0.478
0.848 0.250 0.180



, V9 =



8 5 6
10 11 19
19 26 11
5 24 24
18 9 16
25 18 1
2 13 14
14 21 9
22 1 27
4 6 21
16 12 15
26 27 8
3 19 12
15 4 3
27 15 23
9 17 2
13 22 20
21 2 18
1 8 10
17 14 7
20 23 22
6 25 4
11 3 25
24 16 17
7 10 26
12 20 13
23 7 5



, W9 = M9 =



0 0 0
1 1 2
2 2 1
0 2 2
1 0 1
2 1 0
0 1 1
1 2 0
2 0 2
0 0 2
1 1 1
2 2 0
0 2 1
1 0 0
2 1 2
0 1 0
1 2 2
2 0 1
0 0 1
1 1 0
2 2 2
0 2 0
1 0 2
2 1 1
0 1 2
1 2 1
2 0 0



=



A1

A2

A3



=



A1
1

A1
2

A1
3

A2
1

A2
2

A2
3

A3
1

A3
2

A3
3



Figure 1: First 9 batches of an sFFLHD when D = L = 3, with the associated small grid, intermediate grid,
and large grid design matrices.

Example 1. D = L = 3. Figure 1 shows the first 9 batches (27 runs) of an sFFLHD design

X9, along with the associated small grid design V9 and large grid design W9. In the first

27 runs, M has Lb = 3 levels/dimension and V has lb = 27 levels/dimension. In the next 27

runs, M has Lb = 9 levels/dimension and V has lb = 81 levels/dimension. Figure 2 provides

the intermediate design M18 and the small grid design V18. X is the experiment design

where the factors have levels scaled from 0 to 1.
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Run Batch
1
2 1
3
4
5 2
6
7
8 3
9
10
11 4
12
13
14 5
15
16
17 6
18
19
20 7
21
22
23 8
24
25
26 9
27

first 27 batches

M18 =



2 1 1
3 3 6
6 8 3
1 7 7
5 2 5
8 5 0
0 4 4
4 6 2
7 0 8
1 1 6
5 3 4
8 8 2
0 6 3
4 1 0
8 4 7
2 5 0
4 7 6
6 0 5
0 2 3
5 4 2
6 7 7
1 8 1
3 0 8
7 5 5
2 3 8
3 6 4
7 2 1



V18 =



23 14 16
28 33 57
56 78 33
13 72 72
53 25 47
75 54 3
5 39 40
40 61 26
66 3 80
11 18 61
48 34 45
78 81 22
7 55 36
45 11 9
79 44 68
27 50 4
38 66 58
63 5 53
1 22 29
51 40 21
58 69 64
18 74 12
31 8 75
71 47 51
19 28 77
35 59 39
69 21 15



Run Batch
28
29 10
30
31
32 11
33
34
35 12
36
37
38 13
39
40
41 14
42
43
44 15
45
46
47 16
48
49
50 17
51
52
53 18
54

second 27 runs

M18 =



2 2 0
3 4 8
6 6 5
1 8 6
5 0 4
8 3 2
0 5 3
4 7 1
7 1 7
1 2 8
5 4 3
8 6 1
0 7 5
4 2 2
8 5 6
2 3 2
4 8 8
6 1 4
0 0 5
5 5 1
6 8 6
1 6 0
3 1 7
7 3 4
2 4 7
3 7 3
7 0 0



V18 =



20 19 1
29 41 74
55 60 50
10 73 60
46 2 37
73 30 20
2 48 28
37 64 13
70 10 65
15 23 73
47 37 30
80 56 10
3 68 46
39 20 19
81 46 55
21 31 23
44 75 81
50 12 41
6 1 48
50 49 11
57 80 56
16 57 4
30 13 67
64 28 38
24 38 66
32 71 31
65 9 2



Figure 2: sFFLHD for D = L = 3: intermediate grid design after 18 batches, small grid for second 9 batches

Our algorithm converts batches of the big grid design into batches of the intermediate and

small grid designs, while preserving both orthogonality on the big grid scale and LHD-like

projectivity properties on the small grid scale. The intermediate grid design ensures that the

sequential design is a subset of a full factorial design on the intermediate grid scale. After

each batch is added, the small grid design always remains a subset of an OALHD.

When enough batches have been added so that the big grid design is a full factorial design

with L levels, the small grid is a Latin hypercube with nb levels.

At a high level, this algorithm observes batches of L design points sequentially until a

stopping criterion is reached or an L-level LD-point FFLHD is constructed, which we call

a golden stage. If experimentation is to continue beyond the golden stage, then a new

intermediate grid design with (aL)D design points is created (aq = L, q ∈ N+). Batches

of L design points are then observed sequentially until an aL-level (aL)D-point FFLHD is

created, which is the next golden stage. This process can continue indefinitely so the design

at any point in the process is a subset of an asDLD-point (s ∈ N) asL-level FFLHD. Each

batch is guided by an orthogonal array at the big grid level and is a non-overlapping subset of

the asDLD-point LHD. This preserves some measure of orthogonality and projectivity after
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each batch.

The sFFLHD is generated with the following algorithm: (comments are in italic)

Step 0: Initialize b = 0, l0 = L, L0 = L, n0 = 0.

Step 1: Choose batch size L such that OA(L2, D+ 1, L, 2) exists. Randomly permute rows
and columns of the orthogonal array and then sort it by the first column and denote the
other D columns by A1. Slices of A1 are determined by the sorted column. In this fashion,
A1 is an OA(L2, D, L, 2) and each slice is a Latin hypercube design with L levels and will
be used as a batch of the sequential design. Create LD−2 − 1 non-overlapping OAs called
A2, . . . ,ALD−2

, which can be generated from A1 (see Appendix A).

Step 2:
For each Ar, r = 1, 2, . . . , LD−2

For each p, p ∈ {1, . . . , L}, Ar
p is the pth slice of Ar,

Update the level of the small grid design if necessary:
If nb + L > lb, Xb reached an LHD,
then update small grid levels by lb = alb, where aq = L, q ∈ N+. The small grid
design Vb is updated by Vb = dXb ∗ lbe.
Otherwise, continue.

Let G[nb+1:nb+L,.] = Ar
p, and ε[nb+1:nb+L,.] be an L by D matrix of random uniform

number from [0, 1).
Add batch b+ 1 using the function defined in Appendix B:
NB(G[nb+1:nb+L,.], ε[nb+1:nb+L,.], b)

Observe batch b+ 1
If the stopping criterion is satisfied
then EXIT
else continue
b = b+ 1
nb = nb−1 + L

Next p
Next r

Step 3: If Step 2 completes before the stopping criterion is met, then the intermediate grid
design is a full factorial design with Lb levels.

Update the number of levels of the intermediate grid design to Lb = aLb and update Mb

to Mb = bXb ∗ Lbc. Now Mb is a−D fraction of a full factorial design with Lb levels.

Step 4: Let v be a D length vector with integer values from 0 to a−1 and v 6= 0. There are
aD − 1 possible unique v’s. Let f, f ∈ 1, . . . , aD − 1, be the element index after randomly
permute the elements of {v}. Pick a non-overlapping fraction of the full factorial design
with Lb levels F1 by F1,ij = abMij/ac+ [(Mij + v1(j)) mod a] for all i, j.
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Different vf ’s result in different Ff ’s, so the Ff ’s are non-overlapping fractions of the
Lb level full factorial. Note that when we project Ff into L levels, we get a full factorial or
replicates of full factorial in L levels {Hk, i = 1, . . . , (Lb/aL)D}.

Slice each Hk into LD−2 non-overlapping OAs.
The set of all OAs after slicing is Fr, r = 1, . . . , LD−2(Lb/aL)D. Fr is an OA(L2, D, L, 2)

when projected into L levels. Fr
p is the pth slice of Fr, similar to the relationship between Ar

p

and Ar.

For each p,
Update the level of the small grid design if necessary:
If nb + L > lb,
then lb = alb, and Vb = dXb ∗ lbe.
Otherwise, continue.

Let G[nb+1:nb+L,.] = Fr
p, and let ε[nb+1:nb+L,.] be an L by D matrix of random uniform

number from [0, 1).
Perform NB(G[nb+1:nb+L,.], ε[nb+1:nb+L,.], b) and update all design matrices accordingly.

Observe batch b+ 1
If the stopping criterion is satisfied
then EXIT
else continue
b = b+ 1
nb = nb−1 + L

Next p

Step 5: If Mb is a full factorial in Lb levels, update Lb to Lb = aLb and Mb to Mb = bXb∗Lbc.
Repeat Step 4 until the stopping criterion is met.

Figures 1 and 2 show how batches and runs are constructed for an example where D =

L = 3. In the rightmost columns of Figure 1, we show the non-overlapping OAs Ai’s that

are used in the big grid design, W for the first 9 batches. The small grid design V, the

intermediate grid design M, and the sequential design X, are constructed using the above

algorithm. In the first 27 runs (see Figure 1), M has Lb = 3 levels/dimension and V has

lb = 27 levels/dimension. In Figure 2, we add another 9 batches. Now, M has Lb = 9

levels/dimension and V has lb = 81 levels/dimension. The intermediate grid design of runs

28-54 is constructed using v1 = [0, 1, 2]. X (not shown) is the experiment design where the

factors have levels scaled from 0 to 1.
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3. Analysis of sFFLHD for mean estimation

The mean estimator of a design provides information on the average response of the

design space. A good estimator should achieve good accuracy and precision. In a kriging

setting, little is usually known about the form of the response surface. Thus, estimating the

surface can be thought of as estimating the mean over small regions. The ability to estimate

the response surface is related to the ability to estimate a mean of a given subregion. Since

our design methodology essentially continues to fill the space in a uniform way, in the limit,

any subregion will begin to be filled as if it were the only region of interest. In this section, we

will show the mean estimator from an sFFLHD achieves good variance reduction compared

to random sampling, especially at certain stages.

3.1. Derivation of Mean Estimator of sFFLHD

Let dF denote the uniform probability measure on (0, 1]D. The true average output of a

measurable function f in (0, 1]D with
∫
f(x)2dF <∞ can be expressed as µ =

∫
(0,1]D

f(x)dF .

Consider an experiment with n runs labeled as {xi}, i = 1, 2, . . . , n, where xi = (x1, x2, . . . , xD).

The sample mean Y of n experiment runs is used as a predictor for µ by Y = 1
n

∑n
i=1 f(xi)

µ is then estimated by Y . The quality of Y depends on its mean and variance.

Let D denote the power set of C = {1, 2, . . . , D} and dFu =
∏

i∈u dxi denote a uniform

measure on (0, 1]|u|,u ∈ D. The ANOVA decomposition of f (Owen 1994) is given by

f =
∑

u∈D αu.

The components αu are defined inductively via

αu =

∫
(f −

∑
v⊂u

fv)dFC\v.

α∅ represents the grand mean. αi =
∫

(f − α∅)dFC\i is the main effect of dimension i, and

so on. With
∫
αuαvdF = 0, u 6= v,

∫
f 2dF can be decomposed into

∑
u∈D

∫
α2
udF , while the

variance σ2 =
∫

(f − µ)dF is simply
∑

u∈D\∅
∫
α2
udF .
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Let Zlb denote the set {1, 2, . . . , lb}. Proposition 1 establishes the forms of the marginal

and joint probability mass functions.

Proposition 1. Let VB denote the small grid design of batch B. For every element in VB,
vBij ,

P (vBij ) =
1

lB
, s ∈ ZlB .

for every i, k, where i 6= k

P (vrij = s, vrkj = t) =

{ L
l2B(L−1) s, t ∈ ZlB and bsL/lBc 6= btL/lBc
0 otherwise

for B1 6= B2, and b = max{B1, B2} we have

P (vB1
ij = s, vB2

kj = t) =


1
l2b

s, t ∈ Zlb and bsL/lbc 6= btL/lbc
1

lb(lb−L)
s, t ∈ Zlb , s 6= t and bsL/lbc = btL/lbc

0 otherwise.

Following the definition in Owen (1994), let Wij denote the jth entry of ith row of the

big grid design W. For u ⊂ D, let ωij(u) = {k ∈ u : Wik = Wjk} and ωB
ij (u) = {k ∈ u :

WB
ik = WB

jk}, and define

M(u, r) =
n∑

i=1

n∑
j=1

1{|ωij(u)| = r} and MB(u, r) =
L∑
i=1

L∑
j=1

1{|ωB
ij (u)| = r}.

Owen (1994) showed that variance of the mean estimator from an n-point lattice sampling

design can be written in the following form:

V ar(Y ) = n−2
∑
|u|≥2

|u|∑
r=0

M(u, |u|)(1− L)r−|u|V ar(αu(x)) + o(n−1)

Using the probability mass functions in Proposition 1, we can derive the expectation

and variance of the mean estimator of sFFLHD.

Proposition 2. Let Y B =
∑L

i=1 f(XB
i. ), the mean estimator using a single batch of sFFLHD.

Then
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E(Y B) = µ and E(Y ) = µ. (2)

This shows that the mean estimator of each batch and the whole sequential design at any
batch stage is unbiased.

For smooth function f , as L→∞

V ar(Y B) =
∑
|u|≥2

MB(u, |u|)L−2V ar(αu(x)) + o(L−1). (3)

At stages where the big grid design is an OA, as L→∞ we also have

V ar(Y ) =
∑
|u|≥3

|u|∑
r=0

M(u, |u|)l−2b V ar(αu(x)) + o(l−1). (4)

At stages where LD
b = n the sequential design is an FFLHD, as n→∞ we have

V ar(Y ) = O(L−D−2b ). (5)

From Proposition 2, we can see that the variance reduction achieved by each batch of

our procedure, compared to random sampling, is similar to that achieved by an ordinary

Latin hypercube design. Greater variance reduction is achieved when the sequential design

is an OALHD as pointed out in He and Qian (2011). At other stages, the sequential design

can be thought of as an LHD with uneven levels, where points do not spread out evenly

when projected onto a dimension. This is different from an ordinary LHD where, in each

dimension, levels correspond to equal-width intervals. However, with the structure of big

grid designs and grid designs, we attain good sampling properties even at these intermediate

stages. We demonstrate this in the next section through empirical studies.

4. Numerical Examples

4.1. Comparison of Gaussian Model Fitting against MmDist

In this section, we focus on the comparison of our sFFLHD with a maximin distance

sequential design (MmDist), as this seems to be the most widely used sequential space-filling
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design. Comparisons with other designs are summarized later. Suppose the batch size is L.

An MmDist design starts with a maximin LHD with L points, and each subsequent point

is placed to maximize the minimum interpoint Euclidean distance. Although MmDist is a

fully sequential design, we can group sets of L points into batches and implement the design

in a batch sequential manner.

We first compare sFFLHD with the fully sequential maximin design for estimating two

well-known test functions, the borehole and Rastrigin function. We then compare the designs

for estimating surfaces generated from a Gaussian random process model.
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Figure 3: Borehole and Rastrigin Examples: RMSE differences between sFFLHD and MmDist (Batches 1–6)

6 8 10 12 14 16
−8

−6

−4

−2

0
x 10

−3

Batch

sF
FL

HD
 −

 M
mD

ist

borehole 4D

6 8 10 12 14 16
−0.04

−0.03

−0.02

−0.01

0

0.01

Batch

sF
FL

HD
 −

 M
mD

ist

borehole 6D

6 8 10 12 14 16
−1.5

−1

−0.5

0

Batch

sF
FL

HD
 −

 M
mD

ist

borehole 8D

6 8 10 12 14 16
0

0.5

1

1.5

Batch

sF
FL

HD
 −

 M
mD

ist

rastrigin 4D

6 8 10 12 14 16
−2.5

−2

−1.5

−1

−0.5

0

Batch

sF
FL

HD
 −

 M
mD

ist

rastrigin 6D

6 8 10 12 14 16
−6

−5

−4

−3

−2

−1

0

Batch

sF
FL

HD
 −

 M
mD

ist

rastrigin 8D

Figure 4: Borehole and Rastrigin Examples: RMSE differences between sFFLHD and MmDist (Batches
7–16)

Example 2. Borehole Example

(Worley 1987) used a model to demonstrate the flow of water through a borehole. The
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model has eight input variables. All designs have been scaled to fit the range of interest. In

our comparison, we vary 4, 6 and all of the eight variables. We sample 8 points at a time.

The final budget is set at 128 runs. For each design method, function values are evaluated at

design points and a GP model is fit at each batch stage. A 10,000-point maximin LHD is used

to assess the RMSE of each GP model. Confidence intervals of RMSE differences are obtained

via 100 independent replications. Since the difference is (RMSE for sFFLHD)−(RMSE for

MmDist), a confidence interval that is completely negative indicates better performance of

the sFFLHD. In order to facilitate proper scaling for visualization, Batches 1–6 are shown

in Figure 3 and Batches 7–16 in Figure 4. From the first row of plots in Figures 3 and 4,

we can see that MmDist is as good as sFFLHD in terms of RMSEs in the 4-dimensional

case since almost all the confidence intervals contain zero. In the 6 and 8-dimensional cases,

the confidence intervals are almost always negative, so we conclude that sFFLHD produces

significantly lower RMSEs across all batch stages.

Example 3. Rastrigin Function

f(x) = 10D +
D∑
i=1

[x2i − 10cos(2πxi)]

D is the dimensionality of the Rastrigin function and xi ∈ [−5.12, 5.12] in each dimension.

We use D = 4, 6 and 8 to compare the two designs and scale the Rastrigin function to fit

[0, 1]D. A batch of 8 design points are sampled each time and the final batch is set at

128 points. For each design method, 100 independent designs are generated. A 10,000-

point maximin Latin hypercube design is used to compare the RMSEs at each batch stage.

Confidence intervals of RMSE differences are obtained. The second row of plots in Figure 3

and 4 shows the RMSE differences between two designs with batch 1-6 in Figure 3 and 7-16

in Figure 4. sFFLHD performs much better than MmDist on RMSEs in 6 and 8-dimensional

cases. For 4-dimensional case, differences between the two designs are not significant at early
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stages; however, MmDist dominates sFFLHD in the late stages.

Example 4. Gaussian Process Model

For this test problem, we consider several k-dimensional Gaussian processes (k=2,4,6

and 8). Different θ values represent different scenarios. Data are generated on 10000-point

maximin distance design in [0, 1]k. The model fitted from the 10000 points can well capture

the true response surface. We sample 8 points at a time. The final budget is set at 128 runs.

For each design method, function values are evaluated at design points and a GP model is

fit at each batch stage. The 10000 points are used to calculate the RMSE of each GP model.

Confidence intervals of RMSE differences are obtained via 100 independent replications.

First, θ is set to be 5 in each dimension. The true Gaussian surface is relatively smooth.

The second rows of Figures 5 and 6 show that in high dimensional cases, RMSEs of sFFLHD

are favorable compared to maximin distance design at almost all stages. In low dimensional

cases, maximin distance design is comparable to or better than sFFLHD, because maximin

distance design tends to have points spread out evenly in low dimensions.

We increase θ to 15 in each dimension. The simulated Gaussian surfaces are now rela-

tively non-smooth. For non-smooth surfaces, sFFLHD performs better than MmDist in 4

dimensional and higher cases (see first rows of Figures 5 and 6). However, the size of the

advantage over MmDist diminishes when fitting rough surfaces because neither design is able

to capture the true response well with a small number of design points.

4.2. Comparison with Other Designs

We also compare sFFLHD with other design methods in addition to MmDist design.

Maximin LHD (MmLHD) is a widely used space-filling design. To implement it in a batch

sequential manner, a MmLHD of the same final budget is generated in each replication

and then divided into batches of the same size as in the examples. We call this design

batch sequential MmLHD (bMmLHD). Even though bMmLHD cannot go beyond the final
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Figure 5: Gaussian Example: RMSE difference between sFFLHD and MmDist (Batch 1–6)
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Figure 6: Gaussian Example: RMSE difference between sFFLHD and MmDist (Batch 7–16)

budget (which is often times unknown a priori), it serves as a baseline for RMSE comparison.

Another design method, batch sequential LHD (bLHD) simply uses random LHDs of the

same size as batches. This may be appealing due to its light computational requirements,

but this design does not spread points evenly on a finer scale when projected onto any single

dimension. A random version of sFFLHD (rsFFLHD) is also included in the comparison to

demonstrate the value of having each batch be an LHD. To create the rsFFLHD, we use

a slightly modified version of the sFFLHD algorithm. In Step 1 of sFFLHD, rows of A1,

A2,. . . , are shuffled, so that the big grid design of each batch of rsFFLHD may not be a

LHD. However, at the end of Step 2, the big grid design of rsFFLHD remains an OALHD.

We use Examples 2, 3, 4 to compare the above design methods with sFFLHD. The average

RMSE differences are listed in Appendix D. sFFLHD performs better than bMmLHD during
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early-stages and mid-stages, and as well at final stage in terms of RMSE. In comparison with

bLHD, performance of bLHD is never better than sFFLHD. Close to the stages where the

big grid design of rsFFLHD is an OALHD, rsFFLHD and sFFLHD performs equally well

as expected. However, sFFLHD performs better than rsFFLHD at other stages leading us

to conclude that forcing each batch to be an LHD produces better space-filling property at

stages when sFFLHD is not an OALHD.

4.3. Stopping Criteria

The most important attribute of sFFLHD is the ability to stop at any batch stage while

maintaining good space-filling properties. While smaller RMSE of fit is often desirable,

computing actual RMSE requires the knowledge of the true model which is not known in

most cases. However, the emulator often enables us to estimate the MSE of prediction at

some unobserved point. For instance, if GP model is used as the emulator, given the GP

model, the predicted MSE for an unobserved site x can be computed from the following

expression:

MSE(Y (x)) = σ2(1− rT (x)R−1r(x)) (6)

where r(x) = [R(x,x1), . . . ,R(x,xn)] and the correlation function R(x,x′) = exp(−
∑d

i=1 θi(xi−

x
′
i)). The root integrated MSE (RIMSE)

RIMSE =

√∫
S
MSE(Y (x)dx (7)

can be used as a measurement of uncertainty for prediction. Typically, the parameters θi,∀i

are estimated and then RIMSE is approximated by computing the estimated MSE at each

point on a large grid and taking the root of the average across the grid.

Cross validation also can provide a performance measure of the GP model. Leave-one-out

cross validation is often preferred as only one observation is left out for each cross validation
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and cross validation fits are close to the fit with all data. An example is studied in Section 5

to demonstrate the usage of the above stopping criteria.

4.4. Comparison of Mean Estimators

In this section, we compare the properties of the mean estimators of 4 different design

methods(sFFLHD, bMmLHD, MmDist and rsFFLHD).

Example 5. Suppose the computer model is given by

f = x1 + x2 + x1x2 + x21 + x22 +min(e3x2 , 10)− 1.5x1x2x3 + x23

x1 ∼ Unif [−2, 0], x2 ∼ Unif [0, 1], x3 ∼ Unif [0.5, 1.5]

We adopt a final run size of 64 using batches of size 4 and calculate µ̂ for each scheme at

each batch stage over 2,000 replications. RMSE of µ̂ at selected batch stages are shown in

Table 1. The result shows that in terms of RMSE, sFFLHD has the best mean estimator at

all batch stages among the compared design methods. Especially at stages where sFFLHD

is an OALHD where numbers are in bold, the mean estimator of sFFLHD is significantly

superior to all the designs except rsFFLHD, however, at these stages sFFLHD and rsFFLHD

are equivalent designs.

Batch 1 4 8 12 16
Design Points 4 16 32 48 64
sFFLHD 0.214 0.005 0.015 0.004 0.000069
bMmLHD 5.001 0.926 0.275 0.059 0.000076
MmDist 0.235 0.129 0.072 0.033 0.0379
rsFFLHD 3.371 0.006 0.014 0.075 0.000070

Table 1: Function in Ex. 5: comparison of RMSE of µ̂ for each design scheme

Example 6. Borehole Example

All eight dimensions are used in this example. For each design method, a final run size

of 128 with batches of size 8 are used. Function values are evaluated at design points and
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the sample mean is calculated at each batch stage. RMSEs of µ̂ are obtained via 2,000

independent replications. Table 2 summarizes the result. Similar to the result in Example 5,

the mean estimators of sFFLHD are superior to other designs, except when equivalent to

rsFFLHD.

Batch 1 4 8 12 16
Design Points 8 32 64 96 128
sFFLHD 20.645 1.546 0.059 0.310 0.027
bMmLHD 254.137 49.674 13.120 5.995 0.709
MmDist 15.526 23.102 10.886 6.997 5.361
rFFLHD 223.847 34.909 0.069 3.502 0.024
bLHD 14.887 2.944 1.660 1.036 0.888

Table 2: Borehole function: comparison of RMSE of µ̂ for each design scheme

5. Application: Operational Availability Simulation

Our final example applies sFFLHD to a discrete-event simulation for logistics operations.

The basic scenario is that an operational unit begins with a fleet of working vehicles. Over

time, vehicles break down and are repaired, or become due for scheduled maintenance and

are serviced. Of interest is the availability of vehicles at the beginning of each day, since this

determines what operations can be conducted. The proportion of the initial fleet available

is called the operational availability, and within the U.S. Department of Defense this is

abbreviated as “Ao.”

We will provide a description of the model logic using an event graph, which is a pictorial

representation of discrete event simulation model from a state transition perspective. Each

event (i.e., a vehicle breakdown, the start or end of scheduled maintenance or repair, etc.)

is represented by a vertex where state transitions can occur. A quintessential event graph is

shown in Figure 7. Here, A and B are events, t is a delay (which could be constant, random,

or some function of the state), and c is a boolean function of the state. As Sanchez (2006)

describes, this event graph can be readily translated into English as follows:
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“When event A occurs, first perform all of its state transitions. Then, if boolean

condition c is true, schedule event B to occur t time units later.”

A Bt

(c)

Figure 7: The Quintessential Event Graph

With these principles, details of the model logic are shown in the event graph of Figure

8. Only three state variables change over time:

• Qmaint: the number of vehicles in the queue awaiting scheduled maintenance service,

• Qrepair: the number of vehicles in the queue awaiting repair after a breakdown, and

• S: the number of maintenance personnel (servers) available.

Init Loop
break 

or 
maint

start 
maint

end 
maint

start 
repair

end 
repair

Halt

Daily 
Report

thalt

tscheduled

tbreak

trepair

tmaint

1 day

(d)

(d)

(e)

(e)

(d) : Qmaint > 0

(e) : Qmaint == 0 && Qrepair > 0

(a)

(b)

(a) : tscheduled <= tbreak
(b) : tscheduled > tbreak

maint
req'd

break
down

(c)

(c)

(c) : server available

Figure 8: Event graph of Ao (operational Availability) simulation model

The “Initialize” node sets the initial state of the system; it also schedules the simulation

halt at thalt in the future, initiates the loop for printing daily reports of the number of

vehicles available at the beginning of each day, and then loops over each vehicle in the fleet
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to determine the next event, either a breakdown or a scheduled maintenance event. The time

until the next breakdown (tbreak) is exponentially distributed, while scheduled maintenance

occurs at a fixed time tsched in the future. If tsched ≤ tbreak then the vehicle will join the queue

for maintenance and the length of this queue (Qmaint) is increased by one. Once a server is

available, the vehicle starts service, Qmaint is decremented by 1, and the time at which the

vehicle will be fully serviceable is scheduled tmaint in the future. Here, tmaint is a random

variable drawn from a uniform distribution (with high probability) or a Weibull distribution

(with low probability), representing the event that a previously undiagnosed breakdown is

identified during scheduled maintenance. Once the maintenance finishes, the server becomes

free. If Qmaint > 0 the server will immediately begin working on the next vehicle awaiting

scheduled maintenance; if Qmaint = 0 but Qrepair > 0 the server will begin work on a vehicle

from the queue of those awaiting repairs after breakdowns; and regardless of the size of the

two queues, the vehicle just completing repair or service receives updated times for its next

service event (breakdown or scheduled maintenance).

The list of factors, along with the low and high settings of interest, is provided below.

X1 and X4 are integer-valued, the rest are continuous.

• X1: Number of maintenance personnel, 2 to 8

• X2: The ratio of the number of initial vehicles to the number of maintenance personnel:
5 to 10.

• X3: Breakdown rate: (1 per 140 days) to (1 per 14 days)

• X4: Maintenance cycle (days), 90 to 120

• X5: Probability that standard maintenance suffices, 0.92 to 0.98.

• X6: Probability that standard repair is required for a vehicle after a breakdown, 0.76
to 0.84

• X7 and X8: Two factors describing the parameters of the Weibull distribution for
standard repair times. X7 is the scale (α) that varies from 0.1 to 0.5, while X8 is the
shape (β) that varies from 1.5 to 5.
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The standard service time is uniformly distributed between 5.5 and 6.5 hours. The stan-

dard repair time follows a Weibull distribution as parameterized by α and β. If a previously

undiagnosed breakdown is identified during service (or repair), then tmaint ( trepair) follows

a Weibull distribution with four times the mean of the standard repair time distribution.

The Ao model is stochastic, and a wide variety of performance measures can be calculated.

We chose to examine the average vehicles available over a long period of time (Y ) as a nearly-

deterministic estimate of the steady-state mean vehicles available. To study the response

surface of Y given the 8 input factors following the batch sequential method, an sFFLHD

with batch size of 8 is used and GP models are fitted after each batch.
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Figure 9: RIMSE, CV Error and Actual RMSE after Each Batch Stage (in Log Scale)

We start with a stopping criterion based on estimated RIMSE from the GP models.

With more batches of points evaluated, the fitted GP models tend to approximate the real

response surface with smaller errors. However, improvement of fitting is not guaranteed

after every batch stage. Figure 9 shows the RIMSE after each batch stage. We choose

to stop if the minimum RIMSE from the five most recent batches is no more than a p%

improvement over the minimum RIMSE achieved in all batches before that. Specifically, we

define RIMSE1b = min{RIMSEi, i = 1, . . . , b − 5} and RIMSE2b = min{RIMSEi, i =

b − 4, . . . , b} for b ≥ 6. The criterion stops the sequential experiments if (RIMSE1 −
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RIMSE2)/RIMSE1 < p%. We selected two possible scenarios (p = 7.5 and p = 5) and

summarized the finding in Table 3. To assess the GP model fitting, actual model RMSEs

were computed from a 10,000-point maximin LHD test points (see Figure 9).

Leave-one-out average cross validation error (CV error) could also be used to construct

the stopping criterion. CV errors across batch stages are plotted in Figure 9. Similar to

RIMSE criteria, we choose to stop if the minimum of the CV errors from the five most recent

batches does not decrease by more than p% of the minimum CV error from batches before

that. Similarly CV 1b = min{CVi, i = 1, . . . , b− 5} and CV 2b = min{CVi, i = b− 4, . . . , b}

for b ≥ 6. The criterion stops the sequential experiments if (CV 1 − CV 2)/CV 1 < p%.

Results under p = 7.5 and p = 5 are shown in Table 3.

Batch(b) RIMSE1 RIMSE2 CV1 CV2 RMSE
6 18.355 2.319 (87%) 22.365 3.787 (83%) 3.219
7 5.118 2.319 (55%) 9.678 3.787 (61%) 3.541
8 5.118 2.319 (55%) 8.111 3.756 (54%) 3.601
9 2.567 2.319 (10%) 7.552 3.756 (50%) 3.052
10 2.567 2.319 (10%) 5.530 3.214 (42%) 2.940
11 2.319 2.122 (9%) 3.787 2.911 (23%) 2.878
12 2.319 2.122 (9%) 3.787 2.911 (23%) 2.420
13 2.319 2.122 (9%) 3.756 2.911 (23%) 2.470
14 2.319 1.973 (15%) 3.756 2.911 (23%) 2.657
15 2.319 1.973 (15%) 3.214 2.911 (9%) 2.759
16 2.122 1.973 (7%) 2.911 3.287 (0%) 2.457
17 2.122 1.912 (10%) 2.618
18 2.122 1.912 (10%) 2.381
19 1.973 1.912 (3%)

Table 3: Results from RIMSE and CV error stopping criteria

Table 3 shows that the batch sequential sampling stops at batch stage 16 and 19 (bolded)

if RIMSE stopping criterion with p = 7.5 and p = 5 are used respectively. Both CV error

stopping criteria stop the batch sequential sampling at batch stage 16. The actual MSE

across the 10,000 test points from the GP model at batch stage 16 is only 1.7% of the

total response surface variation. Both RIMSE and CV error stopping criterion were able

to fit GP models with small errors using a reasonable number of design points. Comparing

RIMSE with actual RMSE, the expected RMSEs from GP models are slightly smaller than
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the true RMSEs as the GP models are approximations of the true response surface. The

cross validation method tends to slightly overestimate the true RMSE.

Operational availability is a component of a Readiness and System Cost Trade-off Analy-

sis and Management Tool under development for the U.S. Marine Corps. A surrogate model,

such as the GP model described above, will allow program managers to use this tool inter-

actively to assess the impact of critical acquisition and logistics decisions on both readiness

and life cycle cost.

6. Conclusion

We have proposed a new batch sequential design sFFLHD. At any batch stage, sFFLHD

is an LHD with uneven levels. At certain batch stages, sFFLHD achieves high levels of

both projectivity and orthogonality by becoming orthogonal at the big and intermediate

grid levels and becoming an LHD at the small grid level. To demonstrate its advantages, we

have compared against various design methods in the context of estimating the mean and

fitting a GP model to various test surfaces. In low dimensional examples, sFFLHD performs

as well or nearly as well in terms of RMSEs of the GP model fit. In high dimensional

examples, sFFLHD produces a fitted surface with lower RMSEs on average than any other

sequential methods tested. For estimating the mean in a region, sFFLHD produces lower

variances at stages where the design is an OALHD. Empirically, we have shown that sFFLHD

dominates the other tested designs in two examples at all stages studied. In addition, we

have examined another version of sFFLHD with a slight variation to determine whether

it is important that each batch be an LHD at the big grid level. We found this property

does contribute substantially to sFFLHD’s good performance if the design does not reach

the orthogonal stages. We also demonstrated the use of the method and some potential

stopping criteria using a simulation for vehicle availability for a fleet of vehicles.
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Appendix A. : Generating Non-overlapping OAs

Let v be a 1×L vector, v = [v1, v2, . . . , vD]. The first two elements, v1 and v2 are set to

be zero; the other elements can take values from 0, 1, 2, . . . , L − 1. There are LD−2 unique

vectors. Let A be the initial OA, Ai. be ith row with elements ai1, ai2, . . . , aiD, and B be the

generated OA with bik = (aik + vk) mod L. Within each orthogonal array, slices of Ar, Ar
p,

are then randomized.

ProveB1 andB2 created by v1 and v2 (v1 6= v2) do not share a same row, andB1, B2, . . . , BLD−2

form a full factorial.

Proof. b1ik = (aik + v1k)modL, b2ik = (aik + v2k)modL. Therefore b1ik = b2ik + (v2k −

v1k)modL. Let v = [v1, v2, . . . , vD] and vk = (v2k − v1k)modL. B1 is generated by B2 given

by v. Each Bi has distinct L2 rows which correspond to L2 points in [1, 2, . . . , L]D. Therefore

B1 and B2 do not share a same row and B1, B2, . . . , BLD−2 form a full factorial design.
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Appendix B. : A subroutine, NB, for adding a new batch to sFFLHD (All

matrices are updated: Xb,Vb,Wb)

For subroutine NB, we denote Q(lb, j, b, k) as the set of available levels in small grid from

lb(k− 1)/Lb + 1, lbk/L+ 1, . . . , lb(k+ 1)/Lb for dimension j. k denotes a level from the inter-

mediate grid, k = 1, 2, . . . , Lb, j = 1, 2, . . . , D. At any time, Q(lb, j, b, k) = {lb(k − 1)/Lb +

1, lbk/L+ 1, . . . , lb(k + 1)/Lb} \V.j.

NB(Gn1:n2,., εn1:n2,., b) is defined as:

For all i and j in Gn1:n2,. and εn1:n2,., i = 1, . . . , n2 − n1, j = 1, . . . , D

- Update Q(lb, j, b, Gij): Q(lb, j, b, Gij) = {lb(Gij − 1)/Lb + 1, lbGij/L + 1, . . . , lb(Gij +

1)/Lb} \ V.j

- Let N = |Q(lb, j, b, Gij)|, e1 = dεijNe, and e2 = e1 − εijN

- Choose e1th number from the set Q(lb, j, b, Gij), denote by e

- Update the small grid design matrix by vn1+i−1,j = e, the intermediate grid design

matrix by mn1+i−1,j = Gij and the big grid design matrix by wn1+i−1,j = bLGij/Lbc

- Sequential design matrix xn1+i−1,j = (e− e2)/lb

Next i, j
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Example 7. Use Example 1 to demonstrate the subroutine NB

Suppose 3 batches of size 3 sequential designs have been drawn. lb = 27, b = 3

G10:12,. =


0 0 2

1 1 1

2 2 0

 , ε10:12,. =


0.409 0.624 0.198

0.810 0.193 0.626

0.808 0.958 0.845

 .
For i = 1, j = 1, we have Q(lb, j, b, Gij) = Q(27, 1, 3, 0) = {1, 3, 4, 6, 7, 9} and ε10,1 = 0.409.

Therefore,

N = 6, e1 = 3, e2 = 0.544.

The 3rd element of Q(27, 1, 3, 0) is chosen

v10,1 = 4,m10,1 = 0, w10,1 = 0, x10,1 = (4− 0.544)/27 = 0.128.

For other i and j, the algorithm follows similarly until we have

V10:12,. =


4 6 21

16 12 15

26 27 8

 ,M10:12,. =


0 0 2

1 1 1

2 2 0

 ,

W10:12,. =


0 0 2

1 1 1

2 2 0

 , and X10:12,. =


0.128 0.213 0.748

0.587 0.413 0.547

0.957 0.991 0.262

 .
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Appendix C. : Proof of Proposition 2

Proof. It can be verified in the algorithm that each possible batch in the space is equally likely

to be sampled. With each batch being an LHD, the expectation of the mean estimator from

a single run is an unbiased estimator for the true average. Therefore, the mean estimator

from the sequential design is unbiased. (2) is true.

Whenever the big grid design is an OA, it is of the form OA(λL2, D, L, 2), λ ∈ N+. He

and Qian (2011) has showed the variance structure as L → ∞ when λ is fixed. (3) and (4)

follow their proof.

To show (5), notice that when the intermediate grid design is a full factorial design with

Lb levels, the variance of the mean estimator can be expressed as

V ar(Y ) =
1

L2D
b

 LD
b∑

i=1

V ar(Yi) +
∑
i,j

Cov(Yi, Yj)

 .
The first part of the variance decomposition is the same as the lattice sampling variance

under the uniform rectangle rule

Xij = Xc
ij + uij/Lb, i = 1, . . . , LD

b , j = 1, . . . , D

where Xc
ij’s are the centers of the grids, uij’s are independent random uniform (0, 1] numbers,

and Yj = f(Xi.). Owen (1992) has shown the variance of lattice sampling is O(L−D−2b ) under

continuous f which is smaller than that of random sampling O(L−Db ).

For i and j with Mim 6= Mjm,∀m ∈ 1, . . . , D, we have Cov(Yi, Yj) = 0.

For i and j, with Mik = Mjk for a particular dimension k and Mim 6= Mjm,∀m ∈

1, . . . , D,m 6= k,

Cov(Yi, Yj) = E[(Yi − τi)(Yj − τj)] = E[(Yi − τi)E[(Yj − τj)|Xi.]]
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where τi and τj are E(Yi) and E(Yj) respectively.

E[(Yj − τj)|Xi.] = − Lb

l − Lb

E[(f(Xj.)− τj)|lbbXjkc = Vik]

Here l = LD
b . Given continuous f , E[(f(Xj.) − τj)|lbbXjkc = Vik] = O(L−1b ). Therefore

E[(Yj−τj)|Xi.] = O(L−Db ) and Cov(Yi, Yj) = E[(Yi−τi)E[(Yj−τj)|Xi.]] = O(L−1b )O(L−Db ) =

O(L−D−1b )

1

L2D
b

∑
R1

Cov(Yi, Yj) =
1

L2D
b

D(Lb − 1)D−1LD
b O(L−D−1b ) = O(L−D−2b )

where R1 denotes the set of all i and j with Mik = Mjk for a particular dimension k and

Mim 6= Mjm, ∀m ∈ 1, . . . , D,m 6= k. Similarly for i and j with Mik = Mjk on more than one

dimension, we found the covariance is o(L−D−2b ). Therefore we have proven the variance of

the mean estimator at FFLHD stage is O(L−D−2b ).
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Appendix D. : RMSE Comparion of sFFLHD with bMmLHD, bLHD, and rsFFLHD in Examples 3-5 (A

negative entry indicates better performance by sFFLHD and bold indicates significance at

0.05 level)

Borehole 4D
Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sFFLHD-bMmLHD -2.2089 -0.0223 -0.0203 -0.0113 -0.0094 -0.0038 -0.0030 -0.0031 -0.0026 -0.0019 -0.0015 -0.0014 -0.0003 -0.0006 -0.0002 -0.0004
sFFLHD-MmDist 0.2167 -0.8769 -0.0239 0.0042 0.0023 -0.0018 -0.0057 -0.0062 -0.0059 -0.0042 -0.0046 -0.0033 -0.0028 -0.0026 -0.0018 -0.0020

sFFLHD-rsFFLHD -3.2831 -0.0872 -0.0188 -0.0038 -0.0022 -0.0005 -0.0007 -0.0004 -0.0001 0.0007 0.0007 0.0006 0.0007 0.0003 0.0006 0.0005
sFFLHD-bLHD 0.0985 0.0160 -0.0079 -0.0018 -0.0061 0.0006 -0.0012 -0.0011 -0.0014 -0.0008 0.0000 -0.0003 -0.0001 -0.0005 -0.0008 -0.0006

Borehole 6D
Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sFFLHD-bMmLHD -4.8184 -1.3816 -0.8413 -0.1447 -0.1934 -0.0391 -0.0252 -0.0156 -0.0081 -0.0045 -0.0040 -0.0028 -0.0032 -0.0032 -0.0022 -0.0024
sFFLHD-MmDist -0.8138 -0.8442 -2.2883 -0.6911 -0.1456 -0.1029 -0.0019 0.0012 -0.0065 -0.0357 -0.0326 -0.0211 -0.0107 -0.0036 -0.0018 -0.0004

sFFLHD-rsFFLHD -3.8814 -0.8242 -0.3037 -0.0789 -0.0260 -0.0051 0.0023 -0.0013 -0.0039 -0.0003 -0.0003 0.0003 -0.0005 -0.0014 -0.0012 -0.0008
sFFLHD-bLHD -0.5474 -0.3844 -1.0507 -0.2215 -0.0377 -0.0180 -0.0170 -0.0147 -0.0066 -0.0025 -0.0022 -0.0012 -0.0019 -0.0023 -0.0019 -0.0021

Borehole 8D
Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sFFLHD-bMmLHD -5.9585 -2.7276 -2.0030 -1.0016 -0.4959 -0.3984 -0.2773 -0.1952 -0.1015 -0.0388 -0.0392 -0.0416 -0.0361 -0.0162 -0.0164 -0.0056
sFFLHD-MmDist -1.3142 -3.9382 -3.8971 -1.7045 -0.5692 -0.6005 -0.9263 -0.9275 -0.6835 -0.5807 -0.5225 -0.4756 -0.4634 -0.4399 -0.4160 -0.3643

sFFLHD-rsFFLHD -5.7156 -1.3069 -0.5506 0.0637 -0.0561 0.0750 -0.0779 -0.0594 -0.0670 0.0085 -0.0134 -0.0128 -0.0136 -0.0021 -0.0104 0.0022
sFFLHD-bLHD -1.4479 -1.7220 -1.4792 -0.6313 -0.2858 -0.2268 -0.2825 -0.1433 -0.0928 -0.0353 -0.0288 -0.0030 -0.0185 -0.0070 -0.0148 -0.0080

theta=5
Gaussian 2D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD 7.05E-03 -6.45E-02 -2.08E-02 -6.68E-03 -4.93E-03 -4.96E-03 -3.28E-03 -1.66E-03 -1.10E-03 -4.86E-04 -3.39E-04 -2.29E-04 -6.91E-05 -5.18E-05 -3.85E-05 -2.88E-05

sFFLHD-MmDist 8.58E-02 4.75E-02 3.84E-02 2.06E-02 7.30E-03 3.22E-03 1.47E-03 7.82E-04 5.56E-04 3.54E-04 2.39E-04 1.60E-04 8.93E-05 6.00E-05 3.64E-05 2.50E-05
sFFLHD-rsFFLHD 1.81E-02 -3.15E-02 -4.76E-03 2.73E-03 2.86E-04 4.85E-05 -1.55E-04 3.77E-05 -1.17E-04 -9.02E-05 -1.93E-05 3.62E-06 -1.72E-05 -6.81E-06 1.30E-06 3.67E-06

sFFLHD-bLHD 4.69E-02 4.06E-03 3.08E-03 -8.73E-04 -2.74E-03 -2.71E-03 -2.34E-03 -1.43E-03 -5.60E-04 -4.44E-04 -2.84E-04 -1.26E-04 -1.02E-04 -4.78E-05 -3.90E-05 -3.95E-05
Gaussian 4D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD -0.0310 -0.0243 -0.0068 -0.0215 -0.0317 -0.0197 -0.0180 -0.0275 -0.0214 -0.0158 -0.0223 -0.0200 -0.0158 -0.0185 -0.0132 -0.0075

sFFLHD-MmDist -0.0139 -0.0448 -0.0089 -0.0318 -0.0084 -0.0236 -0.0135 0.0011 -0.0002 0.0127 0.0139 0.0218 0.0219 0.0182 0.0227 0.0244
sFFLHD-rsFFLHD -0.0230 -0.0182 0.0157 0.0187 0.0005 -0.0085 -0.0047 -0.0009 -0.0089 -0.0109 -0.0157 -0.0072 -0.0041 -0.0045 -0.0016 0.0028

sFFLHD-bLHD 0.0150 -0.0110 0.0040 -0.0094 -0.0109 -0.0172 -0.0168 -0.0219 -0.0172 -0.0134 -0.0181 -0.0112 -0.0094 -0.0139 -0.0147 -0.0147
Gaussian 6D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD 0.0092 -0.0008 -0.0086 -0.0133 -0.0116 -0.0070 0.0030 -0.0147 -0.0166 -0.0159 -0.0116 -0.0085 -0.0075 -0.0071 -0.0096 -0.0142

sFFLHD-MmDist 0.0132 0.0021 -0.0039 -0.0179 -0.0439 -0.0461 -0.0439 -0.0651 -0.0669 -0.0823 -0.0703 -0.0535 -0.0568 -0.0462 -0.0497 -0.0432
sFFLHD-rsFFLHD 0.0175 0.0016 0.0026 -0.0031 -0.0032 0.0058 0.0124 0.0100 -0.0025 -0.0026 -0.0041 0.0066 0.0062 0.0048 0.0038 0.0020

sFFLHD-bLHD -0.0069 0.0023 0.0010 -0.0093 -0.0035 0.0056 0.0020 -0.0025 -0.0025 -0.0026 -0.0014 0.0031 0.0017 0.0012 -0.0013 -0.0042
Gaussian 8D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD -0.0077 -0.0072 -0.0051 -0.0026 -0.0003 0.0021 0.0063 0.0080 0.0016 0.0031 0.0009 -0.0006 0.0042 -0.0012 0.0064 0.0046

sFFLHD-MmDist 0.0054 -0.0021 -0.0122 -0.0093 -0.0095 -0.0119 -0.0147 -0.0126 -0.0212 -0.0258 -0.0280 -0.0346 -0.0300 -0.0381 -0.0375 -0.0355
sFFLHD-rsFFLHD -0.0124 -0.0150 -0.0035 -0.0118 -0.0006 0.0005 0.0035 0.0055 -0.0039 -0.0033 0.0006 -0.0042 0.0003 -0.0033 0.0005 0.0007

sFFLHD-bLHD -0.0081 -0.0130 -0.0093 -0.0070 -0.0003 -0.0031 0.0026 0.0033 -0.0009 -0.0009 -0.0005 -0.0003 0.0059 0.0003 0.0052 0.0020
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theta=15
Gaussian 2D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD -0.0524 -0.0183 -0.0124 -0.0475 -0.0349 -0.0335 -0.0251 -0.0227 -0.0134 -0.0121 -0.0106 -0.0063 -0.0043 -0.0030 -0.0016 -0.0022

sFFLHD-MmDist 0.0111 0.0327 0.0845 0.0627 0.0397 0.0314 0.0186 0.0110 0.0139 0.0096 0.0080 0.0067 0.0054 0.0044 0.0038 0.0026
sFFLHD-rsFFLHD -0.0474 0.0013 0.0170 -0.0202 -0.0209 -0.0053 -0.0077 -0.0009 0.0009 -0.0023 -0.0031 -0.0025 -0.0011 -0.0011 0.0001 0.0001

sFFLHD-bLHD -0.0040 0.0153 0.0234 -0.0051 -0.0223 -0.0169 -0.0275 -0.0255 -0.0158 -0.0170 -0.0095 -0.0068 -0.0053 -0.0045 -0.0034 -0.0023
Gaussian 4D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD -0.0006 0.0153 0.0174 0.0034 -0.0015 -0.0030 0.0129 0.0138 0.0061 0.0085 -0.0068 -0.0047 -0.0074 -0.0098 -0.0143 -0.0139

sFFLHD-MmDist -0.0192 -0.0119 0.0022 -0.0314 -0.0355 -0.0391 -0.0319 -0.0399 -0.0551 -0.0497 -0.0614 -0.0474 -0.0447 -0.0344 -0.0373 -0.0240
sFFLHD-rsFFLHD 0.0248 -0.0178 0.0093 -0.0050 0.0121 0.0023 0.0046 0.0099 -0.0024 0.0028 -0.0123 0.0022 -0.0035 -0.0032 -0.0037 -0.0010

sFFLHD-bLHD 0.0032 -0.0119 0.0174 -0.0100 0.0020 -0.0067 0.0004 -0.0009 -0.0005 0.0003 -0.0131 -0.0087 -0.0124 -0.0087 -0.0143 -0.0167
Gaussian 6D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD 0.0058 0.0047 -0.0124 -0.0038 -0.0075 -0.0027 -0.0017 0.0020 0.0011 0.0004 0.0005 0.0013 -0.0029 -0.0020 0.0004 -0.0016

sFFLHD-MmDist 0.0014 0.0042 -0.0079 -0.0028 -0.0028 -0.0013 -0.0036 -0.0057 -0.0050 -0.0043 -0.0107 -0.0133 -0.0173 -0.0185 -0.0191 -0.0189
sFFLHD-rsFFLHD 0.0165 0.0076 -0.0067 -0.0033 -0.0013 0.0024 0.0019 -0.0004 -0.0003 0.0027 0.0015 -0.0011 -0.0010 -0.0008 -0.0008 -0.0041

sFFLHD-bLHD -0.0003 -0.0006 -0.0140 -0.0087 -0.0048 0.0000 0.0015 0.0006 -0.0001 0.0025 0.0019 -0.0009 -0.0002 -0.0005 0.0029 -0.0003
Gaussian 8D

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sFFLHD-bMmLHD 0.0174 -0.0110 0.0110 0.0070 -0.0100 0.0016 -0.0090 -0.0069 -0.0071 -0.0108 -0.0082 -0.0117 -0.0080 -0.0051 -0.0115 -0.0048

sFFLHD-MmDist -0.0003 -0.0266 0.0177 0.0020 -0.0123 -0.0175 -0.0177 -0.0190 -0.0198 -0.0194 -0.0220 -0.0204 -0.0215 -0.0283 -0.0245 -0.0241
sFFLHD-rsFFLHD 0.0034 -0.0173 0.0120 0.0098 0.0007 -0.0039 -0.0064 -0.0070 -0.0035 -0.0038 -0.0026 0.0000 -0.0018 -0.0018 -0.0053 0.0012

sFFLHD-bLHD 0.0047 -0.0044 0.0146 -0.0009 -0.0150 -0.0050 -0.0174 -0.0053 -0.0045 -0.0054 -0.0115 -0.0078 -0.0059 -0.0041 -0.0034 -0.0032
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