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Abstract

Tests for dispersion effects in replicated two-level factorial experiments assuming

a location-dispersion model are presented. The tests use individual measures of

dispersion which remove the location effects and also provide an estimate of pure

error. Empirical critical values for two such tests are given for two-level full or

regular fractional factorial designs with 8, 16, 32 and 64 runs. The powers of the

tests are examined under normal, exponential, and Cauchy distributed errors. Our

recommended test uses dispersion measures calculated as deviations of the data

values from their cell medians, and this test is illustrated via an example.
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1 Introduction

An important aspect of designing quality into a product or process is the identification of

those factors that contribute most to the mean and the variability of a measured response.

If the average response differs substantially as the level of a factor is changed from one

level to another, then this factor is said to have a location main effect. Similarly, if the

variability of the response differs substantially as the factor is changed from one level to

another, then the factor is said to have a dispersion main effect. If the size of a location

or dispersion main effect of one factor differs as the level of a second factor changes then

the two factors are said to have a two-factor location or dispersion interaction. Higher

order interactions can be defined in a similar way.

A factor has a location (dispersion) effect if it has either a location (dispersion) main

effect or is involved in a location (dispersion) interaction or both. Factors can be classified

as having (i) a location effect only, (ii) a dispersion effect only, (iii) both a location and

a dispersion effect, (iv) neither. If factors can be classified correctly, then the quality of

a product or process can be improved by setting the levels of factors in group (ii) and

possibly some of those in group (iii) to the level combination that gives rise to minimum

response variability, and then setting the remaining factors at the level combination that

results in a mean response close to a required target value or optimum value (see, for

example, Box 1988; Pignatiello and Ramberg 1987; Ankenman and Dean 2003).

Location effects have been discussed for many years, and tests for their detection in

both replicated and unreplicated experiments can be found in text books on experimental

designs (for example, Box, Hunter, and Hunter 1978; Dean and Voss 1999; Montgomery

2009). Detection of dispersion effects in unreplicated experiments is difficult in the pres-

ence of location effects. A number of methods have been proposed (see, for example,

Box and Meyer 1986; Bergman and Hynén 1997; Wang 1989; Brenneman and Nair 2001),

but incorrect specification of the location model can lead to incorrect conclusions about

dispersion effects and detailed discussions of such problems are given by Brenneman and

Nair (2001), Pan (1999), McGrath and Lin (2001a,b) and Bursztyn and Steinberg (2006).

In this paper, we discuss detection of dispersion effects in replicated experiments. One
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standard methodology combines the observations in each cell (factor combination) into

a single value such as sample variance or standard deviation (see, for example, Nair

and Pregibon 1988), in which case the methodology is similar to that for unreplicated

experiments and there is no opportunity to obtain a pure estimate of error variance.

In such a case, a non-saturated model is often fitted and degrees of freedom from the

assumed negligible interactions are used to obtain an estimate of error. A test based on

this strategy requires an accurate specification of the dispersion model as well as effect

sparsity. Alternatively, the method of Lenth (1989) (see, also, Haaland and O’Connell

1995) and the subsequent variations (see Miller 2005) that allow for estimation of error in

unreplicated fractional factorials can be used, but again effect sparsity must be assumed.

For replicated experiments, Nair and Pregibon (1988) and Pan (1999) studied exten-

sions of the methods of Bartlett and Kendall (1946), Box and Meyer (1986) and Bergman

and Hynén (1997), but these are all still effectively based on a single dispersion measure

in each cell. Mackertich, Benneyan, and Kraus (2003) suggested an alternative approach

which transforms each observation in such a way as to provide an individual measure of

dispersion which removes the location effects. Similar to test statistics for testing homo-

geneity of population variances (such as those of Levene 1960; Brown and Forsythe 1974),

the measures of Mackertich et al. (2003) were based on deviations of data values from the

corresponding cell means and then raised to a power to obtain approximate normality of

the measure. Analysis of variance test statistics were used together with critical values

obtained either from the F distribution or from the empirical distribution of the test

statistic under assumed location and dispersion models. Based on a few selected location

and dispersion models, these authors found that their proposed tests, based on individual

dispersion measures, have increased power over tests that use a single combined measure.

In this paper, we investigate modified versions of the measures suggested by Mackertich

et al. (2003) and, like these authors, we work with test statistics which are similar to those

arising from the analysis of variance. However, our model is the location-dispersion model

(see Section 2.1) rather than the usual analysis of variance model of Mackertich et al.

(2003). Also, unlike the simulation study of Mackertich et al. (2003), we do not make

assumptions about which factorial effects are in the true location or dispersion model but
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instead standardize our test statistic using an estimate of pure error obtained from the

within cell replicates. Rather than attempting to transform our measures to approximate

normality, we obtain critical values from the empirical distributions of our test statistics

under a null model. We show, in Section 3.2, that the average empirical Type I errors for

our recommended test hold reasonably close to the nominal levels when simulated under

randomly selected location-dispersion models.

Our selection of dispersion measures, our model and dispersion test statistics are de-

scribed in Sections 2.2 and 2.3. The critical values are given in Section 2.4 for experiments

with r ≥ 3 observations on each of v factor combinations in a full or regular fractional

factorial design. In Sections 3.1 and 3.2, the levels and powers of the tests under normal,

exponential, and Cauchy error distributions are examined in simulations in which the

true location and dispersion models are randomly generated. These results are presented

for a 25−1 fraction with r = 4 observations per cell for both first-order and second-order

models. Our tests based on the natural logarithm of the absolute deviation of the data

values from either the mean or the median are shown to have high power for detecting

a single dispersion effect under a normal error distribution and across a wide range of

true model and effect sizes. Under non-normal error distributions, our test based on the

deviation from the median maintains a Type I error rate close to the nominal level with

high power (see Section 3.2) and this is our recommended test for dispersion effects. In

Section 4, we illustrate our test via data from Pignatiello and Ramberg (1985) as used by

Nair and Pregibon (1988).

2 Tests for dispersion

2.1 Location-Dispersion Model

For a two-level factorial experiment with f factors, we assume the following location-

dispersion linear model.

Yij = µi + σiεij with µi = x′µ,iβ, σi = exp(x′σ,iγ) , (2.1)
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where Yij is the response for the jth observation at factor combination i = i1i2 . . . if ,

where ih is the level of factor h (ih ∈ {1, 2}; h = 1, . . . , f ; j = 1, . . . , r) and where x′µ,i

and x′σ,i are the rows of the model matrices Xµ and Xσ corresponding to factor level

combination i = i1i2 . . . if in the design (i = 1, . . . , v). The model matrices Xµ and Xσ

each contain columns for the mean, main effects and interactions to be included in the

location and dispersion models, respectively, and may or may not be identical. The error

variables, εij, are assumed to be independent and identically distributed. The vectors

β = [β0, β1, . . . , βv−1] and γ = [γ0, γ1, . . . , γv−1] are, respectively, the parameter vectors

for the location and dispersion effects (means, main effects, and interactions) that can be

supported by the design.

One significant advantage of the multiplicative variance model (2.1) over an additive

model is that the standard deviations σi are necessarily positive. The bounded nature of

the likelihood function using (2.1), the simpler form of the likelihood ratio test for the

multiplicative model, and the consistency of the dispersion effect estimators were cited by

Harvey (1976) as reasons why this multiplicative variance model is attractive. The mul-

tiplicative variance model has also been supported by Cook and Weisberg (1983), Aitkin

(1987), Nair and Pregibon (1988), Verbyla (1993), and Wolfinger and Tobias (1998),

among others.

2.2 Choice of dispersion measures

Our goal is to find a dispersion measure that gives rise to powerful tests for identifying

dispersion main effects and interactions for a wide variety of location and dispersion

models and also that are robust to non-normal errors. Following Mackertich et al. (2003),

Levene (1960), and Brown and Forsythe (1974), we transform every observation yij in cell

i = (iii2 . . . if ) to an individual dispersion measure mij. For example, Mackertich et al.

(2003) used mij = |yij − yi.|p, for various values of p. Extending this idea, Dingus (2005)

presented an initial study of thirty-seven different dispersion measures. She obtained

empirical critical values for tests for detecting dispersion effects based on each of these

measures and examined the powers of the tests under a large range of randomly selected

models. The 37 dispersion measures of Dingus (2005) included the traditional measures,
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si, s
2
i , and ln(si + 1) as well as the measures |yij − ȳi|, ln(|yij − ȳi|), |yij − ȳi|0.42

and |yij − ȳi|1.5, examined by Mackertich et al. (2003). The absolute deviations of the

data from the within-cell means, |yij − yi|p, are functions of the least squares residuals

arising from a saturated location model with additive error. The studies of Mackertich

et al. (2003) and Dingus (2005) showed that, for an additive-error model, the tests based

on these measures with exponent p = 1 have the most stable Type I errors and are the

most powerful.

The means yi in the above measures can be replaced by different estimates of central

tendency, and Dingus (2005) recommended the use of the median. Test statistics and

critical values using the natural logarithm of the absolute deviations of the data values

from the cell medians, ln(|yij − ỹi|), are not available when r is odd due to the fact that

one value of |yij − ỹi|, j = 1, . . . , r, is always zero. In this paper, we avoid this problem by

adding 1.0 to the absolute deviation, and we also exclude the minimum absolute deviation

value, which is zero for r odd, and a duplicate value for r even.

As pointed out in Section 2.1, there are significant advantages to using the multiplicative-

variance model (2.1). Consequently, in preliminary research for this paper, we investigated

the performances of the dispersion measures mentioned above, using data generated from

the multiplicative model as described in Section 3.1. The two measures that lead to

the most powerful tests are discussed below and compared with a traditional measure.

Specifically, the three measures of dispersion discussed in this paper are:

m
(1)
ij = ln(|yij − ỹi|−1 + 1), m

(2)
ij = ln(|yij − ȳi|+ 1) , m

(3)
i = ln(si + 1), (2.2)

where ỹi and yi, denote, respectively, the median and the mean of the r observations on

factor combination i = i1, . . . , if , and | · |−1 denotes that (one of) the smallest value(s) is

not included in the calculation of the test statistic. In Section 2.3, we give the form of

the test statistics that we use in conjunction with these three measures to test for a single

dispersion effect, and in Section 2.4 we obtain the critical values for the tests.
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2.3 Test statistics

For a full or regular fractional factorial design with v distinct factor combinations, it is

possible to estimate v − 1 dispersion main effects and interactions independently. We

write

γ = [γ0, γ1, . . . , γf , γf+1, . . . , γv−1]

where γ0 is the dispersion mean, γ1, . . . , γf are the dispersion main effect parameters for

factors 1, . . . , f , and γf+1, . . . , γv−1 are a set of parameters for the v − f − 1 dispersion

interaction effects that can be independently estimated in the design (i.e. a saturated

model).

When all factors have two levels, each main effect and interaction effect can be mea-

sured by a single contrast. This allows our discussion, without loss of generality, to be in

terms of testing a non-specific null hypothesis

Hγt
0 : γt = 0; all γq (q 6= t) unrestricted, all β0, . . . , βv−1 unrestricted,

versus (2.3)

Hγt
1 : all γq and βq unrestricted, q = 0, . . . , v − 1 ,

for any t ∈ {1, . . . , v − 1}.

Our test statistic Mt for testing Hγt
0 against Hγt

1 using dispersion measures m
(1)
ij or

m
(2)
ij in (2.2) is of the same form as that used for a standard partial F test and can be

calculated by statistical software packages if a saturated dispersion model is fitted. For

two-level factors, this can be written as

Mt =
(m+ −m−)2 vr∗ / 4

Σv
i=1Σ

r
j=1 (mij −mi.)

2 / v(r∗ − 1)
, (2.4)

where mij is the dispersion measure for the jth observation on factor combination i =

(i1i2 . . . if ), mi. is the average of the r∗ dispersion measures mij in cell i, where r∗ = r

for m
(2)
ij and m

(3)
i , and r∗ = r − 1 for m

(1)
ij (omitting the smallest m

(1)
ij ), and r is the

number of observations per cell. Also, m+ and m− are the averages of the v/2 values

mi. whose factor combination i enters into contrast t with contrast coefficient +1 and
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−1, respectively. Critical values for testing Hγt
0 (2.3) are discussed in Section 2.4. A

traditional test for dispersion is based on the natural log of the variance or standard

deviation si of the observations for factor combination i = (i1 . . . if ), thereby reducing

all observations within cell i to a single value (see Bursztyn and Steinberg 2006, for an

excellent review). If a saturated model is fitted, no degrees for freedom are then available

for estimating σ2 but, under effect sparsity, the method of Lenth (1989) can be used for

testing Hγt
0 in (2.3) as follows. Let γ̂t be the difference between the average values of

m
(3)
i = ln(si + 1) for all cells i = 1, . . . , v corresponding to coefficient +1 and coefficient

−1 in contrast t (t = 1, . . . , v − 1). Then, following Lenth (1989), we use the following

test statistic for testing Hγt
0 in (2.3):

MPSE,t =
|γ̂t|
PSE

(2.5)

where

PSE = 1.5×median
|γ̂j |<2.5s0

|γ̂j| and s0 = 1.5×median
j=1,...v−1

|γ̂j| .

Critical values for testing Hγt
0 using this test statistic are obtained in the next section.

2.4 Critical values

We now obtain the empirical distributions of the test statistics (2.4) using m
(1)
ij and m

(2)
ij ,

and of (2.5) using m
(3)
i = ln(si+1). Although the test statistics Mt have similar forms to

analysis of variance test statistics, they do not have F distributions even when the error

variables εij follow a normal distribution, nor do test statistics MPSE,t have t distribu-

tions. Thus, it is necessary to obtain critical values for testing Hγt
0 from their empirical

distributions. There are many possible error distributions and an infinite number of val-

ues for each unrestricted parameter under Hγt
0 (2.3) and, therefore, we obtain the critical

values under the null model assuming normally distributed errors; that is, under the more

restrictive null hypothesis

H∗0 : all γq = 0 and βq = 0, q = 1, . . . , v − 1 , (2.6)
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(c.f. Nair and Pregibon 1988; Wolfe, Dean, Wiers, and Hartlaub 1992). Using the critical

values so obtained, in Section 3.2 we simulate the true average levels of the tests of the

hypothesis Hγt
0 (2.3) of interest under randomly generated location-dispersion models and

normal, exponential and Cauchy error distributions.

The empirical critical values for testingH∗0 (2.6) against the general alternative hypoth-

esis were obtained by simulation as follows. For each i = 1, . . . , v and each r = 3, 4, . . . , 10,

we simulated r data values from a N(0, 1) distribution and calculated the dispersion mea-

sures m
(k)
ij , j = 1, . . . , r, k = 1, 2, 3. Without loss of generality, a contrast with first v/2

coefficients equal to −1 and the remainder equal to +1 was taken for γt. Then the test

statistic Mt (2.4) or MPSE,t (2.5) was calculated depending on the measure used. This

simulation was done 2,500,000 times and the critical values were obtained as percentiles

of the empirical distributions of Mt and MPSE,t for 8–, 16–, 32–, and 64–run designs.

These values are shown in Tables 4–6 in Appendix A. It can be seen that the empirical

critical values for m
(1)
ij = ln(|yij − ỹi|−1 + 1) and m

(2)
ij = ln(|yij − ȳi|+ 1) using (2.4) are

generally larger than the corresponding percentiles of an F -distribution, and those for

m
(3)
i = ln(si + 1) using (2.5) are greater than the corresponding percentiles of a t distri-

bution.

The empirical critical values for all three tests decrease as v increases, as one would

expect. Similarly, the critical values for the test based on m
(2)
ij decrease as r increases,

and those based on m
(3)
i remain relatively constant. The behavior of the critical values for

m
(1)
ij = ln(|yij − ỹi|−1 + 1) sometimes behave differently for r even and r odd due to the

difference in the calculation of the cell median. There also appears to be some interaction

between v and r as to the size of the critical values. In the next section, it shown that

these empirical critical values lead to tests which hold their Type I error levels and have

good power characteristics in the numerical studies.
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3 Type I errors and powers

We now check, via simulation, whether the Type I errors remain at their nominal values

when the tests are conducted under the null hypothesis Hγt
0 (2.3) of interest rather than

H∗0 (2.6). In addition, we examine the power of our proposed tests and the effect of

non-normal error distributions.

3.1 Simulation studies

For the simulations, we took a 25−1
V fractional factorial design with 16 observations and

defining relation I = ABCDE. This allows a second-order model to be fitted with all

main effects and two-factor interactions. Separate sets of simulations were conducted

for first-order dispersion models (i.e. where Xσ in (2.1) contains only the six columns

for the mean and the dispersion main effects, while all interaction parameters are set to

zero) and second-order dispersion models (i.e. where Xσ contains 16 columns one for

each main effect, two-factor interaction, and the mean). The error variables εij and the

location means µi were generated from independent Normal distributions with mean 0

and standard deviations 1 and 3, respectively. (Thus the location means were generated

directly rather than through the location main effect and interaction parameters Xµβ).

The value of dispersion parameter γ1 in vector γ was incremented from γ1 = 0 to γ1 =

(1/2)ln5 in fifty steps. The value (1/2)ln5 translates to a ratio of 5 in the standard

deviations at two different levels of a factor in the model (2.1). The values of the other

parameters γq in vector γ were generated from a Normal distribution with mean 0 and

standard deviation (1/2)ln2 (corresponding to a standard deviation ratio equal to 2) with

probability 0.4, and γq was set to zero with probability 0.6. This mimics a situation of

effect sparsity, so that the test using (2.5) can be done.

The simulation was repeated 100,000 times for each value of γ1 and a new location-

dispersion model was generated for each data set. For each data set, r independent

observations were generated per factor level combination (cell), according to model (2.1).

The test statistic was calculated and compared against the appropriate critical value in

Tables 4–6 corresponding to a nominal error rate of α = 0.05. The proportion of times

that the null hypothesis Hγt
0 (2.3) was rejected for each value of γ1 gives the empirical
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Table 1: Average empirical Type I errors for testing Hγ1
0 (2.3) for the tests based on (2.4)

and (2.5) at nominal level α = 0.05 and using critical values in Tables 4–6 and a 25−1
V

fraction. Values of γq, q 6= 1, and µi, i = 1, . . . , v − 1, generated as in Section 3.1 with
100, 000 simulations

Normally distributed errors First order models Second order models
Number of observations per cell (r)

Measure Test 3 5 10 3 5 10

ln(|yij − ỹi|−1 + 1) Mt, (2.4) 0.0525 0.0503 0.0514 0.0713 0.0790 0.1083

ln(|yij − ȳi|+ 1) Mt, (2.4) 0.0514 0.0512 0.0501 0.0677 0.0802 0.1103

ln(si + 1) MPSE,t, (2.5) 0.0347 0.0311 0.0292 0.0215 0.0213 0.0258

Exponentially distributed errors First order models Second order models
Number of observations per cell (r)

Measure Test 3 5 10 3 5 10

ln(|yij − ỹi|−1 + 1) Mt, (2.4) 0.0589 0.0693 0.0773 0.0756 0.0944 0.1250

ln(|yij − ȳi|+ 1) Mt, (2.4) 0.1835 0.1720 0.1756 0.1981 0.2017 0.2261

ln(si + 1) MPSE,t, (2.5) 0.0365 0.0338 0.0312 0.0228 0.0213 0.0198

Cauchy distributed errors First order models Second order models
Number of observations per cell (r)

Measure Test 3 5 10 3 5 10

ln(|yij − ỹi|−1 + 1) Mt, (2.4) 0.1093 0.0822 0.0649 0.1137 0.0877 0.0764

ln(|yij − ȳi|+ 1) Mt, (2.4) 0.4748 0.4952 0.5635 0.4642 0.4954 0.5614

ln(si + 1) MPSE,t, (2.5) 0.0381 0.0371 0.0368 0.0233 0.0234 0.0239

Type I error (for γ1 = 0) and the power of the test (for γ1 > 0).

3.2 Type I errors and powers for testing Hγt
0 (2.3)

Table 1 shows that, for first order models and normally distributed errors, the two mea-

sures m
(1)
ij = ln(|yij − ỹi|−1 + 1) and m

(2)
ij = ln(|yij − ȳi|+ 1) , with test statistic (2.4) for

testing Hγt
0 (2.3), hold the nominal 0.05 level reasonably well. For second order models,

the empirical Type I error is a little inflated and reaches 0.1 for r = 10 observations per

cell. On the other hand, the Type I error for test (2.5) using measure m
(3)
i = ln(si + 1) is

reduced to 0.02–0.03, and it will be seen below that the power of the test is also depressed.

For both first-order and second-order models under normally distributed error vari-

ables, the power of all three tests increases as the number of replicates increases, but at

different rates (see Figures 1–4). It is clear from these figures that the test (2.4) based on
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Figure 1: Power curves for tests based on ln(s+ 1) and ln(|yij − ỹi|−1 + 1) using empirical
critical values from Tables 4 and 6, with data from randomly generated location models
and first-order dispersion models, with r = 3, 4, 7, 10 replicates per cell, and normal error
distribution

either m
(1)
ij or m

(2)
ij shows greater power than the test (2.5) based on m

(3)
i . As mentioned

above, this is partly due to the fact that, although the test based on ln(s+ 1) is run at

nominal level α = 0.05, its actual level is 0.02–0.03 (see Table 1). It also highlights the

difficulty for this measure of detecting a dispersion effect in the presence of location ef-

fects (see Section 1). The tests using both ln(|yij − ỹi|−1 + 1) and ln(|yij − ȳi|+ 1) have

reasonable power for detecting a dispersion effect of 0.3 or more for r ≥ 7 and of 0.6 or

more for smaller r under model (2.1) while controlling the Type I error rate. Figures 2

and 4 indicate that the power for the test based on ln(|yij − ȳi|+ 1) is slightly greater

for smaller r, but for larger r, there is little difference in the power of these two tests.
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Figure 2: Power curves for tests based on ln(|yij − ỹi|−1 + 1) and ln(|yij − ȳi|+ 1) using
empirical critical values from Tables 4 and 5, with data from randomly generated location
models and first-order dispersion models, with r = 3, 4, 7, 10 replicates per cell, and normal
error distribution
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Figure 3: Power curves for tests based on ln(s+ 1) and ln(|yij − ỹi|−1 + 1) using empirical
critical values from Tables 4 and 6, with data from randomly generated location models
and second-order dispersion models, with r = 3, 4, 7, 10 replicates per cell, and normal
error distribution
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Figure 4: Power curves for tests based on ln(|yij − ỹi|−1 + 1) and ln(|yij − ȳi|+ 1) using
empirical critical values from Tables 4 and 5, with data from randomly generated location
models and second-order dispersion models, with r = 3, 4, 7, 10 replicates per cell, and
normal error distribution

To study the effect of non-normal error distributions, additional simulations were run

for both a Cauchy and an exponential error distribution, for r = 4 replicates per treatment

combination. The power curves based on the results from these simulations are shown

in Figures 5 and 6. These figures, together with Table 1, show that for exponentially

distributed errors, with first or second order dispersion models, the Type I error rates for

the test of Hγt
0 (2.3) based on ln(|yij − ỹi|−1 + 1) are raised slightly above the nominal

α = 0.05 level, but those for the test based on ln(|yij − ȳi|+ 1) are considerably higher.

The situation is even more exaggerated for Cauchy distributed errors and here, clearly,

the test based on ln(|yij − ȳi|+ 1) is not usable. Consequently, we recommend the test

based on ln(|yij − ỹi|−1 + 1) rather than ln(|yij − ȳi|+ 1) unless r is small and the errors

are “known” to be identically and independently normally distributed.

4 Example

Pignatiello and Ramberg (1985) discussed an experiment which studied the effect of five
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Figure 5: Power curves for tests based on ln(|yij − ỹi|−1 + 1), ln(|yij − ȳi|+ 1) and
ln(s+ 1), using empirical critical values from Tables 4–6, with data from randomly gen-
erated location models and first-order and second-order dispersion models, with r = 4
replicates per cell, and exponential error distribution

factors on the robust design of leaf springs in trucks; the experiment has further been

analysed for dispersion effects by Nair and Pregibon (1988) and Wu and Hamada (2000).

The experiment examined five factors, each at two levels: furnace temperature (B), heat-

ing time (C), transfer time (D), hold down time (E), and quench-oil temperature (O).

The response of interest was the free height (Y ) of a spring in an unloaded condition.

Pignatiello and Ramberg (1985) first used factor O as a noise factor that could not be

controlled and was folded into the experimental error. Then, in a separate analysis, factor

O was used as a control factor. These two analyses result in different main effects being

classified as significant, owing to sizeable interactions involving factors B and O.

Here, in order to illustrate our dispersion tests, we use the first setting with O con-

tributing to the experimental error. The design is then a 24−1 fractional factorial, with

four factors B,C,D and E and defining contrast I = BCDE. There are r = 6 replicates

at each of the v = 8 treatment combinations. The contrasts of interest and data were

presented by both Pignatiello and Ramberg (1985) and Nair and Pregibon (1988). In our

Table 2, we show the design, where −1 and +1 represent the two levels of each factor,
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Figure 6: Power curves for tests based on ln(s+ 1), ln(|yij − ỹi|−1 + 1) and
ln(|yij − ȳi|+ 1) using empirical critical values from Tables 4–6, with data from randomly
generated location models and first-order and second-order dispersion models, with r = 4
replicates per cell, and Cauchy error distribution

and the calculated dispersion measures m
(1)
ij = ln(|yij − ỹi|−1 + 1).

Consider the test for the null hypothesis H0 : γC = 0 against the alternative hypothesis

H1 : γC 6= 0, where γC is the dispersion main effect of factor C. The test statistic MC (2.4)

is

MC =
(0.09503− 0.205207)2 × 8× 5/4

0.315530/(8× 4)

= 12.31.

Comparing MC with the empirical critical value of 6.58 given in Table 4 at level

α = 0.01 for v = 8 treatment combinations and r = 6 observations per cell, we see that

MC = 12.31 > 6.58, and we conclude that heating time (C) has statistically significant

dispersion main effect at level 0.01.

The values of Mt for each of the contrasts in a second order saturated model are shown

in Table 3. If Hγt
0 (2.3) is tested for each γt at level 0.01, the overall level is at most 0.07

for the 7 tests using a Bonferroni correction, and only a significant main effect of factor
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Table 2: Design and dispersion measures m
(1)
ij = ln(|yij − ỹi|−1 + 1) for the leaf spring

24−1 experiment with factor O as an uncontrolled noise factor. The values (m
(1)
ij ) are the

smallest dispersion measures to be omitted from the calculation of Mt

B C D E m
(1)
i1 m

(1)
i2 m

(1)
i3 m

(1)
i4 m

(1)
i5 m

(1)
i6 m

(1)
i.

-1 -1 -1 -1 0.131 0.131 0.157 (0.131) 0.329 0.418 0.2332
1 -1 -1 1 0.239 0.262 0.000 0.000 (0.000) 0.364 0.1730

-1 1 -1 1 0.000 0.058 0.000 0.000 0.058 (0.000) 0.0232
1 1 -1 -1 0.019 0.048 0.131 (0.019) 0.131 0.048 0.0754

-1 -1 1 1 0.246 0.292 0.198 0.292 0.198 (0.198) 0.2452
1 -1 1 -1 0.000 0.336 0.314 0.121 (0.000) 0.067 0.1676

-1 1 1 -1 0.194 0.242 0.090 0.152 0.152 (0.090) 0.1660
1 1 1 1 0.076 0.157 0.048 0.157 0.131 (0.048) 0.1138

Table 3: Test statistics based on dispersion measures m
(1)
ij = ln(|yij − ỹi|−1 + 1) for the

leaf spring experiment data; critical value from Table 4 for α = 0.01 is 6.583

Source B C D E BC(DE) BD(CE) CD(BE)
Mt 1.21 12.31∗∗ 2.27 0.49 1.21 0.96 1.79

C is detected. This conclusion is consistent with those of previous analysis of these data

using half-normal probability plots; see the results of Pignatiello and Ramberg (1985) who

used signal to noise ratios, and also the results of Nair and Pregibon (1988) who used γt

estimates based on the work of Bartlett and Kendall (1946) and Box and Meyer (1986).

If we were to analyse the experiment with factor O as a control factor, so that we have

a 25−1 experiment with r = 3 observations per cell and v = 16 treatment combinations,

then we find that factor B has the only significant dispersion effect (the change being

due to the masking interactions between the factors O, B and C). This is in line with

the results of Nair and Pregibon (1988) and also the work of Wu and Hamada (2000),

Section 4.3.
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5 Summary

In this paper, we have proposed tests for the detection of dispersion effects in a location-

dispersion model (2.1) with r ≥ 3 observations within each cell. Measures which combine

observations into a single dispersion measure (such as ln(s2) or ln(s+1)) have been shown

previously to be affected by location effects (see Section 1) and our study confirms that

Lenth’s test using ln(s+1) does not perform well even when using empirical critical values.

Instead, we follow the recommendation of Mackertich et al. (2003) and obtain individual

measures of dispersion for all observations in a cell, rather than combining these into a

single measure. These measures remove the location effects and also allow for an estimate

of pure error.

We show that tests using a test statistic of the form (2.4) with dispersion measure

ln(|yij − ỹi|−1 + 1), the natural logarithm of the absolute deviation from the median omit-

ting (one of) the minimum observation(s), and critical values from Table 4 control the

Type I error rate close to the nominal significance level for data following a normal dis-

tribution. Figures 5 and 6 and Table 1 show that the test has a slightly elevated Type I

error when the errors follow an exponential or Cauchy distribution. This test has good

power whether data are generated from a first- or second-order dispersion model under

effect sparsity and randomly generated location models. When more than one dispersion

effect is to be tested, a Bonferroni correction can be made as in Section 4.

When errors are “known” to be normally distributed and r is small, slightly higher

power can be achieved by basing the test on the dispersion measurem
(2)
ij = ln(|yij − ȳi|+ 1)

rather than m
(1)
ij = ln(|yij − ỹi|−1 + 1), together with critical values from Table 5. If

m
(2)
ij = ln(|yij − ȳi|+ 1) is used for the example of Section 4, the same conclusions are

reached.

In summary, for experimental designs, such as regular fractional factorial designs,

in which effects can be estimated independently, the dispersion effect test methodology

proposed in the current work provides a more powerful alternative to traditional dispersion

test methodologies for data from replicated two-level experiments.
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A Empirical Critical Values

Table 4: Critical values for test statistic (2.4) using m
(1)
ij = ln(|yij − ỹi|−1 + 1)

v α r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

8 0.1 2.60 2.41 2.59 2.51 2.63 2.58 2.65 2.61
0.05 4.03 3.57 3.81 3.65 3.79 3.71 3.79 3.76
0.01 8.76 6.81 7.06 6.58 6.79 6.65 6.80 6.63

0.005 11.54 8.45 8.70 8.00 8.20 7.97 8.19 8.02

16 0.1 2.31 2.27 2.50 2.45 2.56 2.54 2.59 2.58
0.05 3.41 3.28 3.59 3.51 3.66 3.63 3.70 3.68
0.01 6.51 5.96 6.42 6.21 6.45 6.36 6.48 6.43

0.005 8.11 7.22 7.75 7.48 7.77 7.64 7.74 7.68

32 0.1 2.18 2.21 2.45 2.42 2.53 2.51 2.57 2.56
0.05 3.15 3.16 3.49 3.45 3.61 3.57 3.66 3.64
0.01 5.72 5.59 6.14 6.04 6.29 6.21 6.37 6.34

0.005 6.94 6.70 7.37 7.23 7.47 7.39 7.59 7.55

64 0.1 2.12 2.18 2.43 2.40 2.52 2.49 2.56 2.55
0.05 3.03 3.10 3.45 3.42 3.58 3.55 3.64 3.63
0.01 5.37 5.42 6.01 5.94 6.22 6.15 6.31 6.27

0.005 6.44 6.47 7.16 7.08 7.39 7.33 7.53 7.48
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Table 5: Critical values for test statistic (2.4) using m
(2)
ij = ln(|yij − ȳi|+ 1)

v α r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

8 0.1 5.19 4.10 3.61 3.36 3.24 3.16 3.08 3.03
0.05 7.48 6.00 5.26 4.88 4.69 4.51 4.41 4.36
0.01 13.57 11.28 9.60 8.81 8.35 8.11 7.93 7.65

0.005 16.58 14.05 11.75 10.72 10.04 9.75 9.51 9.14

16 0.1 4.93 3.87 3.49 3.29 3.17 3.09 3.04 3.00
0.05 7.08 5.60 5.00 4.72 4.54 4.43 4.33 4.28
0.01 12.53 10.08 8.91 8.35 7.99 7.77 7.60 7.46

0.005 15.09 12.22 10.71 10.02 9.59 9.29 9.08 8.91

32 0.1 4.82 3.80 3.43 3.25 3.14 3.07 3.01 3.00
0.05 6.88 5.43 4.90 4.63 4.48 4.37 4.29 4.24
0.01 12.07 9.57 8.58 8.10 7.79 7.58 7.46 7.37

0.005 14.42 11.44 10.28 9.68 9.27 9.04 8.88 8.75

64 0.1 4.76 3.74 3.41 3.23 3.12 3.05 3.00 2.97
0.05 6.77 5.34 4.85 4.59 4.43 4.37 4.27 4.22
0.01 11.76 9.30 8.43 7.98 7.69 7.53 7.39 7.31

0.005 14.03 11.11 10.03 9.49 9.18 8.94 8.80 8.69

Table 6: Critical values for Lenth’s test statistic (2.5) using m
(3)
i = ln(si + 1)

v α r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

8 0.1 1.73 1.73 1.72 1.72 1.72 1.72 1.72 1.71
0.05 2.34 2.32 2.32 2.31 2.31 2.31 2.30 2.30
0.01 5.20 5.17 5.12 5.10 5.10 5.10 5.10 5.10

0.005 7.00 6.98 6.90 6.87 6.87 6.87 6.87 6.87

16 0.1 1.71 1.71 1.71 1.70 1.70 1.70 1.70 1.70
0.05 2.18 2.17 2.17 2.16 2.16 2.16 2.16 2.16
0.01 3.69 3.66 3.65 3.64 3.63 3.63 3.63 3.63

0.005 4.44 4.41 4.41 4.39 4.37 4.37 4.37 4.37

32 0.1 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68
0.05 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07
0.01 3.07 3.06 3.06 3.05 3.05 3.05 3.05 3.05

0.005 3.50 3.49 3.48 3.48 3.48 3.48 3.47 3.47

64 0.1 1.67 1.67 1.67 1.67 1.67 1.66 1.66 1.66
0.05 2.02 2.02 2.02 2.02 2.01 2.01 2.01 2.01
0.01 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80

0.005 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12
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