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SUMMARY
The ‘small factor change’ problem, where an experimental design strategy is used to find a certain amount of
improvement in a response while changing the factor levels as little as possible, is addressed. Using a recently
developed test bed for response surfaces, we have simulated a broad range of response surface functions and
collected empirical results on the performance of seven experimental design strategies when confronted with this
problem. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this research, a set of experimental design strategies
is applied to a situation that we call thesmall factor
changeproblem to determine which of these strategies
performs best on selected measures. The goal of
experimentation in the small factor change problem
is to gain a specific amount of improvement in a
response while changing the factor levels as little
as possible. As an example, consider an automobile
design problem where there is a specified miles per
gallon (MPG) rating desired. Some of the primary
factors that may affect theMPG are the aerodynamics
of the car and the composition of the materials used
in manufacture. However, making changes to either
of these factors may have an effect on the appearance
of the automobile. For some automobiles, such as the
Ford Mustang or Chevrolet Corvette, the appearance
is very distinctive and is an important selling point,
so very little change can be made to factors affecting
the appearance. The experimental problem is to find a
specific improvement in the response, theMPG, while
changing the factors, the aerodynamics and materials,
as little as possible.

The small factor change problem can be presented
more formally as an experimental design problem
by first assuming that there arek factors of interest,
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x = (x1, x2, . . . , xk)
′ and an observed responsey

wherey = f (x) + ε, andε is a random error term
such thatE(ε) = 0. Let the current settings of the
factors be represented byx∗ = (x∗

1, x
∗
2, . . . , x

∗
k )

′. In
the small factor change problem, changing any factor
is presumed to have a detrimental effect on some
characteristic other thany. For convenience, assume
that the factors are scaled such that a change of one
unit in any of the factors can be expecteda priori
to have the same detrimental effect as a change of
one unit in any other factor. If this is not the case,
then weights can be introduced to scale the factors
to best represent the severity of changing each factor.
The objective of the small factor change problem is
to find the solution pointxopt = (x

opt
1 , x

opt
2 , . . . , x

opt
k )

satisfying

Min
k∑
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|x∗
i − x

opt
i |

Subject to:E(y | xopt) = yopt

whereyopt is the desired mean response. While the
constraint is given as an equality, it may also be
represented by an inequality, depending on the nature
of the target (smaller the better, larger the better, or
nominal the best).

Despite the optimization framework, the small
factor change problem is an experimental design
problem because the function,f , is not generally
known and must be approximated by fitting some

Copyright 2000 John Wiley & Sons, Ltd.



356 W. R. MCDANIEL AND B. E. ANKENMAN

model to collected data. Generally, the number of
experimental observations is constrained by resource
issues. Thus, the experimental design problem is to
choose design points (factor settings) for collecting
data that will allow for approximating the functionf
with a fitted modelg as accurately as possible in a
region that includesyopt, so thatxopt can be accurately
estimated.

When searching for an optimum, it is advantageous
to use fully sequential experimental designs, where
each design point is selected based on the information
obtained from the prior designs points. To achieve
some of the advantages of a sequential design,
but to reduce complexity, experimental designs are
typically run in phases where a set of design points is
selected and then, based on the analysis of those data,
another set of design points is selected. We will call
these partially sequential designs,experimental design
strategies.

There are several experimental design strategies
that may be considered for the small factor change
problem. One example is traditional response surface
methodology which combines an initial screening
design with a line search in the steepest direction
of ascent followed by a capping design, such as a
central composite (see Myers and Montgomery, [1]).
Because changing many factors is not desirable in
the small factor change problem, some variation on
a one-factor-at-a-time strategy may be appropriate.
Generally, statisticians have shunned this strategy
because it does not take into account the possibility of
interactions between factors and is often less efficient
than other methods. However, strategies involving at
least some one-factor-at-a-time exploration may hold
promise in the small factor change problem because
they can detect significant main effects and may allow
for fewer factor changes.

In an experimental design strategy, decisions
concerning the next phase of the design are dependent
on the response surface function. The effectiveness
of the strategies cannot be determined easily unless
the specific response surface function is known. Since
the response surface function is rarely known, design
strategies do not lend themselves well to analytic study
and comparisons between strategies are usually not
available. In this article, we use a simulation study
to collect empirical data on the ability of different
experimental design strategies to solve the small factor
change problem. In McDaniel and Ankenman [2], a
response surface test bed was proposed that would
produce random response surface functions while
allowing for some control of the characteristics of
the surfaces. Using this test bed, we have produced

surfaces with a broad range of different characteristics
to determine which design strategies perform well on
the small factor change problem over a wide variety of
response surface types.

In Section2, we present the motivating example for
this research. In Section3, our test bed of simulated
response surfaces is briefly described. In Sections4
and 5, the simulation study used to investigate this
problem is described. Section6 presents the results
of the simulation study, where a form of traditional
response surface methodology was shown to perform
better than any other design strategy that we tested.

2. MOTIVATING EXAMPLE

In the example that motivated this work, transmission
fluid was formulated and subjected to a battery of
expensive tests for attributes such as wear resistance,
thermal breakdown and viscosity. A formulation was
found that met all of the requirements except for
the wear resistance specification. Due to the expense
of the testing, the design engineers decided to run
experiments on a bench-top wear test to alter the
formula to improve on the wear reduction response.
Since the other responses were not being measured
on the altered formulae, the goal was to improve
the wear resistance, but minimize the changes in the
formula so the results of other tests would not change
significantly. When a desirable outcome was achieved
for the wear resistance, the whole battery of tests was
rerun on the resulting product to confirm that the small
changes made in the factor levels did not adversely
affect the other responses of interest. Although a
fractional factorial design was used to run the bench-
top wear experiment, there was some controversy over
whether a one-factor-at-a-time design would be more
appropriate for finding an improvement with minimal
changes. There was also discussion of what follow up
designs might be appropriate.

This research is intended to provide guidance for
experimental design in small factor change problems
which could be encountered in many physical
systems, such as printing ink formulations, electronics
development, or the manufacture of prepared foods
[3].

3. RESPONSE SURFACE TEST BED DESIGN

To study experimental design strategies for the small
factor change problem, we created atest bedthat will
simulate different response surfaces using polynomial
functions. This test bed, which is described in detail
in [2] generates these functions randomly while still
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maintaining some control over their response range,
their dimensionality and theirbumpiness(the presence
and size of local minimum, maximum, or inflection
points). The test bed was designed to control the
general characteristics of the surfaces produced, but
still maintain enough randomness so that the surfaces
in the test bed resemble what might be encountered in
physical systems. A brief description of the types of
surface characteristics controlled by the test bed user
follows.

Included in the test bed is the ability to control effect
sparcity and effect heredity. Effect sparcity refers to
the conjecture that only a few of several possible
factors will have a significant effect on the response.
Effect heredity refers to the common assumption that
if a two-factor interaction is significant, at least one
of the main effects that make it up is also significant
[4,5]. The test bed is also designed to give the user
some control over the number of higher-order main
effect terms, such asx2

1, and interactions, such asx1x2,
which in turn control the bumpiness of the surface.

The test bed uses aregion of operability for
each of the factors, which is the range over which
experimentation may take place. Because any physical
system will have constraints on the possible values
of the factor settings, this concept was included in
the test bed surfaces. Similarly, within the region of
operability of the factors the test bed approximately
controls theresponse range, which is the expected
range of values of the response on the surface. This
provides a sense of scale to the response that would
be assumed in a physical system but must be defined
for a simulated response surface function. There is
also a means of controlling the relativeflatnessof the
surfaces created by the test bed, so that local deviations
are relatively large or relatively small with respect to
the response range. Additionally, the test bed allows
the user to control the distribution of the error term
applied to the observed responses.

The test bed was implemented and the simulation
study described in the next section was run in the
S-Plusr programming language on a PC running
Windows 95. S-Plusr was chosen because the
language has many useful statistical tools and features
for both surface creation and data analysis [6].

4. SIMULATION METHODOLOGY

In the simulation study, seven design strategies, which
are described in the next section, are compared for a
small factor change problem. In order to use a wide
variety of surfaces from the test bed, 49 different
surface types were created as part of a orthogonal array

of input settings for the test bed. The orthogonal array
varied seven surface characteristics each with seven
levels. A description of the surface characteristics and
their levels are shown in Appendix A and copy of the
orthogonal array is provided in Appendix B.

For each of the 49 surface types, 5 surface
forms were created. A surface form is a symbolic
representation of the polynomial response surface. For
example, a surface form is a symbolic equation as
follows:

y = γ0 + γ
(1)
1 x1 + γ

(1)
2 x2 + γ

(1)
3 x3

+ γ12x1x2 + · · · + γ
(2)
1 x2

1 + · · · + γ
(6)
3 x6

3

where γ (i)j refers to coefficient of theith order
main effect term for factorj and γijk is the
coefficient for the interaction between factorsi, j ,
andk. The non-zero coefficients in the surface form
identify the terms that are in the response surface
function. A response surface function is created
by generating numerical values for the non-zero
coefficients in the surface form. For each surface
form, five response surface functions were generated.
These five functions will have the same active
factors and interaction effects, but will have different
values for each of the coefficients. In total, there
were 1225 response surface functions created (49
surface types× five surface forms× five response
surface functions). On each of these response surface
functions, five random starting points in the region
of operability were selected and all seven design
strategies were conducted from each starting point.
Thus, a total of 42 875 simulation runs were made
for this study (1225 response surface functions×
five starting points× seven design strategies).

For each simulation run, the goal was to find a
response,v, that is a 10% increase in the response over
the value of the response,u, at the starting point (i.e.
v = 1.1u). The 10% value was chosen arbitrarily, but
should have little effect on the qualitative results since
the scaling of the problem is relative. There were 15
possible factors that might be active on each response
surface function.

Once a design strategy had completed all of it’s
allotted experimental runs from a given starting point,
the data were used to model the local region of
the response surface with a second-order polynomial
function that we call thefitted model. Using this fitted
model, a solution for the small factor change problem
was estimated by solving a nonlinear optimization
problem. Using the nonlinear optimizer routinenlminb
provided with S-Plusr, the penalty function method
(ss [7, p. 361]) was used with an objective function of
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the form:

Min obj = |x1 − x∗
1| + |x2 − x∗

2| + · · · + |x15 − x∗
15|

+ 1000∗(v − ψ(x,b))2

wherex∗ = (x∗
1, x

∗
2, . . . , x

∗
15) is the starting point,x =

(x1, x2, . . . , x15) is the estimated solution found by the
algorithm, andψ(x,b) is the estimated response atx
resulting from the fitted model with parametersb that
are estimated by least squares from data collected by
the design strategy. This objective function solves for
the minimum distance to a point on the fitted modelψ

with a response that is 10% larger than the response at
the starting point. The penalty factor of 1000 forces
the algorithm to search for a solution on the fitted
model with less than 1% error betweenv andψ(x,b).
Because algorithms for solving nonlinear problems are
sensitive to the starting solution provided, it is possible
that a better solution exists than that found by this
algorithm, however, we treat these solutions as optimal
for eachψ.

5. DESIGN STRATEGIES

From each starting point, each of the seven design
strategies was allotted 33 experimental trials to
estimate the response surface function locally. All
design strategies were conducted in two sequential
phases, an initial screening design (phase I) followed
by a re-scaled experiment in the three most important
factors (phase II). The data collected in both phases
was to create the fitted model and find an estimated
solution point,x as described above.

In phase I designs, it is assumed that the region of
operability for each factor may be much larger than the
region of interest required for solving the small factor
change problem. The scale for all strategies in the first
phase was the same (starting point±3% of each factor
range). The results from the phase I designs were used
to re-scale the experimental region for the phase II
designs. Only the three most significant factors were
used in phase II of each strategy. The experimental
region in these three factors was scaled to include
a 10% improvement assuming a simple linear model
from the phase I data.

A constraint was placed on the scale of the phase II
experiment so the experimental region for any factor
would not extend to more than 30% of the range of
that factor from the starting point. Since small factor
change problems often have limits on the amount
that a factor can be changed, the solution was also
constrained to be within 30% of the factor range from
the starting point.

Table 1. Raw data from a single starting point on a surface of type 10

Strategy True response Distance

FF–BB 48.11 29.28
FF–CC 48.93 29.97
FF–OFAAT′ 46.67 21.15
FF–SC 48.72 35.48
OFAAT–BB 44.91 30.08
OFAAT–CC 44.75 28.15
OFAAT–OFAAT′ 46.18 42.29

Table 2. MINITABr statistics on the average percent difference in
the distance to successful solutions for each strategy

Standard
Strategy N Mean deviation SE mean

FF–BB 30 6.188 4.491 0.820
FF–CC 34 4.695 4.554 0.781
FF–OFAAT′ 25 13.47 10.58 2.12
FF–SC 32 11.83 9.43 1.67
OFAAT–BB 27 16.10 12.23 2.35
OFAAT–CC 30 8.11 7.41 1.35
OFAAT–OFAAT′ 24 25.50 43.07 8.79

The phase I designs were chosen as screening
designs to sort through the 15 factors to find the
three most significant. Two phase I designs were
used: a fractional factorial (FF) design and a one-
factor-at-a-time (OFAAT) design with 2 levels per
factor. Both of these designs used 16 experimental
trials. The phase II designs were chosen to map the
factor space near the starting point in the three most
significant factors. The four phase II designs are: a
Box–Behnken (BB) design, a central composite (CC)
design, a one-factor-at-a-time design with five levels
per factor plus two center points (OFAAT′), and a
sliding cube (SC) design. The SC follow-up design
was proposed by Mee [8] and for this study simply
meant a full factorial in the three factors shifted in
the direction of improvement for each factor. This was
combined with additional center points at both the
starting point and the center of the SC. Each of these
Phase II designs consisted of 17 experimental trials.

A design strategy is defined by a phase I design
followed by a phase II design. The phase I–phase II
design combinations that made up the seven design
strategies are FF–BB, FF–CC, FF–OFAAT′, FF–
SC, OFAAT–BB, OFAAT–CC and OFAAT–OFAAT′.
Notice that one combination of phase I–phase II
designs, the OFAAT–SC strategy, was not used since
the first design was not a cube design.
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Figure 1. Comparison of the number of successes for each strategy

Figure 2. Comparison of the number of times each strategy succeeded with the least change in the factors

6. CRITERIA AND RESULTS

Three metrics were collected for each strategy on each
of the 49 surface types so that direct comparisons
could be made between the strategies on a given type
of surface. The first metric, which we callsuccess,
is a tally of the number of times a strategy found an
acceptable solution. Even though a 10% improvement
was the goal, to allow for random error, we defined
an acceptable solution as one that had at least 9%
improvement. The second metric, calledwinning, is
the number of times a strategy found an acceptable
solution and moved a shorter distance than all other
strategies that also found an acceptable solution. The
third metric, calledpercent distance from winner, was

measured for each strategy at each starting point and is
the percentage difference between the distance moved
by a strategy that found an acceptable solution and
the distance moved by the winning strategy from that
starting point.

As an example, consider Table1, which shows the
raw data for all of the design strategies at a single
starting point on a surface of type 10. The response
at the starting point for this response surface function
wasu = 44.16, so an acceptable solution is one with
a response of at least 9% higher or 48.14. For each
strategy, the true response at the solution point for
each strategy is shown in the first column. The second
column shows the distance from the starting point to
the solution point for each strategy.
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Table A.1.

Levels

Factor 0 1 2 3 4 5 6

Main effect Just All linear, All linear, All linear, Low Medium All up to
terms(S) linear some all quadratic some probability probability sixth order

quadratic quadratic of all up to of all up to
& cubic sixth order sixth order

Interaction None Some All All Low Medium All two- &
terms(T ) two-factor two-factor two-factor, probability probability three-factor

some of two- of two- &
three-factor three-factor three-factor

Number of potentially
active factors(A) 2–3 4–5 6–7 8–9 10–11 12–13 14–15

Flatness(r) 1 1.33 1.67 2 2.33 2.67 3

Non-fol/ Fol
Ratio for S(Rs) 0 0 0.5 0.5 0.5 1 1

Non-fol/ Fol
Ratio for T(Rt) 0 0 0.5 0.5 0.5 1 1

Noise(N) 0 0.25 0.5 0.75 1.0 1.25 1.5

Notes: for all the rows in theS matrix,Rs is the ratio of the probability in the second column of theS-matrix to the probability provided
the first column.Rt is similarly defined for theT -matrix.N is the variance of the normally distributed error term.

For this starting point, only the FF–CC and FF–
SC strategies were successful at finding acceptable
solutions. The winner for this simulation was the FF–
CC strategy since it found an acceptable solution
closest to the starting point. For thepercent distance
from the winner, the FF–SC strategy is

[(35.48− 29.97)/29.97] × 100%= 18.39%

from the winner. Thepercent distance from the winner
for the FF–CC strategy is zero. For the other strategies,
the percent distance from the winner is not calculated
because they did not find an acceptable solution.

One interesting outcome was the difference that
an error component made on the results. According
to the 49 run orthogonal array, the first seven types
of surfaces (sets of surface characteristics) had zero
variance on their error component, so responses from
these surfaces were observed without error. In this
case, the OFAAT–BB strategy often found the highest
number of acceptable solutions and changed the
solution the least to find them. We conjecture that this
happens because the OFAAT–BB strategy allows for
less model bias, which is the only source of error in
the fitted surface for these surfaces with zero error
variance. However, this strategy performed poorly
in the presence of error, where the FF–CC strategy
had much better results on all three metrics. Because
of this discrepancy and our feeling that researchers

seldom encounter a case where there is no error
observed on the responses, we choose to concentrate
our analysis on the 42 surface types that were observed
with error.

The results for the first metric, success, are
displayed in Figure1. The x-axis on the graph
has an entry for each of the 42 surface types that
included noise. Thex-axis does not display any
scale since the surface types were ordered according
to the number of times that the FF–CC strategy
found an acceptable solution. This ordering of the
surface types makes the graph much easier to read.
The y-axis shows the number of times out of 125
simulations on that surface type where each strategy
was successful at finding at least a 9% improvement.
The graph shows that all strategies except the FF–CC
strategy, are indistinguishable in terms of the number
of successes. The FF–CC strategy dominates all of the
other strategies for every surface type where at least
one strategy was able to achieve 10 successes out of
125. On the surface types where there are less than 10
successes, the surfaces were very flat relative to the
error and thus no strategy was able to perform well.

Figure 2 shows the same graph for the second
metric, number of winners, for each strategy and the
same conclusions can be drawn. Namely, that the FF–
CC strategy dominates all of the other strategies on
surfaces that are not extremely flat. Also, the fact
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Table B.1.

Surface
type N S T A r Rs Rt

1 0 0 0 0 0 0 0
2 0 1 6 6 6 6 6
3 0 2 5 5 5 5 5
4 0 3 4 4 4 4 4
5 0 4 3 3 3 3 3
6 0 5 2 2 2 2 2
7 0 6 1 1 1 1 1
8 1 0 6 5 4 3 2
9 1 1 5 4 3 2 1

10 1 2 4 3 2 1 0
11 1 3 3 2 1 0 6
12 1 4 2 1 0 6 5
13 1 5 1 0 6 5 4
14 1 6 0 6 5 4 3
15 2 0 5 3 1 6 4
16 2 1 4 2 0 5 3
17 2 2 3 1 6 4 2
18 2 3 2 0 5 3 1
19 2 4 1 6 4 2 0
20 2 5 0 5 3 1 6
21 2 6 6 4 2 0 5
22 3 0 4 1 5 2 6
23 3 1 3 0 4 1 5
24 3 2 2 6 3 0 4
25 3 3 1 5 2 6 3
26 3 4 0 4 1 5 2
27 3 5 6 3 0 4 1
28 3 6 5 2 6 3 0
29 4 0 3 6 2 5 1
30 4 1 2 5 1 4 0
31 4 2 1 4 0 3 6
32 4 3 0 3 6 2 5
33 4 4 6 2 5 1 4
34 4 5 5 1 4 0 3
35 4 6 4 0 3 6 2
36 5 0 2 4 6 1 3
37 5 1 1 3 5 0 2
38 5 2 0 2 4 6 1
39 5 3 6 1 3 5 0
40 5 4 5 0 2 4 6
41 5 5 4 6 1 3 5
42 5 6 3 5 0 2 4
43 6 0 1 2 3 4 5
44 6 1 0 1 2 3 4
45 6 2 6 0 1 2 3
46 6 3 5 6 0 1 2
47 6 4 4 5 6 0 1
48 6 5 3 4 5 6 0
49 6 6 2 3 4 5 6

that all of the other strategies are indistinguishable
in terms of performance for this metric. McDaniel
[9] provides details that confirm these conclusions
at a 95% confidence level using the method for
comparisons with the best suggested by Hsu [10].

The third metric, the percent distance from winner,
is displayed in Table2. Because the graphical display
was confusing to read, the results are shown in
tabular form only. Here, the FF–CC strategy had the
lowest mean, significantly lower (at 95% confidence)
than either the FF–BB strategy and the OFAAT–CC
strategy which also did reasonably well on this metric.
In the table,N refers to the number of surface types
(out of 42) on which the strategy was able to find at
least one acceptable solution (out of 125 simulations).
On surface types where no acceptable solutions were
found by a given strategy, the average percent distance
from the winner could not be calculated.

The most striking result of the research conducted
here was the superiority of the FF–CC strategy for
almost all of the 42 design points. In both the
number of times it found an acceptable solution
and the number of times it found that solution by
making the smallest change from the starting point,
the FF–CC strategy was best in almost every case.
Additionally, the FF–CC strategy had the smallest
average difference in distance from the best. When
there is no error in the response the OFAAT–
BB strategy often worked better than the FF–CC
strategy, but when even the smallest amount of
error was present it performed substantially worse.
Our recommendation is to use a traditional response
surface methodology approach similar to the FF-CC
strategy when confronted with the small factor change
problem.

APPENDIX A: FACTORS AND LEVELS FOR THE
ORTHOGONAL ARRAY

See TableA.1.

APPENDIX B: ORTHOGINAL ARRAY

See TableB.1.
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