Response Surface Test Bed User's Guide

The Response Surface Test Bed (RSTB) consists of a set of S-Plus subroutines that are included in the appendix and are also available electronically at http:\\www.iems.nwu.edu\~bea\testbed. These subroutines are divided into segments for creating response surface models, creating response surface functions and sampling random points from the response surface functions. A description of how these subroutines work and how surfaces are created by the RSTB follows. The coding methods are not claimed to be the most efficient, but do represent one way that the ideas behind the RSTB can be implemented.

It is usually convenient to create a new working subdirectory in S-Plus for the RSTB. To do this, first go into the S-Plus home directory and create a new subdirectory there. For work on the Small Factor Change (SFC) problem, a subdirectory called "_SFC”, for instance, might be created in C:\SPLUSWIN\HOME. Once this subdirectory is created, the following command can be used in S-Plus to direct output to the directory:

attach("C:\\SPLUSWIN\\HOME_SFC",pos=1)

Remember that all S-Plus objects will be stored in this directory until either the directory is changed again with the attach command or S-Plus is exited. When S-Plus is restarted after being shut down, this command must be entered again to send objects to the directory or to change objects in the directory.

Once the directory is set, the getms subroutine should be entered as an S-Plus object. In addition, the subroutines putinm, putinm2, putinmint, putinm3int, secorder, thorder, qrtorder, qntorder, and sixorder, and the matrix triangle that are called by getms should be entered as objects. Refer to the appendix to see the commented code for these subroutines.

The subroutine getms and its subroutines require as inputs an S-matrix, a T-matrix, a number of surface models desired, a maximum number of potentially active factors, and a minimum number of potentially active factors. It is often best to create the S- and T-matrices as objects and then use these objects as input for getms, rather than defining the matrices in the call to getms. To create the S- and T- matrices smat and tmatr, which are referred to as defaults in Chapter 2 but are not treated differently than any other S- and T-matrices in the current implementation of the test bed, the following code should be used:

smat_matrix(c(1,1,1,1,1,1,0,0,0,0,0,0), 6, 2)

tmatr_matrix(c(1,1,0,0), 2, 2)

which produces the matrices:

[image: image1.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0

1

0

1

0

1

0

1

0

1

0

1

smat

 and
[image: image2.wmf]ú

û

ù

ê

ë

é

=

0

1

0

1

tmatr

.

Notice that the matrix command creates matrices with the given data by filling the first column completely before filling the second. Because “s”, “t”, and “tmat” are reserved variable names, the names “smat” and “tmatr” were used as the default matrix names. If the user wants to save multiple versions of any of the input objects, different object names should be used so the old objects are not overwritten.

To create a response surface model called “my.m” using the default values for the inputs, the function call would be of the form:

my.m_getms(smat, tmatr, 1, 1, 15) or

my.m_getms(smat, tmatr, numm, botk, topk)

if the user has defined the variables:

numm_1

number of surface models to be created

botk_1

lower bound on the range of the active factors

topk_15

upper bound on the range of the active factors

Of course, other values can be used in the function call so that the user can design the types of response surface models desired. For instance, to create five response surface models using the matrices:

example.s =
[image: image3.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

50

.

0

75

.

0

50

.

0

75

.

0

50

.

0

75

.

0

50

.

0

75

.

0

50

.

0

75

.

0

00

.

0

90

.

0

 and example.t =
[image: image4.wmf]ú

û

ù

ê

ë

é

05

.

0

15

.

0

10

.

0

40

.

0

with eight to ten possible active factors on each surface model, the subroutine call would be:

my.m_getms(example.s, example.t, 5, 8, 10) .

The test bed creates the desired number of response surface models using these inputs and stores them as a list of matrices that we call M matrices. The M matrix representing a surface model has as many rows as there are terms (excluding the intercept) in the surface model and as many columns as there are potentially active factors on the surface. Each row of the M matrix represents the exponents on the potentially active factors for a term in the model. For example, the surface model: Y = 0 + x1 + 2x2 + 1(2)x12 with two potential active factors would have an M matrix:
[image: image5.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

0

2

1

0

0

1

. Row 1, for instance, represents the exponents of x1 (1) and x2 (0) in the first term in the equation after the intercept. These M matrices are returned as a list because of the convenience of this structure in S-Plus.

It is suggested that the user examine the M matrices after they are created to make sure they are of the form expected. Designing the inputs to get the desired models often takes some trial and error, so the user should look at the M matrices to be sure they have an appropriate number of potentially active factors (columns) and terms (rows). Reading these matrices and translating them to response surface models also takes some practice. The M matrices are ordered according to the degree of terms in the model, except that third-order interaction terms appear last. That is, the first-order terms appear first, followed by the second-order main effects and interactions, then the third- through sixth-order main effect terms, then the third-order interactions. By looking for these sections of rows in the M matrix the user can more easily translate the matrix to a response surface model. As an example, for the surface model:

y=0 + 1(1)x1 + 2(1)x2 + 2(2)x22 + 12x1x2 + 1(3)x13 + 2(3)x23 + 1(4)x14 + 2(4)x24 + 2(5)x25 + 2(6)x26 + 112x12x2 + 122x1x22,

the M matrix would look like:

[image: image6.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

1

2

2

1

6

0

5

0

4

0

0

4

3

0

0

3

1

1

2

0

1

0

0

1

Notice that the M matrices produced by getms represent surface models that are made up of the number of potentially active factors, not of the number of available factors. During the development of the test bed, when the M matrices were checked to ensure they represented the appropriate types of surface models, looking at only the potentially active factors made the inspection much easier. Since it seems likely that users will also find it easier to check M matrices without any additional inactive terms, getms was designed to create M matrices this way. To create M matrices where the inactive factors and the potentially active factors are randomly mixed, the subroutine mixfactors, included in the appendix, should be used. Once this subroutine is entered as an object in S-Plus, a new list of M matrices with inactive factors mixed with potentially active factors called, for instance, “my.newm”, can be created with the command:

my.newm_mixfactors(my.m, k)

where my.m is a list of matrices created by getms and k is the number of available factors.

In order to create response surface functions from the surface models represented by an M matrix, the getbetas subroutine must be entered as an S-Plus object. The name getbetas was used because in the early stages of development of this code the coefficients were called ’s rather than ’s. Once again, code for this is found in the Appendix. This subroutine requires as inputs the list of M matrices to be used to create the response surface functions, the flatness term that affects the number of points used in the regression, the number of surface functions desired for each M matrix in the list, the bounds on the range of operability, and the bounds on the response range. Note that in the current implementation, all potentially active factors have the same range of operability. The user may enter the objects we refer to as defaults in Chapter 2 with the following code:

r_2

flatness coefficient

minro_0

lower bound on the region of operability

maxro_100

upper bound on the region of operability

minrr_0

lower bound on the response region

maxrr_100

upper bound on the response region

The following code shows how to create a list containing one response surface function for each of the surface models represented in the list of M matrices my.newm using the default input values. Here, the list of vectors returned is called “my.gamma”.

my.gamma_getbetas(my.newm, r, 1, minro, maxro, minrr, maxrr)

Note that the object my.newm in the function call is a list of matrices. It is important that this object be a list for the internal structure of the subroutine, even if it is a list containing only one matrix. Since the subroutine getms returns a list of matrices, the getbetas subroutine is designed to accept input in this form. If the user has a matrix myown.m that represents a model that s/he would like to use to create a response surface function with the getbetas subroutine, this matrix can be converted to a list of matrices containing only one matrix with the function call:

myown.m_list(my.newm)

The object my.gamma returned by the getbetas subroutine is a list of the same length as the my.newm object, where each element in the list is in turn a list of vectors. Each list of vectors contains the number of surface functions requested per surface model in the input. We call these the  vectors (see equation (1) in Chapter 2). The length of each  vector is the same as the number of terms in the surface model or equivalently one (for the intercept) plus the number of rows in the M matrix from the list my.newm that defines the surface model. This vector contains the coefficients for each of the terms in the surface function, where the first element is the intercept and all other elements map to the rows of the M matrix representing the terms in the surface model associated with the surface function. Thus, an M matrix and a  vector together represent one response surface function. Note that more than one  vector may be combined with the same M matrix to create multiple response surface functions using the same response surface model. Once again, the user may enter other values as inputs if the default inputs are not acceptable.

Now, an M matrix and  vector together represent a response surface function in S-Plus, but they do not form an equation per se. The subroutine surfile, also included in the appendix, takes these two objects and creates an equation for the response surface function that is placed in the text file surfout.txt. This equation is in a format that is readable by most software packages and programming languages, with the available factors in the response surface function labeled x1, x2, …, xk. To call this subroutine once it has been entered as an S-Plus object, the following code should be used:

surfile(my.newm[[1]], my.gamma[[1]][[1]])

Two things should be noted about this subroutine call. First of all, there is no assignment involved, since no new S-Plus object is created. The function call creates the file surfout.txt in the c:/SPLUSWIN/HOME/ directory, or appends the equation to this file if it already exists. Second, a single M matrix and  vector are used as input, rather than lists. Because a series of equations in the output file that might represent lists of M matrices and  vectors could easily be confusing to read and interpret, only one equation is created at a time by the subroutine. If the user desires, a simple while loop could be created using this subroutine to write many equations to the output file at once.

The final subroutine, getpts, may be used to randomly sample points from a response surface function, and must also be entered as an S-Plus object. This subroutine requires as inputs the M matrix associated with the surface function, the  vector associated with the surface function, the bounds on the region of operability of the surface, the standard deviation of the normally distributed noise, and the number of points desired. Once again, if desired the user must also enter the default value of the standard deviation as:

noise.sd_1

Continuing the example, in order to sample a random point called “my.point” on one of the response surface functions created above, we could use this subroutine with the command:

my.point_getpts(my.newm[[1]], my.gamma[[1]][[1]], 1, minro, maxro, noise.sd)

This would return a list that contains the coordinates of the factor values randomly chosen as the sample point and the response value, with error, at that point. If desired, the standard deviation of the noise may be set to zero so the true value on the response surface function at a point can be sampled. Note that in this subroutine, my.newm[[1]] and my.gamma[[1]][[1]] are, respectively, a matrix and a vector, rather than a list.

Finally, an important element of this subroutine is the following code:

tempx <- c(1, apply(matrix(startpts[[i]][[j]][[k]], p, f, byrow = T)^mnow,1, prod))

startresps[i, j, k] <- tempx %*%betanow

The first line of this code takes a point in the region of operability, represented by startpts[[i]][[j]][[k]], along with an M matrix represented by mnow with p rows and f columns, and expands the point into the vector tempx representing the terms in the model with the values from the vector startpts[[i]][[j]][[k]] substituted in. The second line of code calculates the true response, startresps[i,j,k], at this point by multiplying this vector by the coefficient vector betanow of the response surface function. While this is generic code taken from the subroutine, it can be used to calculate the response at a particular point by replacing the object startpts[[i]][[j]][[k]] with a vector representing the point. Thus, by using these two lines of code the user can sample any particular point on a response surface function.

Using these subroutines, a response surface function can be randomly generated with given user inputs to resemble the type of surface that the user is interested in. Points may then be randomly sampled from this surface function, with corresponding error, to be used for testing. Instead of randomly sampling points, the user may want to write another subroutine to collect data from the surface function in a regulated manner, such as an experiment design. Because such subroutines would be specific to the interests of the researcher, no such subroutines are included here.

Appendix

getms_function(smat, tmatr, numm, botk, topk)

{

This subroutine makes M matrices for the test bed.

smat=the s-matrix you use to create the M’s

tmatr=the t-matrix you use to create the M’s

numm= the number of M matrices you want to create

botk=the lower limit on the number of active factors

topk=the upper limit on the number of active factors

b <- 1

savem2 <- vector(“list”, numm)

this starts the loop of the numm M matrices.

while(b <= numm) {

f <- ceiling(runif(1, botk-1, topk))

this chooses the number of active factors.

nummain <- rbinom(1, f, smat[1, 1])

this chooses the 1st order main effect terms. There will always be at least one.

if(nummain < 1) {

nummain <- 1

}

this initiallizes the number of each order of terms in the model

numsqfol <- 0

numsqnon <- 0

num2intfol <- 0

num2intnon <- 0

numcubfol <- 0

numcubnon <- 0

numqrtfol <- 0

numqrtnon <- 0

numqntfol <- 0

numqntnon <- 0

numsixfol <- 0

numsixnon <- 0

num3intfol <- 0

num3intnon <- 0

This randomizes the order of the main effect terms

ordermain <- order(runif(f, 0, 1))

This creates the 1st order main effect rows of M

m <- matrix(0, nummain, f)

for(i in 1:nummain)

m[i, ordermain[i]] <- 1

This picks the number of 2nd order main effect follower terms and orders them.

numsqfol <- rbinom(1, nummain, smat[2, 1])

ordersqfol <- order(runif(nummain, 0, 1))

This picks the number of 2nd order main effect non-follower terms and orders them.

if(f - nummain > 0) {

numsqnon <- rbinom(1, f - nummain, smat[2, 2])

}

ordersqnon <- order(runif(f - nummain, 0, 1))

This puts the 2nd order main effect terms in M using subroutine putinm (see below)

m <- putinm(numsqfol, ordermain, ordersqfol, ordersqnon, 2, m,

numsqnon, nummain, nummain, nummain, f)

ordersq <- c(rep(0, f))

This determines the order of the 2nd order main effect terms using subroutine secorder

ordersq <- secorder(ordersq, f, numsqfol, numsqnon, ordermain,

ordersqfol, nummain, ordersqnon)

This determines the number of 2nd order interactions via Pascal’s Triangle

tot2nd <- triangle[f, 2]

int2fol <- matrix(0, tot2nd, 2)

int2non <- matrix(0, tot2nd, 2)

int2dum <- c(0, 0)

i <- 1

g <- 1

h <- 1

while(i <= f) {

j <- i + 1

while(j <= f) {

int2dum[1] <- i

int2dum[2] <- j

if(int2dum[1] != int2dum[2]) {

 is2ndint <- runif(1, 0, 1)

 l <- 1

 if((is2ndint > tmatr[1, 1]) && (is2ndint >

 tmatr[1, 2])) {

 l <- nummain + 1

 }

 isfollow <- FALSE

 while(l <= nummain) {

 isfollow <- (isfollow || (int2dum[1] ==

 ordermain[l]) || (int2dum[2] ==

 ordermain[l]))

 if(isfollow) {

 if(is2ndint <= tmatr[1, 1]) {

 int2fol[g,] <- int2dum

 g <- g + 1

 l <- nummain + 1

 }

 }

 l <- l + 1

 }

 if(!(isfollow)) {

 if(is2ndint <= tmatr[1, 2]) {

 int2non[h,] <- int2dum

 h <- h + 1

 }

 }

}

j <- j + 1

}

i <- i + 1

}

num2intfol <- g - 1

num2intnon <- h – 1

This puts the 2nd order interaction terms into M using subroutine putinmint.

m <- putinmint(num2intfol, f, int2fol, m, num2intnon, int2non)

This lists the 2nd order interactions – to be used later to determine 3rd order interaction

followers and non-followers.

num2nd <- numsqfol + numsqnon + num2intfol + num2intnon

if(num2nd > 0) {

all2nd <- matrix(rep(0, num2nd * 2), num2nd, 2)

i <- 1

while(i <= numsqfol + numsqnon) {

all2nd[i, 1] <- ordersq[i]

all2nd[i, 2] <- ordersq[i]

i <- i + 1

}

if(num2intfol > 0) {

all2nd[(numsqfol + numsqnon + 1):(num2nd -

 num2intnon),] <- int2fol[1:num2intfol,]

}

if(num2intnon > 0) {

all2nd[(num2intfol + numsqnon + numsqfol + 1):(

 num2nd),] <- int2non[1:num2intnon,]

}

}

This determines the 3rd order main effect terms in a similar way to the 2nd order.

if(numsqfol + numsqnon > 0) {

numcubfol <- rbinom(1, numsqfol + numsqnon, smat[3, 1]

)

ordercubfol <- order(runif(numsqfol + numsqnon, 0, 1))

}

if(f - (numsqfol + numsqnon) > 0) {

numcubnon <- rbinom(1, f - (numsqfol + numsqnon), smat[

3, 2])

ordercubnon <- order(runif(f - (numsqfol + numsqnon),

0, 1))

}

m <- putinm2(numcubfol, ordersq, ordercubfol, ordercubnon, 3,

m, numcubnon, nummain, numsqfol, numsqnon,f)

ordercub <- c(rep(0, f))

ordercub <- thorder(ordercub, f, numcubfol, numcubnon, ordersq,

ordercubfol, nummain, numsqfol, numsqnon, ordercubnon)

This determines the 4th order main effect terms.

if(numcubfol + numcubnon > 0) {

numqrtfol <- rbinom(1, numcubfol + numcubnon, smat[4,

1])

orderqrtfol <- order(runif(numcubfol + numcubnon, 0, 1

))

}

if(f - (numcubfol + numcubnon) > 0) {

numqrtnon <- rbinom(1, f - (numcubfol + numcubnon),

smat[4, 2])

orderqrtnon <- order(runif(f - (numcubfol + numcubnon),

0, 1))

}

orderqrt <- c(rep(0, f))

orderqrt <- qrtorder(orderqrt, f, numqrtfol, numqrtnon,

ordercub, orderqrtfol, nummain, numcubfol, numcubnon,

orderqrtnon)

m <- putinm2(numqrtfol, ordercub, orderqrtfol, orderqrtnon, 4,

m, numqrtnon, nummain, numcubfol, numcubnon,f)

This determines the 5th order main effect terms.

if(numqrtfol + numqrtnon > 0) {

numqntfol <- rbinom(1, numqrtfol + numqrtnon, smat[5,

1])

orderqntfol <- order(runif(numqrtfol + numqrtnon, 0, 1

))

}

if(f - (numqrtfol + numqrtnon) > 0) {

numqntnon <- rbinom(1, f - (numqrtfol + numqrtnon),

smat[5, 2])

orderqntnon <- order(runif(f - (numqrtfol + numqrtnon),

0, 1))

}

orderqnt <- c(rep(0, f))

orderqnt <- qntorder(orderqnt, f, numqntfol, numqntnon,

orderqrt, orderqntfol, nummain, numqrtfol, numqrtnon,

orderqntnon)

m <- putinm2(numqntfol, orderqrt, orderqntfol, orderqntnon, 5,

m, numqntnon, nummain, numqrtfol, numqrtnon,f)

This determines the 6th order main effect terms.

if(numqntfol + numqntnon > 0) {

numsixfol <- rbinom(1, numqntfol + numqntnon, smat[6,

1])

ordersixfol <- order(runif(numqntfol + numqntnon, 0, 1

))

}

if(f - (numqntfol + numqntnon) > 0) {

numsixnon <- rbinom(1, f - (numqntfol + numqntnon),

smat[6, 2])

ordersixnon <- order(runif(f - (numqntfol + numqntnon),

0, 1))

}

ordersix <- c(rep(0, f))

ordersix <- sixorder(ordersix, f, numsixfol, numsixnon,

orderqnt, ordersixfol, nummain, numqntfol, numqntnon,

ordersixnon)

m <- putinm2(numsixfol, orderqnt, ordersixfol, ordersixnon, 6,

m, numsixnon, nummain, numqntfol, numqntnon,f)

This determines the 3-factor interactions in the M matrix

if((f > 2) && ((tmatr[2, 1] > 0) || (tmatr[2, 2] > 0))) {

factoff <- cumprod(1:f)

if(f > 3) {

tot3rd <- f + f * (f - 1) + factoff[f]/(

 factoff[3] * factoff[f - 3])

}

if(f == 3) {

tot3rd <- f + f * (f - 1) + 1

}

int3fol <- matrix(rep(0, tot3rd * 3), tot3rd, 3)

int3non <- matrix(rep(0, tot3rd * 3), tot3rd, 3)

int3dum <- c(0, 0, 0)

i <- 1

j <- 1

k <- 1

h <- 1

g <- 1

This loop structure enumerates all possible 3rd order interactions.

while(i <= f) {

while(j <= f) {

 while(k <= f) {

 int3dum[1] <- i

 int3dum[2] <- j

 int3dum[3] <- k

This eliminates the main effect terms from this loop.

 if(!((int3dum[1] == int3dum[2]) && (

 int3dum[1] == int3dum[3]))) {

This draws a random number to compare with the probabilities in the T-matrix.

 is3rdint <- runif(1, 0, 1)

 l <- 1

 if((is3rdint > tmatr[2, 1]) && (is3rdint

>

 tmatr[2, 2])) {

 l <- num2nd + 1

 }

 isfollow <- FALSE

This checks to see if the interaction is a follower or non-follower.

Counter is the letter “l” which looks a lot like a one. Sorry.

 while(l <= num2nd) {

 isfollow <- isfollow || ((int3dum[1] ==

 all2nd[l, 1]) && (int3dum[2] ==

 all2nd[l, 1])) || ((int3dum[2] ==

 all2nd[l, 1]) && (int3dum[1] ==

 all2nd[l, 2])) || ((int3dum[1] ==

 all2nd[l, 1]) && (int3dum[3] ==

 all2nd[l, 2])) || ((int3dum[3] ==

 all2nd[l, 1]) && (int3dum[1] ==

 all2nd[l, 2])) || ((int3dum[2] ==

 all2nd[l, 1]) && (int3dum[3] ==

 all2nd[l, 2])) || ((int3dum[3] ==

 all2nd[l, 1]) && (int3dum[2] ==

 all2nd[l, 2]))

 if(isfollow) {

 if(is3rdint <= tmatr[2, 1]) {

 int3fol[h, 1] <- int3dum[1]

 int3fol[h, 2] <- int3dum[2]

 int3fol[h, 3] <- int3dum[3]

 h <- h + 1

 l <- num2nd + 1

 }

 }

 l <- l + 1

 }

 if(!(isfollow)) {

 if(is3rdint <= tmatr[2, 2]) {

 int3non[g, 1] <- int3dum[1]

 int3non[g, 2] <- int3dum[2]

 int3non[g, 3] <- int3dum[3]

 g <- g + 1

 }

 }

 }

 k <- k + 1

 }

 j <- j + 1

 k <- j

}

i <- i + 1

j <- i

k <- i

}

num3intfol <- h - 1

num3intnon <- g – 1

This puts the 3rd order interactions terms in the M-matrix

m <- putinm3int(num3intfol, int3fol, m, num3intnon, f,

int3non)

}

savem2[[b]] <- m

b <- b + 1

}

savem2

}

putinm_function(numfol, orderprev, orderfol, ordernon, a, m, numnon, num, numprevfol,

numprevnon, f)

{

This subroutine puts main effect terms in the M-matrix. (Only works for a=2)

numfol is the number of follower terms of this order

orderprev is the order vector for the terms of degree a-1

orderfol is the order of the follower terms of this order

ordernon is the order of the non-follower terms

a is the order of the main effect terms to be put in m

m is the M-matrix

numnon is the number of non-follower terms of this order

num is the number of main effect terms

numprevfol is the number of follower main effect terms of degree a-1.

numprevnon is the number of non-follower main effect terms of degree a-1.

j <- 1

while(j < numfol + 1) {

term <- c(rep(0, orderprev[orderfol[j]] - 1), a, rep(0, f -

orderprev[orderfol[j]]))

m <- rbind(m, term)

j <- j + 1

}

j <- 1

while(j < numnon + 1) {

term <- c(rep(0, orderprev[num + ordernon[j]] - 1), a, rep(0,

f - orderprev[num + ordernon[j]]))

m <- rbind(m, term)

j <- j + 1

}

m

}

 secorder_function(ordersq, f, numsqfol, numsqnon, ordermain, ordersqfol, nummain,

ordersqnon)

{

#This subroutine finds all of the 2nd order main effect terms in the M-matrix.

check <- FALSE

k <- 1

while(k < numsqfol + numsqnon + 1) {

if(k < numsqfol + 1) {

ordersq[k] <- ordermain[ordersqfol[k]]

}

if(k > numsqfol) {

ordersq[k] <- ordermain[nummain + ordersqnon[k -

numsqfol]]

}

k <- k + 1

}

ordersq

k <- 1

i <- 1

while(k < f + 1) {

j <- 1

while(j < numsqfol + numsqnon + 1) {

check <- check | (ordersq[j] == k)

j <- j + 1

}

if(!check) {

ordersq[numsqfol + numsqnon + i] <- k

i <- i + 1

}

check <- FALSE

k <- k + 1

}

ordersq

}

 putinmint_function(numintfol, f, intfol, m, numintnon, intnon)

{

This subroutine puts the 2nd order interaction terms in the M matrix

numintfol=the number of following interactions

f=the number of active factors

intfol=the 2x(numintfol) matrix of following 2nd order interactions

m=the M matrix

numintnon=the number of non-following interactions

intnon=the 2x(numintnon) matrix of non-following 2nd order interactions.

k <- 1

while(k < numintfol + 1) {

term <- c(rep(0, f))

term[intfol[k, 1]] <- 1

term[intfol[k, 2]] <- 1

m <- rbind(m, term)

k <- k + 1

}

k <- 1

while(k < numintnon + 1) {

term <- c(rep(0, f))

term[intnon[k, 1]] <- 1

term[intnon[k, 2]] <- 1

m <- rbind(m, term)

k <- k + 1

}

m

}

 putinm2_function(numfol, orderprev, orderfol, ordernon, a, m, numnon, num, numprevfol, numprevnon,f)

{

This subroutine puts the 3rd and higher order main effect terms in the model.

numfol=the number of following main effect terms of this degree

orderprev=the order of the a-1 degree main effect terms

orderfol=the order of the following main effect terms of this degree

ordernon=the order of the non-following main effect terms of this degree

a=the degree of terms

m=the M matrix

numnon=the number of non-following main effect terms of this degree

num=the number of main effect terms

numprevfol=the number of following main effect terms of degree a-1

numprevnon=the number of non-following main effect terms of degree a-1

f=the number of active factors in the model

j <- 1

while(j < numfol + 1) {

term <- c(rep(0, orderprev[orderfol[j]] - 1), a, rep(0, f -

orderprev[orderfol[j]]))

m <- rbind(m, term)

j <- j + 1

}

j <- 1

while(j < numnon + 1) {

term <- c(rep(0, orderprev[numprevfol + numprevnon + ordernon[

j]] - 1), a, rep(0, f - orderprev[numprevfol +

numprevnon + ordernon[j]]))

m <- rbind(m, term)

j <- j + 1

}

m

}

 thorder_function(ordercub, f, numcubfol, numcubnon, ordersq, ordercubfol, nummain,

numsqfol, numsqnon, ordercubnon)

{

#This subroutine finds all of the 3rd order main effect terms in the M-matrix.

check <- FALSE

k <- 1

while(k < numcubfol + numcubnon + 1) {

if(k < numcubfol + 1) {

ordercub[k] <- ordersq[ordercubfol[k]]

}

if(k > numcubfol) {

ordercub[k] <- ordersq[numsqfol + numsqnon +

ordercubnon[k - numcubfol]]

}

k <- k + 1

}

k <- 1

i <- 1

while(k < f + 1) {

j <- 1

while(j < numcubfol + numcubnon + 1) {

check <- check | (ordercub[j] == k)

j <- j + 1

}

if(!check) {

ordercub[numcubfol + numcubnon + i] <- k

i <- i + 1

}

check <- FALSE

k <- k + 1

}

ordercub

}

 qrtorder_function(orderqrt, f, numqrtfol, numqrtnon, ordercub, orderqrtfol, nummain,

numcubfol, numcubnon, orderqrtnon)

{

#This subroutine finds all of the 4th order main effect terms in the M-matrix.

check <- FALSE

k <- 1

while(k <= numqrtfol + numqrtnon) {

if(k < numqrtfol + 1) {

orderqrt[k] <- ordercub[orderqrtfol[k]]

}

if(k > numqrtfol) {

orderqrt[k] <- ordercub[numcubfol + numcubnon +

orderqrtnon[k - numqrtfol]]

}

k <- k + 1

}

k <- 1

i <- 1

while(k <= f) {

j <- 1

while(j <= numqrtfol + numqrtnon) {

check <- check | (orderqrt[j] == k)

j <- j + 1

}

if(!check) {

orderqrt[numqrtfol + numqrtnon + i] <- k

i <- i + 1

}

check <- FALSE

k <- k + 1

}

orderqrt

}

 qntorder_function(orderqnt, f, numqntfol, numqntnon, orderqrt, orderqntfol, nummain,

numqrtfol, numqrtnon, orderqntnon)

{

#This subroutine finds all of the 5th order main effect terms in the M-matrix.

check <- FALSE

k <- 1

while(k < numqntfol + numqntnon + 1) {

if(k < numqntfol + 1) {

orderqnt[k] <- orderqrt[orderqntfol[k]]

}

if(k > numqntfol) {

orderqnt[k] <- orderqrt[numqrtfol + numqrtnon +

orderqntnon[k - numqntfol]]

}

k <- k + 1

}

k <- 1

i <- 1

while(k < f + 1) {

j <- 1

while(j < numqntfol + numqntnon + 1) {

check <- check | (orderqnt[j] == k)

j <- j + 1

}

if(!check) {

orderqnt[numqntfol + numqntnon + i] <- k

i <- i + 1

}

check <- FALSE

k <- k + 1

}

orderqnt

}

 sixorder_function(ordersix, f, numsixfol, numsixnon, orderqnt, ordersixfol, nummain,

numqntfol, numqntnon, ordersixnon)

{

#This subroutine finds all of the 6th order main effect terms in the M-matrix.

check <- FALSE

k <- 1

while(k < numsixfol + numsixnon + 1) {

if(k < numsixfol + 1) {

ordersix[k] <- orderqnt[ordersixfol[k]]

}

if(k > numsixfol) {

ordersix[k] <- orderqnt[numqntfol + numqntnon +

ordersixnon[k - numsixfol]]

}

k <- k + 1

}

k <- 1

i <- 1

while(k < f + 1) {

j <- 1

while(j < numsixfol + numsixnon + 1) {

check <- check | (ordersix[j] == k)

j <- j + 1

}

if(!check) {

ordersix[numsixfol + numsixnon + i] <- k

i <- i + 1

}

check <- FALSE

k <- k + 1

}

ordersix

}

 putinm3int_function(numintfol, intfol, m, numintnon, f, intnon)

{

This subroutine puts the third order interaction terms in the model.

numintfol=the number of following third order interactions

intfol=the 3x(numintfol) matrix of following 3rd order interactions

m=the M matrix

numintnon=the number of non-following 3rd order interactions

f=the number of active terms in the model

intnon=the 3x(numintnon) matrix of non-following 3rd order interactions

k <- 1

while(k < numintfol + 1) {

term <- c(rep(0, f))

term[intfol[k, 1]] <- term[intfol[k, 1]] + 1

term[intfol[k, 2]] <- term[intfol[k, 2]] + 1

term[intfol[k, 3]] <- term[intfol[k, 3]] + 1

m <- rbind(m, term)

k <- k + 1

}

k <- 1

while(k < numintnon + 1) {

term <- c(rep(0, f))

term[intnon[k, 1]] <- term[intnon[k, 1]] + 1

term[intnon[k, 2]] <- term[intnon[k, 2]] + 1

term[intnon[k, 3]] <- term[intnon[k, 3]] + 1

m <- rbind(m, term)

k <- k + 1

}

m

}

This matrix is used to determine the maximum number of interaction terms for each

number of active factors.

triangle_matrix(scan(),byrow=T,ncol=14)

 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 2 1 0 0 0 0 0 0 0 0 0 0 0 0

 3 3 1 0 0 0 0 0 0 0 0 0 0 0

 4 6 4 1 0 0 0 0 0 0 0 0 0 0

 5 10 10 5 1 0 0 0 0 0 0 0 0 0

 6 15 20 15 6 1 0 0 0 0 0 0 0 0

 7 21 35 35 21 7 1 0 0 0 0 0 0 0

 8 28 56 70 56 28 8 1 0 0 0 0 0 0

 9 36 84 126 126 84 36 9 1 0 0 0 0 0

10 45 120 210 252 210 120 45 10 1 0 0 0 0

11 55 165 330 462 462 330 165 55 11 1 0 0 0

12 66 220 495 792 924 792 495 220 66 12 1 0 0

13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 0

14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15

mixfactors_function(mx, k)

{

This subroutine picks the active factors randomly from the k total factors under

consideration

mx=the list of M-matrices created by getms

k=the total number of factors under consideration

numm_length(mx)

mout <- mx

j_1

while (j <= numm) {

mnow_mx[[j]]

numinm_dim(mnow)

p <- numinm[1]

f <- numinm[2]

newm_matrix(0, p, k)

pickfact_runif(k, 0, 1)

ordfact_order(pickfact)

i_1

while (i <= f) {

newm[,ordfact[i]]_mnow[,i]

i_i+1

}

mout[[j]]_newm

j_j+1

}

mout

}

getbetas_function(mx, r, numbeta, minro, maxro, minrr, maxrr)

{

This subroutine gets the beta vectors for the underlying surfaces

mx=the list of M-matrices that the betas will be applied to

r = the flatness factor controlling the number of regression points

numm = the number of M-matrices in the list

numbeta = the number of beta vectors to be generated for each M-matrix.

dummyb_vector(“list”,numbeta)

numm_length(mx)

betas_vector(“list”, numm)

v_1

while (v <= numm){

betas[[v]]_dummyb

v_v+1

}

j <- 1

while (j <= numm) {

m <- mx[[j]]

numinm <- dim(m)

p <- numinm[1]

f <- numinm[2]

k <- 1

while (k <= numbeta) {

rmult <- ceiling(r * p * f)

surfpt1 <- runif(rmult, minrr, maxrr)

scr_(maxro-minro)*.3

x <- matrix(runif(rmult * f, (minro-scr), maxro+scr)), rmult, f)

tempx4 <- matrix(rep(0, rmult * p), rmult, p)

i <- 1

while (i <= rmult) {

tempx4[i,] <- apply(matrix(x[i,], p, f, byrow = T)^m, 1, prod)

i <- i + 1

}

tempx3 <- data.frame(surfpt1,tempx4)

mod1 <- lm(tempx3)

scalebeta2 <- coefficients(mod1)

betas[[j]][[k]] <- scalebeta2

k <- k + 1

}

j <- j + 1

}

betas

}

gtpnts_function(ms, betas, numpts, minro, maxro, noise.sd)

{

This subroutine selects starting points at random and calculates the true response

at each point using the betas and M-matrix specified.

ms = the M matrix associated with the surface

betas = the beta vector associated with the surface

numpts = the number of points to randomly sample from the surface

minro = the lower bound on the region of operability

maxro = the upper bound on the region of operability

noise.sd = the standard deviation of the normally distributed noise component

numm_length(ms)

numbeta_length(betas[[1]])

dummyb_vector(“list”,numm)

dummyc_vector(“list”, numbeta)

startpts_vector(“list”, numpts)

v_1

while (v <= numm){

dummyc[[v]]_dummyb

v_v+1

}

v_1

while (v <= numm){

startpts[[v]]_dummyc

v_v+1

}

dummyd <- list(dummyc, dummyc, dummyc, dummyc, dummyc)

startpts <- list(dummyd, dummyd, dummyd, dummyd, dummyd)

startresps <- array(rep(0, 125), c(5, 5, 5))

i <- 1

while(i <= 5) {

j <- 1

mnow <- ms[[i]]

while(j <= 5) {

k <- 1

betanow <- betas[[i]][[j]]

while(k <= 5) {

numinm <- dim(mnow)

p <- numinm[1]

f <- numinm[2]

startpts[[i]][[j]][[k]] <- c(runif(f, minro,

 maxro))

tempx <- c(1, apply(matrix(startpts[[i

]][[j]][[k]], p, f, byrow = T)^mnow,

 1, prod))

startresps[i, j, k] <- tempx %*%

 betanow

if (noise.sd > 0) {

startresps[i,j,k]_startresps[i,j,k] + rnorm(1, 0, noise.sd)

}

k <- k + 1

}

j <- j + 1

}

i <- i + 1

}

startpts <- list(startpts, startresps)

startpts

}

surfile_function(m, scalebeta) {

This function creates the text file “surfout.txt” containing the response surface function

#
represented by the M matrix “m” and the gamma vector “scalebeta”

numinm_dim(m)

p <- numinm[1]

k<- numinm[2]

cat("\n", scalebeta[1], "+", file="surfout.txt", fill=F, append=T)

i_1

while (i <= p) {

cat(format(scalebeta[i+1], scientific=F, digits=5), file="surfout.txt", sep="", fill=F, append=T)

if (m[i,1] > 0) {

cat("*x1^", m[i,1], file="surfout.txt", sep="", fill=F, append=T)

}

j_2

while (j <= k) {

if (m[i,j] > 0) {

cat("*x”,j,”^", m[i,j], file="surfout.txt", sep="", fill=F, append=T)

}

j_j+1

}

if (i < p && scalebeta[i+2] > 0) {

cat(“+”,file="surfout.txt", sep="", fill=F, append=T)

}

i_i+1

}

cat("\n", file="surfout.txt", sep="", fill=F, append=T)

}

objects()

[1] ".Last.value" "getbetas" "getms" "gtpnts"

 [5] "putinm" "putinm2" "putinm3int" "putinmint"

 [9] "qntorder" "qrtorder" "secorder" "sixorder"

[13] "thorder" "triangle" "mixfactors" "surfile"

EXAMPLE

Sample input: 2 surface models, 3 surfaces/model, 3-7 active factors, flatness of 2,

numofm_2

mink_2

maxk_7

smatrix_matrix(c(rep(.6,6), 0, rep(.1,5)), 6, 2)

smatrix

tmatrix_matrix(c(.8,.8,.3,.3), 2, 2)

tmatrix

examplems_getms(smatrix, tmatrix, numofm, mink, maxk)

examplems

I get 2 M-matrices.

flatness_2

numbofbeta_3

examplebetas_getbetas(examplems,2,numofm,numbofbeta)

I get 3 sets of betas for each of the M-matrices in examplems.

} First-order main effect terms

} Second-order main effect term

} Second-order interaction term

} Third-order main effect terms

} Fourth-order main effect terms

} Fifth-order main effect term

} Sixth-order main effect term

} Third-order interaction terms

_986798196.unknown

_986798208.unknown

_986798801.unknown

_986288867.unknown

_986288923.unknown

_986044372.unknown

