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Factor screening with statistical control makes sense in the context of simulation experiments that have

random error, but can be run automatically on a computer and thus can accommodate a large number

of replications. The discrete-event simulations common in the operations research field are well suited to

controlled screening. In this paper, two methods of factor screening with control of Type | error and power

are compared. The two screening methods are both robust with respect to two-factor interactions and
nonconstant variance. The first method is an established sequential method called controlled sequential
bifurcation for interactions (CSB-X). The second method uses a fractional factorial design in combination
with a two-stage procedure for controlling power. The two-stage controlled fractional factorial (TCFF)
method requires less prior information and is more efficient when the percentage of important factors is

5% or higher.
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Sequential Bifurcation.

HE TERM computer experiment is common in the
Tstatistical literature (see Santner et al. (2003))
and refers to an experiment on a computer simula-
tion of a physical system such as a material or a pro-
cess. Typically, computer experiments are thought
to be deterministic (having no random error other
than rounding error). This is because many engi-
neering simulations use finite-element or other differ-
ential equation-based simulation methods that have
no random component. However, in the operations
research community, the term “simulation” is most
commonly used to refer to discrete-event simula-
tions of manufacturing or service systems (see Banks
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et al. (2005)). These simulations are typically com-
plex queueing systems that simulate products or cus-
tomers flowing through a system. The simulation is
driven by random-number generators that draw ran-
dom arrival times for the products or customers and
random service and failure times for the machines or
stations. The input distributions for these random-
number generators are based on the distributions ob-
served for each type of machine or station in the
system. Typical software packages for this type of
discrete-event simulation include Witness®, Arena®,
Simul8®, and Factory Explorer®. Many other soft-
ware packages have been developed for more specific
scenarios, for example, MedModel® for health-care
simulation. Although they do have random noise like
physical experiments, discrete-event simulation ex-
periments share some attributes with computer ex-
periments:

1. In many cases, the whole experiment can be
programmed to run automatically.

2. Compared with physical experiments, it is usu-
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ally cheaper and easier to switch factor settings
in a simulation experiment. Therefore, the de-
sign of the simulation experiment is often se-
quential, using a design criterion to choose the
next run or to stop the experiment.

3. In many cases, replications are not as expensive
as they are in physical experiments. This fact
allows for the experiment size to be determined
by a desired precision (or correctness) instead
of a preset experimental budget.

In this article, we will compare two approaches
for factor screening in the context of discrete-event
simulation experiments. Factor screening refers to an
experiment that is designed to sort a large set of fac-
tors into those that have an important effect on the
system in question and those that do not substan-
tially affect the system response (see Dean and Lewis
(2005)). Factor screening is used for many different
purposes. It is often used as a first stage of an opti-
mization or investigation procedure intended to re-
duce the number of factors that must be included in
more detailed investigation. However, there are many
other reasons for performing factor screening, includ-
ing (1) gaining a better understanding of a system by
finding the factors that affect the output and, equally
important, finding those factors that have a negligi-
ble effect on the output over the range of interest,
(2) preparing for future adjustment or control of a
system by finding a set of factors that can affect the
output, and (3) simplifying the simulation model by
removing portions of the model that have little effect
on the output of interest.

Typically in factor screening, a hierarchical ar-
gument is used so factors with important main ef-
fects are first screened out and then additional ex-
periments are done to determine if those important
factors interact with each other or have higher or-
der effects. Because the cost of replication is so high,
the emphasis in factor screening for physical exper-
iments has been to allow for the estimation of as
many main effects as possible in as few runs as pos-
sible. This has lead to approaches such as supersat-
urated designs (see Lu and Xu (2004)) and group
screening (see Lewis and Dean (2001)). In view of
the three characteristics of discrete-event simulation
experiments listed above, the screening methods that
we will compare in this article will be driven not by
a specific number of experimental runs but instead
by a desired level of Type I error (the probability
of declaring a factor important when it is not) and
power (the probability of correctly declaring a fac-
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tor important). Due to the statistical control that
we impose on this screening experiment, we will call
this controlled screening. Of course, given that the
desired level of statistical control (power and level of
Type I error) is achieved, it is desirable to reduce the
number of replications and thereby reduce the total
amount of computer time needed for the screening
experiment. Thus, the number of replications needed
to achieve the desired level of control will be the cri-
terion for comparing the two screening methods.

In discrete-event simulations, the responses of in-
terest are often system-performance measures like
average cycle time for a product to pass through
the system. For complicated systems, there are often
hundreds of factors. For example, there may be many
stations or machines in the manufacturing system
and each station or machine may have several factors
associated with it. In many cases, these factors have a
known direction of effect on the response. For exam-
ple, increasing the speed of a transporter will likely
decrease the average cycle time if it has any effect at
all. Using the assumption that the directions of the
effects of the factors are known and the hierarchical
assumption that linear effects are a good indicator
of factor importance, Wan et al. (2005a) proposed
controlled sequential bifurcation (CSB), a controlled
factor-screening method for simulation experiments
that uses a form of binary search called sequential bi-
furcation. Sequential bifurcation was originally pro-
posed for deterministic screening by Bettonvil and
Kleijnen (1997). CSB was extended to provide error
control for screening main effects even in the presence
of two-factor interactions and second-order effects of
the factors (Wan et al. (2005b)). The new method is
called CSB-X. An interesting finding in Wan et al.
(2005b) is that, if interactions are not present, CSB-
X is usually as efficient as CSB in identifying main
effects (this depends on the variance structure at dif-
ferent levels of the factors). When two-factor interac-
tions are present, CSB is unable to correctly control
the identification of the main effects due to confound-
ing with the interactions. Thus, CSB-X is recom-
mended for controlled screening in almost all cases.
The primary purpose of this paper is to compare
CSB-X with another method of screening, namely,
a fractional factorial design that is used as part of
a two-stage method for controlling Type I error and
power.

In the next section, we briefly describe the objec-

tives of controlled screening. This structure was first
introduced in Wan et al. (2005a). We then briefly de-
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128 HONG WAN AND BRUCE E. ANKENMAN

scribe CSB-X and introduce a version of fractional
factorial screening that controls Type I error and
power using a two-stage sampling procedure similar
to the one used in Bishop and Dudewicz (1978) for a
two-way ANOVA layout. Finally we compare the two
methods under a variety of scenarios and shows the
circumstances under which each method is preferred.
Conclusions are then drawn.

Objective of the Controlled Screening

The purpose of this paper is to compare the per-
formance of two methods of controlled screening. In
order to compare the methods fairly, some structure
on the screening problem is now established. We be-
gin with the model. Suppose there are K factors and
a simulation output response represented by Y, then
we assume the following full second-order model:

K K K
Y =Bo+ Y Brze+ Y, D> PemTkam +e, (1)
k=1 k=1m=k
where zj represents the level of factor & and ¢ is
a normally distributed error term, the variance of
which is unknown and may depend on the levels
of the factors, i.e., € ~ N(0,0%(x)), where x =
(x1,22,...,2,). In this paper, we assume that the
factor levels are coded on a scale from —1 to 1. Later,
we will focus on Resolution IV, two-level designs that
are often used in main effects screening with non-
negligible interactions. In these designs, the linear
main-effects estimators are not confounded by any
other terms; however, many of the second-order in-
teractions may be confounded together and the pure
quadratic terms will be confounded with the estimate
of Og. Other designs could, in principle, be adapted
to the proposed method, but we leave this for future
research. To ease the discussion, we also assume that
larger values of the response, Y, are more desirable.
The case of a “smaller is better” response is easily
handled by making the response negative.

The goal of the controlled screening is to provide
an experimental design and analysis strategy to iden-
tify which factors have large linear main effects, the
Bk’s in (1). Two thresholds are established:

1. Ay is the threshold of importance used to es-
tablish the level of Type I error. Specifically, if
|8x| < Ag, then the probability of declaring fac-
tor k important should be less than «, where
a is selected by the experimenter. Typically,
a = 0.05.

2. A; is the critical threshold used to control the
power. Specifically, if | 8] < A;, then the prob-
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ability of declaring factor k£ important should
be greater than -y, where v is selected by the
experimenter. Typically, v > 0.80.

The scaling of the factors can be done in any way
that the experimenter finds useful; however, because
all factor effects are to be compared with the same
thresholds, they should be comparable in some sense.
One method would be to have the response be dollars
of profit produced and thus all costs for changing
factor levels would be incorporated into the profit
calculation. Another scaling method, introduced in
Wan et al. (2005a), assures that all the factor effects
are on the same cost scale. For purposes of discussion,
we will follow the cost-based scaling method of Wan
et al. (2005a). The method assumes that the lower
the factor setting, the lower the cost. The scaling is
such that the cost to change each factor from the level
(0) to the highest cost level (1) is a fixed cost, say c*.
Wan et al. (2005a) shows how the levels of discrete
factors (e.g., the number of machines or number of
operators) can be incorporated into this cost-based
scaling system by introducing a weighting for each
factor. The benefit of this cost-based scaling is that
each linear effect, 3k, can be compared directly to the
thresholds and to the other linear effects because 8y
represents the expected change in the response when
spending ¢* to change factor k. The two thresholds
now also become easily expressed concepts:

o The threshold of importance, Ay, is the mini-
mum amount by which the response must rise
in order to justify an expenditure of ¢* dollars.

e The critical threshold, A1, is an increase in the
response that should not be missed if it can be
achieved for an expenditure of ¢* dollars.

Because the response is to be maximized, then it is
natural to assume that increasing the cost of any fac-
tor will either have no effect or increase the response.
Thus, in Wan et al. (2005a), it is assumed that the
directions of all main effects are known and the lev-
els of the factors are set to make all the main effects
positive, i.e., B > 0,0 < k < K.

Methodology

In this section, we will first review CSB-X, the
method proposed in Wan et al. (2005b) that pro-
vides controlled-factor screening in the presence
of two-factor interactions. We will then present a
method of controlled screening that uses a two-stage
hypothesis-testing procedure in a standard fractional
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factorial design. The second method will be called
TCFF for two-stage controlled fractional factorial.

CSB-X, Controlled Sequential Bifurcation
with Interactions

CSB-X is a controlled version of sequential bi-
furcation. Sequential bifurcation is a series of steps,
where within each step, a group of factors is tested.
Within the group, all factors are completely con-
founded together (as in group screening; see Lewis
and Dean (2001)). Therefore, it is critical to CSB-X
that the direction of all the factor effects be positive
(i.e., Bk 2 0, 0 < k < K) to prevent cancellation of
effects. If a group of factors is tested and the group
effect (the sum of all the main effects of the factors
in the group) is not found to be significantly greater
than Ay {the threshold of importance), then all the
factors in the group are declared unimportant and
are dropped from further screening. If the group ef-
fect is found to be greater than A and there is only
one factor in the group, then that factor is declared
to be important. If the group effect is found to be
greater than Jp and there is more than one factor
in the group, the group is split into two subgroups
that are to be tested later. This procedure is followed
until all factors are classified as either important or
unimportant.

Kleijnen and Bettonvil (1997) suggest various
practical methods for splitting and testing the
groups. Specifically, splitting groups into subgroups,
the size of which is a power of 2, can improve the ef-
ficiency of the procedure. Also, if one selects testing
groups that have large group effects before groups
that have small group effects, the procedure can se-
quentially reduce the upper bound on the greatest
effect that has not yet been identified. This upper
bound is very useful if the procedure is stopped early.
Because we are comparing the statistical control of
the procedures, we plan to complete the screening
procedure in all cases, and thus the sequential upper
bound is not of interest. Also, we found in empirical
testing that splitting groups into subgroups, the size
of which is a power of 2, did not always improve ef-
ficiency and never led to increases in efficiency that
substantially changed our conclusions. Thus, for bet-
ter comparison to Wan et al. (2005b), we will use the
procedure that simply splits each important group
into two equally sized subgroups. In the case of an
odd group size, the subgroup sizes differ by one. We
will also follow the testing procedure of Wan et al.
(2005b). To define the design points of their experi-
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ment, the design point at level & is defined as

1, i=1,23,.k
xi(k)_{o, i=k+1,k+2,... K.

Thus, “level k” has all factors with indices greater
than & set to 0 on the —1 to 1 scale and all factors
with indices less than or equal to k, set to 1. Similarly,
a design point at “level —k” is defined as

wi(—k) = {—1, «g: 1,2,3,---,k
0, i=k+1,k+2,...,K.

To test a group of factors, say factors with in-
dices in the set {k1 + 1,k1 + 2,...,k2}, four design
points are used: level kq, level —kq, level ko, and level
—ko. To follow the notation in Wan et al. (2005b),
let Zg(k) represent the observed simulation output
for the £th replication at level k. The procedure en-
sures that all four design points have the same num-

ber of replications and the test statistic, De(k1, k2),
is calculated as

De(k1, k2)
_ [Ze(ks) = Zo(=ka)| — [Ze(k1) — Zo(—F1)]
5 :

They show that, given (1), the expected value of
Dy(k1, k2) is the sum of the factors’ main effects from
the group {k1 + 1,k1 + 2,...,ks}, ie.,

k2
E[De(k1,ka)l = > B

k=k1+1

The group is declared important if the null hy-
pothesis, Hy: 222:&1 418k < Ao, is rejected at level
a. The group is declared unimportant if the null
hypothesis is not rejected, provided that the test
used has power v for the alternative hypothesis, H 4:
ij’:kl +1 Bk > A1. To guarantee this statistical con-
trol, Wan et al. (2005b) provide a fully sequential test
that first takes an initial number, ng, of replications
at each of the four design points and then adds repli-
cations one at a time (to all four design points) until
the group effect can be declared either important or
unimportant. Even under nonconstant variance con-
ditions as in (1), CSB-X with the fully sequential test
guarantees that the probability of Type I error is «
for each factor individually and the power is at least
~ for each step of the algorithm.

TCFF, Two-Stage Controlled Fractional
Factorial

The TCFF method begins by selecting a frac-
tional factorial design that is capable of achieving
the desired resolution for the number of factors being

WWWw.asq.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130 HONG WAN AND BRUCE E. ANKENMAN

The TCFF Method

The Design Matrix
K factors
I —~ ™

N rows
A

N

FIGURE 1. A Graphical View of the TCFF Method.

screened. Recall that a Resolution III design can esti-
mate all main effects independent of each other but
does confound main effects with certain two-factor
interactions (similar to CSB). A Resolution IV design
also allows for independent estimation of main effects
and, in addition, removes any bias due to two-factor
interactions between the factors. In order to match
the capabilities of CSB-X, we will use Resolution IV
designs for the comparison in this paper.

Many books (e.g., Wu and Hamada (2000)) and
software packages provide recommended fractional
factorial designs for various resolutions and various
values of K, the number of factors to be screened.
If a recommended design cannot be easily found for
a particular value of K, a Resolution IV design can
always be easily constructed by taking an orthogo-
nal array large enough to accommodate K two-level
factors and then folding it over according to the pro-
cedure described on page 172 of Wu and Hamada
(2000). Because the foldover procedure doubles the
number of runs in the orthogonal array, this proce-
dure produces a Resolution IV design for K factors
that has at least 2 x (K +1) design points. A very ex-
tensive list of orthogonal arrays for different values
of K has recently been published by Kuhfield and
Tobias (2005).

The method described below for controlling the
power does not require any particular resolution de-
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First Stage

n, replications

Second Stage

n-n, replications

[11]

11
[111]

1]
[11

[
[11]
J

sign and in fact can be used with higher resolution
designs if one wants to screen for factors with impor-
tant two-factor interactions or higher order effects.
Of course higher resolution designs will require more
design points and potentially many more observa-
tions.

Once the fractional factorial design (with N de-
sign points) is selected, the next step is to control
the power and Type I error of the main-effect es-
timates. To accomplish this, we adapt a two-stage
method developed to control power for the two-way
ANOVA layout by Bishop and Dudewicz (1978). The
first stage of the method requires an initial num-
ber, say ng, of replications of the fractional facto-
rial design, i.e., 1o observations at each design point.
Because the fractional factorial is likely to be quite
large, we recommend that ng be relatively small, such
as 3 or 5. The second stage of the method adds repli-
cations to certain rows of the factorial design to get
better estimates of the mean response of those rows
for which the responses have high variance. We de-
note the total number of replications for row 7 after
both stages as n;. Thus, the number of additional
replications taken for row i in the second stage is
n; — ng. The TCFF procedure is represented graph-
ically in Figure 1. The keys to the control of Type I
error and power for this method are: (1) the calcula-
tion for n; and (2) careful selection of the estimators
for each factor effect.
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Before describing the calculations for n;, a brief
overview of the analysis will be helpful. Once all the
replications for stage 2 are made for each row, a sin-
gle pseudo-observation, called Y;, will be calculated
for each row. Each Y; will be a weighted average of
all the observations from row i. Given the normal
error structure shown in Equation (1), careful se-
lection of the number of runs in each row and the
weights in the weighted averages will result in each
of these Y;’s having a distribution which is propor-
tional to a non-central ¢-distribution with ng — 1 de-
grees of freedom. Once the pseudo-observations are
calculated for each row, the design is treated like an
unreplicated fractional factorial design and the main
effects of each factor are calculated in the standard
way (either with contrasts as described on page 228
of Montgomery, 2001 or through regression analysis,
see page 113 of Wu and Hamada, 2000). Since each of
the Y;’s follows a t-distribution, the null distribution
of each effect estimate can be found through Monte
Carlo simulation or through a normal approximation.
Thus, an a-level test can be used to test the hypoth-
esis: Ho: |Bk] < Ag or Hy: |Bx| > Ag. The calculation
of the number of replications in the second stage of
the method ensures that if the effect of factor & is
greater than A;, the probability that factor k will be
declared important is greater than -y.

The steps for determining n; are now given (The
formulas are adapted from Bishop and Dudewicz,
1978.):

1. Let the CDF of the distribution of the average
of N independent standard t-distributed ran-
dom variables each with 1y — 1 degrees of free-
dom be called #(N, ng—1, ), where z is the ar-
gument of the CDF'. Let ¢y be the 1 —a quantile
of this distribution and ¢; be the 1 — v quan-
tile of this distribution. These quantiles can be
easily obtained through simulation or through a
normal approximation (see the Appendix). Val-
ues for ¢p and ¢; for some common values of ng
and N are given in the tables in the Appendix.

2. Let z = [(Ag—A1)/(co—c1)]? and let s; be the
sample standard deviation from the ng repli-
cates of row ¢ from the first stage. The total
number of replications needed for row ¢ after
the second stage of the method is then

s2
nizmaX<no+l, {—’J +1>,
z

where |z| denotes the greatest integer less
than z.
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Thus, in the second stage, n; — ng new observations
are taken for each row .

After all observations are taken, each factor effect,
B, 1s tested as follows:

1. For each row in the fractional factorial design, a
weight for each replication must be calculated.
The jth replication in the ith row will be called
y;; and the associated weight will be called a;;.

2. A preliminary value called b; is first calculated
for each row as

1 no(niz — s2)
b;=—|1 5 |
[ TV = no)s?

where ng is the number of initial replications
in the first stage, n; is the total number of
replications of row i after the second stage,
z=[(Ao—A1)/(co—c1)]?, and s; is the sample
standard deviation from the initial ny replicates
of row ¢ from the first stage.

3. The weight for the jth replication in the ith
Tow is

1-— (’f?,i - ng)bl
o

for 7=1,2,...,n0,
Qi =
N b; for j=no +1,n0 + 2,
sy Ny

4. These weights are then used to calculate a sin-
gle weighted average response for each row,
called Y;, Where}’i = )%, aijys;. Given Equa-
tion (1), each Y; has a scaled non-central t-
distribution such that

K K K
Y~ \/zti+,30+z ﬂkﬂfik-i-z Z BkmTikTim,
k=1

k=1m=k
(2)

where each t¢; is an independent random vari-
able that has a central ¢-distribution with ng—1
degrees of freedom.

5. The design can now be viewed as an unrepli-
cated fractional factorial design with observa-
tions Y;. Let the level of the kth factor in the
ith row of the design matrix be z;;x. The esti-
mator for the coefficient of the main effect for
the kth factor is

1en .
B+ I Z Zik Y. (3)
=1
6. Each z;; in the fractional factorial design will
be either 1 or —1, and each column, xy, is or-

thogonal to the mean, all the other main ef-
fects, and all two-factor interaction columns.
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Since the t-distribution is symmetric (i.e., —¢;
has the same distribution as ¢;), it follows from
(2) and (3) that

N
. t;
5k~ﬂk+ﬁzﬁa (4)
=
where each t; is an independent random vari-
able that has a central ¢-distribution with ng—1
degrees of freedom.

7. We now test the hypothesis: Ho: |Gk < Ag or
H;: |Bk] > Ag. The null hypothesis is rejected
only if lﬁk| > Ag + cog+/z since it follows from
(4) that

Pr [1B] > o + cov/2 18] < Ao] <,

where cg is the 1 —a quantile of the distribution
with CDF #(N,no — 1, z).

Bishop and Dudewicz (1978) use a theorem from
Stein (1945) to show that for a two-way ANOVA lay-
out, this procedure provides exact control of Type
I error even if the variance changes across treat-
ment combinations. They also extend the results to a
multi-way ANOVA in Bishop and Dudewicz (1981).
Since the fractional factorial design can be viewed as
a multi-way ANOVA with various main effects fully
confounded with high order interactions whose ef-

HONG WAN AND BRUCE E. ANKENMAN

fects are assumed to be zero, the procedure guaran-
tees exact control of Type I error given the orthogo-
nal design and the model in Equation (1).

Power control is achieved by choosing the value for
z. The null hypothesis is rejected only if | ﬁAk| > Ag+
cov/z. By Equation (4), Pr[|Bk] > A1 +c1v/Z | |Bk| >
A4] > 4. To control power, z must then be set such
that Ay +c¢1v/z = Ag+cpv/z, so that, if 3 > Ay, the
probability of rejecting the null hypothesis is greater
than v (i.e., Pr[|8k| > Ao + cov/z | |Bk| = A1] > 7).

Therefore,
(Al — Ao ) 2
z=——— .
Co—C1

This concludes the methodology for TCFF. In the
next section, a simple numerical example with a
small number of factors is provided to help clarify
the computations.

Numerical Example

Suppose that a small manufacturing system has
two stations and, at each station, there are three fac-
tors: the number of machines (coded M1 and M2),
the number of operators (coded O1 and 0O2), and
the frequency of preventative maintenance (coded F1
and F2). The goal is to use a 16-run Resolution IV

TABLE 1. Data from the First Stage of the Numerical Example

Design matrix

First-stage replications

Row M1 M2 o1 02 F1 F2 Yi1 Yi2 Yi3 Yia Si
1 -1 -1 -1 -1 -1 -1 10035 9110 8995 8758 560
2 1 -1 -1 -1 1 -1 8036 7462 8105 9866 1040
3 -1 1 -1 -1 1 1 8580 8838 8814 10228 751
4 1 1 -1 -1 -1 1 12744 14731 13924 12051 1196
) -1 -1 1 -1 1 1 10168 10976 11008 9799 602
6 1 -1 1 -1 -1 1 12305 11929 10099 10961 993
7 -1 1 1 -1 -1 -1 9342 8551 8650 8392 419
8 1 1 1 -1 1 -1 9073 9735 12433 10260 1455
9 -1 -1 -1 1 -1 1 9180 8109 10432 12130 1729
10 1 -1 -1 1 1 1 11469 11415 12411 10945 614
11 -1 1 -1 1 1 -1 8052 8317 8392 8268 146
12 1 1 -1 1 -1 -1 11295 9293 9248 8981 1069
13 -1 -1 1 1 1 -1 9040 7253 9001 8179 843
14 1 -1 1 1 -1 -1 8710 9359 9029 9820 475
15 -1 1 1 1 -1 1 8877 11124 9329 9755 970
16 1 1 1 1 1 1 12710 11700 11371 15765 2002
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TWO-STAGE CONTROLLED FRACTIONAL FACTORIAL SCREENING FOR SIMULATION EXPERIMENTS 133
TABLE 2. Data from the Second Stage of the Numerical Example
Second-stage replications and computations
Row Yis Yi6 Yir Yig Yio Yi10 Yi11 Yi12 b; Y;

1 7386 1.058 7279
2 8470 0.516 8420
3 8139 0.781 8352
4 14696 0.391 13884
5 7781 0.985 7821
6 9954 0.553 10566
7 8437 1.399 8318
8 8997 8930 10503 0.209 9812
9 9838 9769 8724 10936 10204 0.135 9917
10 10242 0.965 10289
11 8054 3.808 7483
12 11843 0.493 10758
13 9810 0.685 9356
14 9872 1.243 10028
15 10526 0.572 10203
16 11563 17353 12074 10232 13121 8399 9980 14789 0.097 12347

fractional factorial to screen for factors that have a
large effect on the daily throughput of the system.
Table 1 shows the design matrix and the first-stage
observations. We have chosen Ay = 300, A; = 1100,
a = 0.05, v =0.95, and ng = 4.

In order to calculate n; for each row, we begin
by calculating z. We can approximate ¢y and ¢,
the 1 — o and 1 — v quantiles of the -distribution,
by applying the central limit theorem and using a
normal approximation. Because the variance of a -
distribution with 3 degrees of freedom is 3, the vari-
ance of the average of 16 independent t-distributed
random variables should be approximately normal
with variance 3/16. Thus, co ~ /3/16¢~1(0.95) =
0.7122 and ¢; ~ +/3/16¢1(0.05) = 0.7122, where
¢~ () is the inverse function for the standard nor-
mal distribution. Using 10,000 Monte Carlo simula-
tions, we found values of ¢y = 0.675 and ¢; = —0.675
(see Appendix Table A2). We will use the Monte

Carlo simulation results to calculate z as follows:
z = [(A1 — Ag)/(co — ¢1)]*> = 351,166. The calcu-
lated values for n; are (5, 5, 5, 5, 5, 5, 5, 7, 9, 5,
5, 5, 5, 5, b, 12) for rows 1-16, respectively. The
n; — ng observations for the second stage, the b;’s,
and Y;’s are given in Table 2. The estimates for the
factor effect coefficients are shown in Table 3. Be-
cause Ag + cgy/z = 700, then we see that M1 and F2
have important effects.

Comparison of Methods

With normally distributed error, both CSB-X and
TCFF have guaranteed performance for Type I error
and power, even when there is unequal variance and
two-factor interactions present in the model. Thus,
the primary measure for comparison between the two
methods is the number of replications that it takes
to gain the required performance. We set up 11 sce-
narios under which to test the two methods. Each

TABLE 3. The Estimates for the Coefficients for the Main Effect of Each Factor

Coefficient Mean M1 M2

01 02 F1 F2

Estimate 9677 1086 468

129 370 —442 745

Vol. 39, No. 2, April 2007

www.asq.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134 HONG WAN AND BRUCE E. ANKENMAN

of these scenarios is used for 200 and 500 factors
with 1%, 5%, and 10% of the factors important. The
TCFF method uses a 512-run, Resolution IV design
for the 200-factor cases and a 1024-run, Resolution
IV design for the 500-factor cases. TCFF uses ng = 3
replications for the first stage. CSB-X uses ng = 5.

In each scenario, the size of the important effects
is 5 and the size of unimportant effects is 0. We set
Ap to 2 and A; to 4 for all scenarios, and the error
was normally distributed. The first three scenarios
have equal variance. In the next five scenarios, each
of the important factors also has a dispersion effect,
which means that, when one of those factors changes
level, the variability of the error either increases or
decreases. Half the important factors increase the
variability and the other half decrease the variabil-
ity. Each dispersion effect increases or decreases the
standard deviation of the error by 20% in the cases
with 200 factors and by 8% in the cases with 500
factors. In the final three scenarios, the standard de-
viation of the error is proportional to the expected
value of the response. The constant of proportional-
ity was 0.1 and 0.04 for the 200 and 500 factor cases,
respectively. These are very important scenarios be-
cause, for both simulation experiments and physical
experiments, it is very common that variability and
average response value are related. Fach of the 11
scenarios is described below.

1. The important effects are clustered together at
the beginning of the factor set, and the stan-
dard deviation for the random error is set to &
for all observations.

2. The important effects are distributed at regu-
lar intervals throughout the factor set, and the
standard deviation for the random error is set
to & for all observations.

3. The important effects are randomly distributed
throughout the factor set, and the standard de-
viation for the random error is set to 3 for all
observations.

4. The important effects are clustered together at
the beginning of the factor set. Each of the im-
portant factors also has a dispersion effect. In
this scenario, all the positive dispersion effects
are clustered at the beginning of the factor set.

5. The important effects are clustered together at
the beginning of the factor set. Each of the im-
portant factors also has a dispersion effect. In
this scenario, the positive dispersion effects are
distributed throughout the set of important fac-
tors.
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6. The important effects are distributed through-
out the factor set. Each of the important factors
also has a dispersion effect. In this scenario, all
the positive dispersion effects are clustered at
the beginning of the set of important factors.

7. The important effects are distributed through-
out the factor set. Each of the important fac-
tors also has a dispersion effect. In this sce-
nario, the positive dispersion effects are dis-
tributed throughout the set of important fac-
tors.

8. The important effects are randomly distributed
throughout the factor set. Each of the impor-
tant factors also has a dispersion effect, which
s randomly chosen to be positive or negative.

9. The important effects are clustered together at
the beginning of the factor set, and the stan-
dard deviation for the random error is propor-
tional to the average response.

10. The important effects are distributed at regu-
lar intervals throughout the factor set, and the
standard deviation for the random error is pro-
portional to the average response.

11. The important effects are randomly distributed
throughout the factor set, and the standard de-
viation for the random error is proportional to
the average response.

There were 10 macroreplications of each scenario
for 200 and 500 factors and with 1%, 5%, and 10% of
the factors being important. Because both methods
eliminate the effects of two-factor interactions, inter-
actions were randomly generated for each simulation
and the two methods were given the same interac-
tion matrix for each of the 10 macroreplications un-
der each scenario. The interactions were generated
from a N(0,2) distribution and randomly assigned
between factors. Factors with important effects had
a 64% chance of interaction with other important
factors and a 16% chance of interaction with factors
with unimportant effects. Each pair of unimportant
factors had only a 4% chance of interaction. Surpris-
ingly, using the same interaction matrix did not seem
to induce much correlation between the macrorepli-
cations. The average and standard deviation of the
number of replications across the 10 macroreplica-
tions for each method for each scenario are reported
in Tables 4 and 5. The average number of replications
is plotted across the scenarios in Figures 2-7.

It is clear from Figures 2 and 5 that CSB-X re-
quires fewer replications when only 1% of the factors
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CSB-X vs Two-Stage FFD
(1% of 200 factors important)
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FIGURE 2. Average Number of Runs with 1% of 200
Factors Important.

CSB-X vs Two-Stage FFD
(5% of 200 factors important)
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FIGURE 3. Average Number of Runs with 5% of 200
Factors Important.

CSB-X vs Two-Stage FFD
(10% of 200 factors important)
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FIGURE 4. Average Number of Runs with 10% of 200
Factors Important.
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CSB-X vs Two-Stage FFD
(1% of 500 factors important)
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FIGURE 5. Average Number of Runs with 1% of 500
Factors Important.

CSB-X vs Two-Stage FFD
(5% of 500 factors important)
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FIGURE 6. Average Number of Runs with 5% of 500
Factors Important.

CSB-X vs Two-Stage FFD
(10% of 500 factors important)
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FIGURE 7. Average Number of Runs with 10% of 500
Factors Important.
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TABLE 4. Simulation Results for CSB-X and TCFF with 200 Factors

Number of Significant

CSB-X TCFF

Average Standard Anerage Standard

Number of important effects Variance number deviation number deviation
Scenario factors factors order model of reps  of reps of reps of reps
1 200 2 Clustered Equal 474 109 2048 0
2 200 2 Distributed Equal 1108 259 2048 0
3 200 2 Random Equal 921 181 2048 0
4 200 2 Clustered  Clust. disp. eff. 749 259 2048 0
5 200 2 Clustered  Dist. disp. eff. 749 259 2048 0
6 200 2 Distributed Clust. disp. eff. 1500 516 2048 0
7 200 2 Distributed Dist. disp. eff. 1500 516 2048 0
8 200 2 Random Disp. eff. 815 135 2048 0
9 200 2 Clustered Prop. to mean 673 586 4777 279
10 200 2 Distributed Prop. to mean 4768 5412 4801 506
11 200 2 Random Prop. to mean 1430 1093 4563 397
1 200 10 Clustered  Equal 1231 373 2048 0
2 200 10 Distributed Equal 5207 979 2049 1
3 200 10 Random Equal 4016 963 2048 0
4 200 10 Clustered  Clust. disp. eff. 3938 1603 2049 1
5 200 10 Clustered Dist. disp. eff. 1337 528 2053 3
6 200 10 Distributed Clust. disp. eff. 16627 3647 2049 1
7 200 10 Distributed Dist. disp. eff. 6181 1198 2049 2
8 200 10 Random Disp. eff. 3542 613 2048 0
9 200 10 Clustered Prop. to mean 2305 850 5845 561
10 200 10 Distributed Prop. to mean 37643 41773 4801 506
11 200 10 Random Prop. to mean 19748 19692 5386 522
1 200 20 Clustered  Equal 2293 805 2048 1
2 200 20 Distributed Equal 8996 1662 2048 0
3 200 20 Random Equal 7290 875 2048 0
4 200 20 Clustered  Clust. disp. eff. 28962 15887 2140 33
5 200 20 Clustered  Dist. disp. eff. 2465 671 2589 179
6 200 20 Distributed Clust. disp. eff. 144597 60070 2112 49
7 200 20 Distributed Dist. disp. eff. 10189 1741 2227 120
8 200 20 Random Disp. eff. 13347 2372 2052 4
9 200 20 Clustered Prop. to mean 11176 3065 6958 1007
10 200 20 Distributed Prop. to mean 80121 47339 6829 873
11 200 20 Random Prop. to mean 77146 59144 6923 543

are important. In most of these cases, the TCFF
method takes the minimum number of runs, 4 x
1024 = 4096 runs. Figures 3, 4, 6, and 7 show that
the TCFF method is better on average than CSB-X
when the percentage of important factors is greater
than 5%.
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Tables 4 and 5 show that the standard devia-
tion across the macroreplications is always lower for
TCFF and that it can be quite high for CSB-X, espe-
cially in the scenarios where the standard deviation

of the error is proportional to the average response
(scenarios 9, 10, and 11). Also, CSB-X is sensitive
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TABLE 5. Simulation Results for CSB-X and TCFF with 500 Factors
CSB-X TCFF
Number of Significant Average Standard Average Standard
Number of important effects Variance number deviation number deviation
Scenario factors factors order model of reps  of reps of reps  of reps
1 500 5 Clustered  Equal 803 304 4096 0
2 500 5 Distributed Equal 3368 746 4096 0
3 500 5 Random Equal 1516 413 4096 0
4 500 5 Clustered  Clust. disp. eff. 1424 673 4096 0
5 500 5 Clustered  Dist. disp. eff. 1096 442 4096 0
6 500 5 Distributed Clust. disp. eff. 5233 1348 4096 0
7 500 5 Distributed Dist. disp. eff. 3567 803 4096 0
8 500 5 Random disp. eff. 1474 334 4096 0
9 500 5 Clustered  Prop. to mean 1389 1954 6451 275
10 500 ) Distributed Prop. to mean 6221 3305 6500 295
11 500 5 Random Prop. to mean 6259 9382 6435 263
1 500 25 Clustered  Equal 2388 571 4096 0
2 500 25 Distributed Equal 14713 3018 4096 0
3 500 25 Random Equal 11837 2640 4096 0
4 500 25 Clustered  Clust. disp. eff. 10262 1025 4096 0
5 500 25 Clustered Dist. disp. eff. 3089 588 4097 3
6 500 25 Distributed Clust. disp. eff. 58150 14558 4097 1
7 500 25 Distributed Dist. disp. eff. 16192 3206 4096 1
8 500 25 Random Disp. eff. 16499 2755 4106 9
9 500 25 Clustered  Prop. to mean 5039 2055 7278 323
10 500 25 Distributed Prop. to mean 80923 52420 7397 606
1 500 25 Random Prop. to mean 53043 32594 7204 464
1 500 50 Clustered  Equal 4723 876 4096 0
2 500 50 Distributed Equal 25453 4587 4096 0
3 500 50 Random Equal 20167 2345 4096 0
4 500 50 Clustered Clust. disp. eff. 97447 20785 4126 17
) 500 50 Clustered  Dist. disp. eff. 5491 920 4562 217
6 500 50 Distributed Clust. disp. eff. 484380 116160 4168 53
7 500 50 Distributed Dist. disp. eff. 27732 4909 4195 33
8 500 50 Random Disp. eff. 31145 7961 4525 121
9 500 50 Clustered Prop. to mean 20454 5971 8313 395
10 500 50 Distributed Prop. to mean 211134 143867 8532 553
11 500 50 Random Prop. to mean 279118 245735 8639 551
to the order in which the important effects appear, Conclusion

where TCFF is not. Naturally, CSB-X does very
well when the important effects are clustered, but
performs worse when they are randomly placed or
distributed regularly. Finally, recall that CSB-X re-
quires the direction of the factor effects to be known,
where TCFF does not.

Vol. 39, No. 2, April 2007

Two methods, CSB-X and TCFF, for screening of
a large number of factors with statistical control of
the Type I error and the power have been reviewed
and compared. If there are very few important factors
(less than 5%) and there is substantial prior informa-
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tion (known direction of factor effects and some prior TABLE A2. The Critical Values, ¢, for @ = 0.05.
information that allows the important effects to be These are also the values, —cy, for v = 0.95. Normal
clustered), CSB-X can have substantial gains in effi- approximation results are in parentheses

ciency over the TCFF approach; however, it can have
highly variable results depending on the quality of

the prior information and the extent to which the er- N=8 N=16 N =3
ror variance changes across observations. The TCFF
method requires little prior information but does in- no =3 1.291 1.034 0.742
volve a substantial initial investment of replications. (n/a) (n/a) (n/a)
Once this initial investment is made, the method is ng =4 0.930 0.675 0.494
relatively stable and performs better than CSB-X (1.007) (0.712) (0.504)
when the percentage of important factors increases ng =25 0.802 0.571 0411
above 5%. (0.822) (0.582) (0.411)
. ng =26 0.759 0.523 0.378
. Appendix (0.751) (0.531) (0.375)
Critical Values for the t Distribution no =7 0.718 0.508 0.365
In this appendix, we show how to compute val- (1.007) (0.504) (0.356)
ues for ¢y and ¢; through Monte Carlo simulation or ng =8 0.692 0.481 0.346
with a normal approximation. Let the CDF of the (0.688) (0.487) (0.344)
distribution of the average of N independent stan- ng =9 0.674 0.473 0.336
dard t-distributed random variables each with ng —1 (0.672) (0.475) (0.336)
degrees of freedom be called ¢(N,ng — 1,z), where no = 10 0.665 0.465 0.330
z is the argument of the CDF'. Let ¢y be the 1 — « (0.659) (0.466) (0.330)

quantile of this distribution and ¢; be the 1—a quan-
tile of this distribution. Values for ¢g and ¢; for some
common values of ¢, v, ng, and N are given in Tables

Al, A2, and A3.
TABLE A3. The Critical Values, ¢, for « = 0.10.
TABLE Al. The Critical Values, ¢, for o = 0.01. These are also the values, —cj, for y = 0.90. Normal
These are also the values, —c, for v = 0.99. Normal approximation results are in parentheses

approximation results are in parentheses

N =8 N =16 N =32
N=38 N =16 N =32
ng =3 0.912 0.734 0.543
no =3 2.626 1.885 1.426 (n/a) (n/a) (n/a)
(n/a) (n/a) (n/a) no =4 0.686 0.510 0.371
(1.425) (1.007) (0.712) no =5 0.606 0.444 0.319
ng =5 1.200 0.848 0.603 (0.641) (0.543) (0.320)
(1.163) (0.822) (0.582)
no = 6 1103 0.737 0.536 no =6 0.587 0.404 0.292
(1.062) (0.751) (0.531) (0.585) (0.414) (0.292)
ng = 7 1.017 0.726 0.517 ng = 7 0.549 0.396 0.279
(1.007) (0.712) (0.504) (0.555) (0.392) (0.277)
ng =8 1.001 0.712 0.507 ng =8 0.537 0.380 0.273
(0.973) (0.688) (0.487) (0.536) (0.379) (0.268)
no =9 0.953 0.668 0.483 ng =9 0.518 0.361 0.263
(0.950) (0.672) (0.475) (0.523) (0.370) (0.262)
no = 10 0.965 0.676 0.473 ng = 10 0.520 0.360 0.259
(0.933) (0.659) (0.466) (0.514) (0.363) (0.257)
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Monte Carlo Simulation to Determine cg and
ey for t(N, ng — 1, x)

1. Generate a set of N random variables, t; for
alli e {1,..., N}, from a central ¢-distribution
with ng — 1 degrees of freedom, and compute
the average, called ¢; = (1/N) vazl t;.

2. Choose a large number, M, and repeat step 1
M times to obtain the average of each set, ¢;,
for all j € {1,...,M}.

3. Rank order the t;’s so that ¢;y > f), for all
J >k, to obtain £, for all j € {1,..., M}.

4. Let jo = Round[(1—a)M] and j; = Round[(1—
Y)M]; then co = #(;,y and ¢1 = t;,), where
Rounds|z] rounds z to the nearest integer.

Normal Approximation to Determine ¢g and
¢ for t(N, np — 1, x)

The variance of a t-distribution with v degrees of
freedom is v/(v — 2) for v > 2. If N is relatively
large, then by the central limit theorem, the aver-
age of N independent t-distributed random variables
is approximately normal with variance v/N(v — 2).
Thus,

'1-a)

and
1(1 - 7)5

v —
@ V N(v —2)¢

v -
Y N—?
where ¢~1(x) is the inverse function for the standard
normal distribution.

In Tables Al, A2, and A3, critical values ¢y and
¢ calculated by Monte Carlo simulation (and the
normal approximation) are presented for cases where
the normal approximation is not very accurate. For
N > 32, the normal approximation is reasonably ac-
curate and thus tables are not necessary. Notice that,
if (1 —«) = a, then ¢; = —cg. The normal approxi-
mation cannot be used when ng = 3 because there is
no closed form for the variance of the ¢-distribution
with 2 degrees of freedom.
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