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ABSTRACT

“Input uncertainty” refers to the frequently unrecognized, and rarely quantified, impact of using simulation
input distributions that are estimated or “fit” to a finite sample of real-world data. In this paper we present
a relatively simple method for obtaining a quick assessment of the overall effect of input uncertainty on
simulation output, and a somewhat more involved follow-up analysis that can identify the largest sources
of input uncertainty. Numerical illustrations of both methods are provided.

1 INTRODUCTION

Input models are the fully specified probability models that drive a stochastic simulation. Interarrival-
time and service-time distributions in queueing simulations; component time-to-failure distributions in
reliability simulations; distributions for the values of underlying assets in financial simulations; and bed
occupancy-time distributions in hospital simulations are examples of input models. Classical simulation
output analysis is conditional on the input models being correct; that is, it assumes that the input models
accurately represent the stochastic phenomena in the real-world system. However, if these input models
are functions of real-world data then they will not perfectly represent the true characteristics, and this in
turn should imply additional uncertainty about the simulation results; however, this additional uncertainty
is not captured by conditional analysis.

Quantification of input uncertainty is an area of active research and a number of sophisticated and
rigorously justified methods have been proposed; see for instance Barton et al. (2011), Cheng and Holland
(1998, 2004), Chick (2001), and Zouaoui and Wilson (2003, 2004). Our goal is to provide a method for
assessing the impact of input uncertainty on simulation-based performance estimates that requires relatively
little additional simulation effort and that is simple enough to implement manually if necessary. We also
provide a follow-up analysis that, with a bit more effort, can identify which input distributions are the
largest contributors to input uncertainty.

Section 2 describes our quick assessment technique and illustrates its use on a simple queueing model.
Section 3 presents the follow-up analysis that uncovers which distributions are responsible for most of the
uncertainty. Section 4 applies both steps to a realistic manufacturing simulation.

2 QUICK OVERALL ASSESSMENT

To simplify the presentation, suppose initially that the simulation has a single input distribution on which
we have an i.i.d. sample of real-world data X1,X2, . . . ,Xm. Denote the true but unknown input distribution
by FX , and our estimate of it by F̂ which is a function of the real-world data. This fitted distribution could
be the empirical distribution or a parametric distribution with estimated parameters (although the empirical
distribution will play a key role in our method).
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Here we only consider simulations for which we make i.i.d. replications. Represent the output of the
simulation on replication j, implemented using estimated input distribution F̂ , as

Yj(F̂) = m(F̂)+ e j

where e1,e2, . . . ,en are i.i.d. with mean 0 and variance s2 representing the natural variability from replication
to replication in the simulation. The mean term, m(F̂), depends on what input model we actually used in
the simulation. Our goal is to estimate m ≡ m(FX) which we estimate by

Ȳ (F̂) =
1
n

n

å
j=1

Yj(F̂). (1)

This estimator, which is the one that will be used for decision making, has standard error s/
√

n conditional
on the input distribution F̂. Our assessment of input uncertainty is in addition to this standard analysis.

As a thought experiment, suppose that rather than a single sample of real-world data, we had b
independent samples Xi1,Xi2, . . . ,Xim, i = 1,2, . . . ,b, and from the ith sample we fit an input model F̂i. We
could then consider simulating r replications using each input model, leading to the output

Yj(F̂i) = m(F̂i)+ ei j (2)

for i = 1,2, . . . ,b and j = 1,2, . . . ,r. For reasons that will become clear later we do not require r = n.
Model (2) is known as a random-effects model (see, for instance, Dean and Voss (1999), or Mont-

gomery (2009)), because the mean term m(F̂i) is random, in this case depending on the particular sample
Xi1,Xi2, . . . ,Xim that we happened to use to estimate FX . This model has also been suggested by Freimer
and Schruben (2002), Sun et al. (2011) and Zouaoui and Wilson (2003). One way to characterize input
uncertainty is s2

I = Var[m(F̂i)], the variability due to the possibility of having observed a different real-world
sample of data from FX . A simplifying approximation we will make is that s2, the variance of the simulation
output, does not depend on which F̂i we have; this will rarely be precisely true, but will be acceptable to
get an approximation of the effect of input uncertainty.

We will focus on the ratio g =
√

nsI/s which is a measure of how large input uncertainty is relative to
the standard error of Ȳ (F̂). In particular, we desire a confidence interval (CI) for g . Under the additional
assumptions that m(F̂i)∼ N(m ′,s2

I ) and ei j ∼ N(0,s2) there is a standard (1−a)100% CI for s2
I /s2 (see

for instance Dean and Voss 1999 §17.3.5):

1
r

[
MST

MSE ·Fb−1,b(r−1),1−a/2
−1

]
≤ s2

I

s2 ≤ 1
r

[
MST

MSE ·Fb−1,b(r−1),a/2
−1

]
(3)

where Fn1,n2,b is the b -quantile of the F distribution with (n1,n2) degrees of freedom, and

MSE =
1

b(r−1)

b

å
i=1

r

å
j=1

(
Yj(F̂i)− Ȳ (F̂i)

)2

MST =
r

b−1

b

å
i=1

(
Ȳ (F̂i)− Ȳ

)2

with

Ȳ =
1
br

b

å
i=1

r

å
j=1

Yj(F̂i).
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This CI for s2
I /s2 can be adapted in the obvious way to obtain a CI for g: multiply through by n and take

the square root. Dean and Voss (1999, §17.4) also provide an unbiased estimator for s2
I /s2, which can be

adapted to give the following point estimator of g:

ĝ =

√
n
r

[(
b(r−1)−2

b(r−1)

)
MST
MSE

−1

]
.

Notice that we do not assume m ′ = m because even if F̂ is an unbiased estimator for FX this does not
guarantee E[m(F̂)] = m(FX).

The problem with this proposal is the need for more than one real-world sample. Therefore, we
use the statistical technique of bootstrapping to imitate the effect of having multiple real-world samples,
even though we only have one. Again let {X1,X2, . . . ,Xm} be the one real-world sample of data. Instead
of multiple real-world samples, we generate b bootstrap samples, each of size m, by sampling m times
with replacement from {X1,X2, . . . ,Xm}. As is common in the bootstrapping literature, we denote the ith
bootstrap sample by X?

i1,X
?
i2, . . . ,X

?
im. We then fit an input distribution F̂?

i to this bootstrap sample and
let F̂?

i can stand in for F̂i. In a problem with more than one input model we do bootstrapping for each
distribution separately. Here is the procedure in algorithm form:

Algorithm Quick

1. Given real-world data {X1,X2, . . . ,Xm}, do the following:
2. For i from 1 to b

(a) Generate bootstrap sample X?
i1,X

?
i2, . . . ,X

?
im by sampling m times with replacement from

{X1,X2, . . . ,Xm}.
(b) Fit F̂?

i to X?
i1,X

?
i2, . . . ,X

?
im.

(If there is more than one input model, do Steps 2a and 2b for each one.)
(c) Simulate r replications Yj(F̂?

i ), j = 1,2, . . . ,r using input model(s) F̂?
i .

3. Report the point estimate and CI for g =
√

nsI/s .

The reason that we focus on the parameter g =
√

nsI/s is that the point estimator of m is Ȳ (F̂)
(see (1)) and it is based on n simulation replications. However, the experiment to assess input uncertainty
in Algorithm Quick need not be tied to n simulation replications. Instead, we can choose how many
replications, say N, to spend on the input uncertainty experiment, and try to choose br = N optimally. In
the Appendix we show that the optimal or near-optimal choice of b to minimize the width of the CI for
g given a fixed budget N is b? = 10 bootstraps, meaning we use r = N/10 replications on each bootstrap
experiment.

To illustrate the approach we start with a mathematically tractable example from Barton et al. (2011).
For an M/M/¥ queue with arrival rate l and mean service time t the steady-state number of customers
in the system is Poisson with mean m = lt . Suppose l and t are not known but we observe m i.i.d.
interarrival times, A1,A2, . . . ,Am, and m i.i.d. service times X1,X2, . . . ,Xm from the real world and use them
to fit input models. Specifically, we estimate l by

l̂ =

(
1
m

m

å
i=1

Ai

)−1

and t by

t̂ =
1
m

m

å
i=1

Xi.
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We assume that we are confident that the distributions of A and X are exponential, but need to estimate the
values of the parameters. Thus, our input model F̂ consists of two exponential distributions with parameters
l̂ and 1/t̂ . For the purpose of this illustration, we have m = 100 real-world observations of both the
interarrival and service times (which we obtained by generating them from exponential distributions with
l = 5 and t = 1). Bootstrapping therefore consists of resampling this data and re-estimating l and t .

To allow for a mathematical analysis, suppose that when we simulate this queue we record a single
observation, the number in the queue in steady state, on each of n replications. Then we can show that

Var[Ȳ (F̂)]≈ 2(lt)2

m
+

lt
n

= s2
I +

s2

n
.

Thus,

g =

√
nlt
m

.

Notice that g can only be decreased by having more real-world data m.
Suppose that our conditional experiment design was to make n = 200 replications, and we are willing

to spend another N = 200 replications to assess input uncertainty. Therefore, we apply Algorithm Quick
with b? = 10 bootstrap experiments, each of r = 20 replications. This experiment yields ĝ = 3.8 with 95%
CI of [1.1,8.5]. Thus, input uncertainty is from 1 to 8 times as large as estimator uncertainty. Notice that
the true value of g =

√
200 ·5 ·1/100 ≈ 3.2.

In this example we had parametric input distributions (exponential) with unknown parameters, so the
bootstrap resampled data produced different possible parameter values. Other approaches are possible:

• Rather than generating new parameter values by resampling the real-world data and reestimating
the parameters, we could resample the parameters directly from their sampling distributions, if
known. For instance, maximum likelihood estimators are known to be asymptotically normal, and
this could provide a distribution for resampling parameter values.

• Rather than refitting distributions at all, we could drive the simulations by the empirical distribution;
i.e.,

F̂?
i (x) =

1
m

m

å̀
=1

I(X?
i` ≤ x).

This avoids the potentially slow process of refitting parametric distributions.

3 FOLLOW-UP ANALYSIS

If the quick analysis of input uncertainty above reveals that it is a concern, as it often will, then it may
be worthwhile to identify which input models contribute “more than their fair share” to the overall input
uncertainty. In this section we present a follow-up analysis to do that.

Suppose that there are L independent, univariate input distributions, FX1 ,FX2 , . . . ,FXL , and for the `th
input distribution we have m` i.i.d. real-world observations X`,1,X`,2, . . . ,X`,m`

. For instance, in the M/M/¥
example there were L = 2 input distributions (both believed to be exponential but with unknown parameters)
and we had m1 = m2 = 100 real-world observations from each.

Let F̂̀ , `= 1,2, . . . ,L denote the input distribution fitted directly to these data. In other words, these are
the distributions that would be used in the standard conditional analysis; therefore, F̂ = {F̂1, F̂2, . . . , F̂L}.
Further, let F̂?

`,i, i = 1,2, . . . ,b denote the b bootstrap distributions created for the `th input model in the
overall analysis above. We assume that these distributions are retained, but they could also be regenerated
as needed if that is more convenient.

To facilitate our follow-up analysis we make the following additional modeling approximation:

Var[Yj(F̂)] = s2
I +s2 =

L

å̀
=1

s2
` +s2 (4)
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where s2
` is the input uncertainty variance contributed by the `th input model. We consider a “fair share”

of the uncertainty contributed by the `th input model to be

g2

L
=

ns2
I

Ls2

and we want to identify which input distributions contribute more than that. We will do so using a
method that is motivated by a factor screening approach called sequential bifurcation (see, for instance,
Wan, Ankenman and Nelson 2006). The idea is to efficiently eliminate groups of input distributions that
contribute little to input uncertainty so that we can focus on ones that contribute the most.

Here is how we test the contribution of a group of distributions: Let G ⊂ {1,2, . . . ,L} be a subset of
consecutively numbered factors; e.g., if L = 12 distributions then we could have G = {4,5,6,7}. We are
interested in whether

g2(G ) =
nå`∈G s2

`

s2

is large relative to |G |g2/L; if it is then the group contains at least one input distribution that is contributing
more than its fair share. We do this by exploiting three ideas:

• We have an estimate ĝ2 of g2 from the overall assessment, so we use that to define the standard.
• Under model (4) we can construct a CI for g2(G ) by running b bootstrap simulation experiments

where we use the input distributions F̂?
`,i, i = 1,2, . . . ,b for ` ∈ G but use F̂̀ for ` 6∈ G . This is like

treating the input distributions that are not in G as being known and fixed, and using bootstrapping
to assess the overall input uncertainty due to the distributions in G .

• If the CI for g2(G ) is completely to the right of |G |g2/L, then we can claim with high confidence
that some distributions in the group are big contributors to input uncertainty. Therefore, we split
the group and then evaluate the subgroups in the same way.

We illustrate the quick assessment and follow-up analysis for a realistic example in the next section.

4 APPLICATION

The example to which we will apply our method has been used in several papers by Jack Kleijnen, Fredrik
Persson and various co-authors (see e.g., Kleijnen, Bettonvil and Persson (2003) and Persson and Olhager
(2002)). The simulation model and a student version of the Taylor II software for running the model were
generously provided by Fredrik Persson.

The simulation is a model of a manufacturing system that produced mobile phones for the Ericsson
Company. The manufacturing system is described in detail in Persson and Olhager (2002) and we used the
model that they described as the “old” structure of the production line. For our purposes, it is sufficient to
understand that the production line consists of conveyors that lead the product through a series of machines
that perform functions common to the production of circuit boards and consumer devices, such as soldering,
testing and assembly. There are many outputs of the simulation model including overall lead time, quality
and cost. In addition, there are outputs of quality, lead time and utilization for each machine. We begin by
focusing on the same response that was used in Kleijnen, Bettonvil and Persson (2003) which is the total
weekly cost of production.

Each of the machines in the simulation has a random processing time that is modeled by a lognormal
distribution with two specified parameters: mean and standard deviation. We presume that the mean and
standard deviation that are used in the simulation model are based on the observed mean and standard
deviation from some actual machine that is similar to the one being modeled in the simulation. Of course,
the observed mean and standard deviation will not be the true mean and standard deviation of that machine.
The goal of our method is to quantify the amount of input uncertainty, which is the variability that is caused
by misspecification of these parameter values. Additionally, if there is substantial input uncertainty, then



Ankenman and Nelson

Table 1: The baseline values of the processing-time parameters for the 23 machines under study.

Machine Mean StDev Machine Mean StDev
Mach 3 2.5 1 Mach 74 10 1
Mach 7 0.9 1 Mach 143 14 1
Mach 16 1.4 1 Mach 145 23 1
Mach 29 10 1 Mach 146 14 1
Mach 33 4 1 Mach 147 27 1
Mach 37 9 1 Mach 110 2.5 1
Mach 68 10 1 Mach 113 2.8 1
Mach 69 10 1 Mach 114 9.5 1
Mach 70 10 1 Mach 115 9.5 1
Mach 71 10 1 Mach 139 14.2 1
Mach 72 10 1 Mach 140 23.7 1
Mach 73 10 1

we would like to deduce which machines are primarily responsible for that uncertainty. This knowledge
would allow us to collect additional information on the parameter values for those machines to get more
precise parameter estimates and thereby reduce the effect of input uncertainty.

We have chosen 23 machines from the simulation model to study. Table 1 displays the 23 machines
and the parameter settings for each of their lognormal processing-time distributions.

We do not actually have the original real-world data, so to apply our method as presented in Section 2,
we started by generating a set of 500 random processing times from each of the lognormal processing-time
distributions in Table 1. We treated these 23 sets of 500 observations as the “real world” sample from
each machine. We then followed the Quick Algorithm in Section 2 to create b = 10 bootstrap samples
of size m = 500 for each of the 23 machines. For each bootstrap sample, we calculated the sample mean
and sample standard deviation, which led to 10 sets of empirically estimated parameter values for each
machine.

For example, the parameters from the 10 bootstrap samples from Machine 3 are shown below:

Bootstrap # Mean StDev
1 2.482124 1.048387
2 2.491728 1.023643
3 2.492922 1.024837
4 2.388243 0.897349
5 2.414130 0.974626
6 2.433462 1.025614
7 2.429213 0.923263
8 2.426516 0.947910
9 2.434552 1.001201
10 2.436321 0.949222

The variability of parameter values represents the input variation from the real-world sample taken for
Machine 3. To quantify the overall input uncertainty, we ran r = 10 replications of the simulation using the
empirical parameter values from the first bootstrap sample of each of the 23 machines and then repeated
this for each of the other nine bootstrap samples until we had 100 total observations. We call these 100
runs of the simulation Data Set 1.

Using Data Set 1 and following the derivations in Section 2, we found that for a simulation experiment
specifying n = 10 replications and output total weekly cost, the ratio of input uncertainty to standard error
of the simulation has a point estimate of ĝ = 0.84 and a 95% confidence interval of (0, 2.23). The lower
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Table 2: The sequential bifurcation data sets.

Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5
Mach 3 Varying Varying Not Varying Not Varying Not Varying
Mach 7 Varying Varying Not Varying Not Varying Varying
Mach 16 Varying Varying Not Varying Not Varying Not Varying
Mach 29 Varying Varying Not Varying Not Varying Not Varying
Mach 33 Varying Varying Not Varying Not Varying Not Varying
Mach 37 Varying Varying Not Varying Not Varying Not Varying
Mach 68 Varying Varying Not Varying Not Varying Not Varying
Mach 69 Varying Varying Not Varying Not Varying Not Varying
Mach 70 Varying Varying Not Varying Not Varying Not Varying
Mach 71 Varying Varying Not Varying Not Varying Not Varying
Mach 72 Varying Varying Not Varying Not Varying Not Varying
Mach 73 Varying Varying Not Varying Not Varying Not Varying
Mach 74 Varying Varying Not Varying Not Varying Not Varying
Mach 143 Varying Not Varying Varying Not Varying Not Varying
Mach 145 Varying Not Varying Varying Not Varying Not Varying
Mach 146 Varying Not Varying Varying Not Varying Not Varying
Mach 147 Varying Not Varying Varying Not Varying Not Varying
Mach 110 Varying Not Varying Varying Not Varying Not Varying
Mach 113 Varying Not Varying Varying Not Varying Not Varying
Mach 114 Varying Not Varying Not Varying Varying Not Varying
Mach 115 Varying Not Varying Not Varying Varying Not Varying
Mach 139 Varying Not Varying Not Varying Varying Not Varying
Mach 140 Varying Not Varying Not Varying Varying Not Varying

confidence level was actually negative. Since that is impossible, we cut off the confidence interval at 0.
This confidence interval indicates that, with 95% confidence, the input uncertainty is no more than 2.23
times the size of the standard error and we estimate it to be less than the standard error. In our experience,
this indicates that input uncertainty for this particular response is not a serious problem and thus a follow-up
analysis on this response does not seem necessary. Our conclusion is that the amount of data collected
(500 processing times for each machine) appears to be adequate for reducing the input uncertainty to a
manageable level for this response, mean total weekly cost.

To demonstrate the follow-up analysis discussed in Section 3, we will focus on a different output from
the simulation, namely the utilization of Machine 7. For this response, we know that the input variation
of the processing time of Machine 7 is the most likely cause of any input uncertainty. However, we will
use the follow-up analysis to confirm this and thereby demonstrate the effectiveness of the method.

We begin by quantifying the total amount of input uncertainty using Data Set1, but now using the
Utilization of Machine 7 as the response. The ratio of input uncertainty to standard error of the simulation
has a point estimate of 11.32 and a 95% confidence interval of (7.58, 21.21). This shows that, with 95%
confidence, the input uncertainty is 7 to 21 times as large as the simulation standard error for this response.
Clearly if this response is important, the input uncertainty is of great concern. The next step would be to
implement a sequential bifurcation procedure to determine which of the 23 machines is contributing to the
input uncertainty. Table 2 shows the collection of four more data sets of 100 observations which vary the
parameters of selected machine processing times, but leave others constant at the value estimated from the
real world-data set. Data Sets 2, 3 and 4 represent the sequential bifurcation process. Our point estimate
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Table 3: The point estimates and 95% confidence intervals for the ratio of input uncertainty to standard
error of the simulation for each of the sequential bifurcation data sets. “N/A” indicates that the procedure
returned a negative value which can reasonably be interpreted as 0.

Data Set (Varying) Lower Bound Point Estimate Upper Bound
1 (All) 7.58 11.32 21.21
2 (Mach 3-74) 6.93 10.36 19.42
3 (Mach 143-113) 0.65 1.47 3.16
4 (Mach 114-140) N/A N/A 0.65
5 (Mach 7) 6.95 10.39 19.47

for g2, the squared ratio of input uncertainty variance to simulation variance, is (11.32)2 = 128.1 from
Data Set 1.

The point estimates and confidence intervals in Table 3 from Data Set 4 indicate that input variability
for the last four machines (114, 115, 139, and 140) have no significant effect on the input uncertainty for
utilization at Machine 7 since the upper limit of the confidence interval for the variance ratio is lower than
4/23 of the point estimator: 0.42 = 0.652 < (4/23)(11.34)2 = 22.36. Similarly, machines 143–113 have
no significant effect on the input uncertainty as 9.98 = 3.162 < (6/23)(11.34)2 = 33.55. The results from
Data Set 2 indicate that Machines 3–74 have the most significant effect. Further sequential bifurcation
could be done, but in this case we know that machine 7 is the most likely significant factor so we will skip
to the last stage of the sequential bifurcation where only the parameters of the processing time of Machine
7 are varying. The results for Data Set 5 show that indeed this machine contributes essentially all of the
input uncertainty and confirms the method for isolating the important contributors.

5 CONCLUSIONS

We have presented and illustrated a simple method for quantifying the impact of input uncertainty relative
to simulation uncertainty as measured by the standard error of the simulation point estimator; that is, we
estimate g =

√
nsI/s . We also provided a follow-up analysis to help identify which input distributions

contribute the most uncertainty. Our focus here was on independent, univariate input distributions, so
extension to multivariate input distributions is the next logical step.

One technical problem with our approach is that even though our point estimator of g2 is unbiased,
and our CI is valid under normal-distribution assumptions, it is possible for the point estimator and CI
end points to be negative even though g2 < 0 is impossible. This problem is not unique to our setting; it
arises in all random-effects analysis. We believe that it is reasonable, if not totally satisfying, to interpret
negative values as 0 as we have done here.

APPENDIX

Here we address the choice of number of bootstrap samples, b, to use for forming the CI.
Multiplying the CI (3) through by n gives a CI for g2 of

n
r

[
MST

MSE ·Fb−1,b(r−1),1−a/2
−1

]
≤ g2 ≤ n

r

[
MST

MSE ·Fb−1,b(r−1),a/2
−1

]
.

Given a fixed budget of N replications, our goal is to choose b (and thus r = N/b) to minimize the expected
length of this CI. Using simple algebra and the relationship br = N the expected length is

E

(
MST
MSE

)( n
N

)
b

(
1

Fb−1,N−b,1−a/2
− 1

Fb−1,N−b,a/2

)
.
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Now n/N is fixed, and if we treat E(MST/MSE) as approximately constant as a function of b, then the
expected length only depends on

b

(
1

Fb−1,N−b,1−a/2
− 1

Fb−1,N−b,a/2

)
. (5)

As N → ¥ this becomes

b

(
b−1

c2
b−1,1−a/2

− b−1

c2
b−1,a/2

)

which (for fixed a) is only a function of b. For the standard values of a , this expression is minimized at
b = 11, and the function is flat near 11. Evaluating (5) for specific values of N, we find that the optimal b
decreases slightly when N is as small as 60 to b? = 10, which is the value we recommend.
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