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In this article we discuss the application of a certain class of Monte Carlo methods to stochastic
optimization problems. Particularly, we study variable-sample techniques, in which the objective
function is replaced, at each iteration, by a sample average approximation. We first provide general
results on the schedule of sample sizes, under which variable-sample methods yield consistent es-
timators as well as bounds on the estimation error. Because the convergence analysis is performed
pathwisely, we are able to obtain our results in a flexible setting, which requires mild assumptions
on the distributions and which includes the possibility of using different sampling distributions
along the algorithm. We illustrate these ideas by studying a modification of the well-known pure
random search method, adapting it to the variable-sample scheme, and show conditions for conver-
gence of the algorithm. Implementation issues are discussed and numerical results are presented
to illustrate the ideas.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization—global optimiza-
tion; G.3 [Probability and Statistics]: Probabilistic algorithms (including Monte Carlo); I.6.1
[Simulation and Modeling]: Simulation Theory
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1. INTRODUCTION

In the past few years, a great deal of attention has been devoted to theoreti-
cal and practical aspects of combining simulation and optimization techniques
to solve practical problems. This is required in problems where the objective
function cannot be evaluated exactly but rather must be estimated by simu-
lation. Indeed, many simulation packages have now optimization procedures
implemented in the software. Conversely, there has been considerable amount
of research on optimization methods that incorporate sampling in order to deal
with uncertainty factors.
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Perhaps the most common (and fairly general) way to obtain a model that
captures the existing randomness is by defining a random function of the un-
derlying parameters on a proper probability space and then optimizing the
expected value of such function with respect to the decision variables. More for-
mally, we have a probability space (�, F , P ), a subset X ⊂ IRm, a (measurable)
function G : X ×�→ IR and we want to solve

min
x∈X

{
g (x) := IE[G(x)]=

∫
�

G(x, ω) P (dω)
}
. (1)

Typically, the expected value in problem (1) cannot be computed exactly,
so approximation methods are required. In the context of a simulation model,
IE[G(x)] may represent some performance measure. For example, x could denote
the vector of mean service times in a queuing network, and G(x) the average
waiting time of the first 100 customers, or the maximum number of customers
in the system up to some pre-specified time T . In such cases, one should keep in
mind that a sample point G(x, ωi) can be obtained by running one replication
of the model. Such multiple-replication scheme renders our framework more
suitable to transient simulation models; nevertheless, the ideas can in principle
be applied to steady-state systems, see below.

One approach to approximate the function in (1) is to resort to Monte Carlo
methods: in its basic form, the idea is to replace the expected value function
with its corresponding Monte Carlo approximation

ĝN (x)= 1
N

N∑
i=1

G(x, ωi),

(where ω1, . . . , ωN form an independent and identically distributed sample) and
then solve the resulting deterministic problem. This type of algorithm (some-
times called “sample path optimization”, or “sample average approximation”)
has been well studied in the literature, see for instance [Rubinstein and Shapiro
1993] and references therein. One advantage of such method is its nice conver-
gence properties; indeed, it is possible to show convergence of optimal solutions
and optimal values under fairly general assumptions (see, e.g., Dupačová and
Wets [1998], Robinson [1996], and Shapiro [1991; 1993]). In some cases, the
solution of the approximating problem converges exponentially fast on the sam-
ple size N to a solution of the original problem. This type of phenomenon was
observed by Shapiro and Homem-de-Mello [2000] in the context of piecewise
linear convex stochastic programs, and studied by Kleywegt et al. [2001] in the
context of discrete optimization.

The basic idea in the Monte Carlo method yields several possible variations.
For example, suppose we have at hand an iterative method to solve the de-
terministic problem. Instead of fixing a sample from the beginning and then
minimizing the resulting deterministic function, one may consider using differ-
ent samples along the algorithm. That is, the idea is to use, at iteration k, the
approximating function

ĝ k(x) := G
(
x, ωk

1

)+ · · · + G
(
x, ωk

Nk

)
Nk

,
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where ωk
1 , . . . , ωk

Nk
is a sample from some distribution Pk close to P . Notice

that we use a new sample at every iteration (hence, the term “variable-sample
method” used throughout the article) as opposed to fixing a large sample at
the beginning and then optimizing the resulting deterministic function. The
measure Pk is defined by the “user”, for example, by the underlying optimization
algorithm being studied. It could represent, for instance, an approximation to
an unknown steady-state distribution.

One apparent advantage of a variable-sample scheme over the basic Monte
Carlo method is that, since we generate independent estimates of the objective
function at different iterations, we avoid getting “trapped” in a single sample-
path. For example, as the results in Kleywegt et al. [2001] and Shapiro and
Homem-de-Mello [2000] show, some problems have the property that, for al-
most all ω, there exists a number N0=N (ω) such that the solution x∗N0

of the
approximating problem min ĝ N0 (x) coincides with the solution x∗ of the origi-
nal problem (1). Such N0, however, is difficult to determine in practice, so for
a given sample size N there may be a positive probability that x∗N is actually
far away from x∗—which in turn implies the existence of “bad” sample-paths.
This effect tends to be reduced once we generate independent estimates of the
objective function, since resampling allows the iterates of the algorithm to get
away from those “bad” sample paths.

Another advantage of a variable-sample scheme is that the sample sizes
can increase along the algorithm, so that sampling effort is not wasted at the
initial iterations of the algorithm. Also, because the estimates at different iter-
ations are independent, one can perform statistical tests to compare those esti-
mates, which in turn can lead to stopping criteria for the algorithm. Indeed, this
type of approach has been successfully used in some gradient-based methods
for continuous stochastic optimization; see, for instance, Cooper and Homem-
de-Mello [2003], Homem-de-Mello et al. [1999] and Shapiro and Homem-
de-Mello [1998].

The price to pay for the flexibility provided by a variable-sample scheme, of
course, is that the function being optimized changes at every iteration. There-
fore, the convergence results developed for the sample average approximation
described above are no longer valid. For example, it is important to ensure that
ĝ k(x)→ g (x) with probability one (w.p.1)—that is, it is desirable that ĝ k(x) be
a consistent estimator of g (x). Perhaps surprisingly, it turns out that, for such
a property to hold, it is not enough that the sequence of sample sizes {Nk} be
increasing; as we show in Section 3, Nk must grow at a certain rate.

While, in some cases, consistency of estimators suffices to show convergence
of a method adapted to the variable-sample scheme, in other situations we need
more than that; in those cases, we must ensure that the error from the determin-
istic algorithm dominates the stochastic error | ĝ k(x)− g (x)|, so that the conver-
gence properties of the deterministic algorithm are preserved. While this asser-
tion is quite intuitive, showing that such property holds for a given algorithm
can be a difficult task. This can be made easier by imposing a proper schedule
of sample sizes, so that we can bound the stochastic error | ĝ k(x)− g (x)|.

In this article, we address these issues. We propose a framework to ana-
lyze methods that use the variable-sample scheme. In particular, we focus on
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algorithms that use function evaluations only. We provide general results on
consistency of estimators as well as bounds on | ĝ k(x)− g (x)| under the variable-
sample scheme. These goals are accomplished by exploiting the fact that the
estimates ĝ k(x) of the objective function g (x) are obtained via averaging, which
allows us to use some classical results from probability theory. We obtain generic
bounds on the deviation | ĝ k(x)− g (x)|, which can then be used to show conver-
gence of a specific method. Such conditions translate directly to the choice of
sample size Nk used to compute the average at each iteration. An important
aspect of our study is that the analysis is completely performed in terms of
sample paths. This is why it is necessary to resort to tools such as the law of the
iterated logarithm instead of the more commonly used Central Limit Theorem.
By doing so, we do not need to assume any distribution for the error | ĝ k(x)−
g (x)|.

Another feature of our analysis is that we allow the use of different sam-
pling distributions Pk at each iteration to obtain the estimate ĝ k . This fea-
ture can be exploited in several ways, for example by using sampling meth-
ods that yield variance reduction for the resulting estimators. Notice that the
sampling distributions Pk can even yield biased estimators of g (x), as long as
the bias goes to zero at a specific rate. This underscores the generality of the
results.

The above results provide a set of tools that can be used to show convergence
of a variable-sample version of a specific deterministic optimization algorithm.
Such convergence analysis can in principle be applied to discrete or continuous
problems. However, because it deals solely with convergence of function values,
the analysis cannot be applied directly to methods that use gradient informa-
tion such as the steepest descent algorithm, for example. Indeed, in such cases
one must impose conditions on the estimates of the gradients in order to have
convergence; see Shapiro and Wardi [1996]. Nevertheless, the analysis can be
conceivably used in methods where derivatives are approximated by finite dif-
ferences, though we do not explore that road here.

A natural setting for methods that are based exclusively on function evalu-
ations is that of discrete stochastic optimization problems. This class of models
of the form (1) consists of problems where the feasibility set X is finite but typ-
ically very large, so that explicit enumeration is not feasible. Many techniques
have been proposed for discrete problems in the deterministic setting; a partic-
ular class is that of random search procedures. In this type of algorithms, on
every iteration a point is selected at random and compared with the current
point based on the value of the objective function. A decision is made as to
whether or not the new point should replace the current one, and the algorithm
proceeds. Random search methods have proven to be quite useful, especially
when the structure of the problem cannot be exploited.

Motivated by the above discussion, we consider the application of the
variable-sample framework to random search methods for discrete stochastic
optimization problems in this article. Because the purpose of the article is to il-
lustrate the use of some general techniques to prove convergence—rather than
proposing a new method—we focus on the simplest kind of random search al-
gorithms, namely the pure random search method. In that algorithm, on every
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iteration a point is selected uniformly on X and independently of the previous
choices; the new point replaces the current one if the value of the objective
function is improved.

Although the pure random search method is not particularly efficient, we
feel it constitutes an important example of application of the ideas developed
in the article, for several reasons: first, we believe the framework presented
here can be easily extended to other methods that include pure random search
as a special case. Such is the case, for example, of the modifications proposed
by Dorea and Gonçalves [1993], where the choice of the new point is made
conditionally on previous selections. Second, some proofs developed for more
sophisticated algorithms rely on convergence of pure random search to guar-
antee convergence of the algorithm. Such is the case of published proofs for
genetic algorithms (see, e.g., Rudolph [1996]) and for the so-called ant colony
optimization method [Gutjahr 2002], to name a few examples. Thus, our results
can be readily adapted to show convergence of variable-sample versions of those
methods. Third, pure random search allows for an additional degree of flexibil-
ity by letting the underlying distributions depend on the decision variables x; in
that case, we have Pk = Pxk , where xk is the point obtained in the kth iteration.
Finally, in the context of deterministic optimization, stopping rules have been
developed for pure random search algorithm (see e.g. Dorea [1990] and Hart
[1999]). Those stopping rules can in principle be applied to the variable-sample
setting—which is possible since the estimates obtained at different iterations
are independent—though we do not pursue that in this article. In Homem-
de-Mello [2001], we apply the methodology to a more complex algorithm, the
simulated annealing method.

An important aspect of using a variable-sample scheme is its implementa-
tion. The results in Section 3 show that a necessary condition for convergence
is that the sample sizes increase at a certain rate. A naive approach of in-
creasing the sample size too often, however, will be too slow in practice to have
any usefulness. We address this issue by proposing an adaptive version of a
variable-sample scheme. The idea is to allow the algorithm to decide automat-
ically what is a “good” sample size. This is accomplished by means of t-tests.
Once the “good” sample size is achieved, it is increased only occasionally in
order to fulfill the requirements for theoretical convergence.

The remainder of this article is organized as follows: we start by briefly
reviewing the literature on discrete stochastic optimization. In Section 3, we
formally introduce variable-sample methods. We provide general conditions
under which those methods produce consistent estimates as well as path-
wise bounds on the estimation error | ĝ k(x)− g (x)|. The analysis in these sec-
tions is general, in that it does not depend on the particular algorithm be-
ing used for optimization. Then, in Section 4, we present a variable-sample
modification of the pure random search (PRS) algorithm, and show that the
modification preserves the convergence properties of PRS for deterministic
problems, as long as the sample sizes Nk grow at a specific rate. Implemen-
tation aspects are discussed in Section 5, where the ideas are illustrated by
some numerical results. Finally, in Section 6, we present some concluding
remarks.
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2. A BRIEF LITERATURE REVIEW

Several methods have proposed in the literature to handle problems of the
form (1) when the feasible set X is finite. Here, we mention general random
search procedures such as the ones discussed in Alrefaei and Andradóttir [2001],
Andradóttir [1995, 1996], Gong et al. [1992] and Yan and Mukai [1992]. Adapted
versions of the simulated annealing method have been studied by Alrefaei
and Andradóttir [1999], Fox and Heine [1995], Gelfand and Mitter [1989], and
Gutjahr and Pflug [1996]. Another approach is the ordinal optimization, pro-
posed by Ho et al. [1992], where the order of the function values are esti-
mated, rather than the function values themselves. Yakowitz et al. [2000]
discuss a method where quasi-Monte Carlo techniques are used to select low-
dispersion points in the feasibility set. An adaptation of the classical branch-
and-bound method to the context of stochastic optimization is studied by Norkin
et al. [1998]. Boesel and Nelson [1998] and Allen et al. [2002] present an
alternative procedure based on the combination of genetic algorithms with
ranking and selection techniques. In the particular case where the function
G(·, ω) is the optimal value of a linear programming problem and the set X is
polyhedral, stochastic integer programming techniques can be applied; see, for
instance, the bibliography on stochastic programming compiled by Van der
Vlerk [2003].

The basic fixed-sample Monte Carlo approach described in Section 1 has also
been applied to discrete stochastic optimization problems. As seen earlier, in
that case the expected value function is replaced by its corresponding sample
average approximation, and the resulting deterministic problem is solved by
some discrete optimization method. Morton and Wood [1998] use this approach
to derive upper and lower bounds to the optimal value, and show that the gap
decreases with the sample size. Kleywegt et al. [2001] show some theoretical
properties of the method. Besides showing convergence of optimal values, they
resort to large deviations techniques to show that the solution of the approx-
imating problem converges exponentially fast on the sample size N to a solu-
tion of the original problem. On the implementation side, they propose solving
a sample average approximation of the problem a few times and then using
ranking and selection procedures as a second step. We refer to Kleywegt et al.
[2001] for details.

3. VARIABLE-SAMPLE METHODS

In this section, we establish a framework to analyze simulation-based methods
that utilize different samples along the iterations. The framework presented
is general in that we do not assume any particular structure for the problem,
which could be either discrete or continuous.

We start with a few definitions. Let N1, N2, . . . be a sequence of inte-
ger numbers representing the size of the sample used at each iteration. We
call {Nk} the schedule of sample sizes associated with the algorithm under
scrutiny. We assume that the sample used at any given iteration is independent
and identically distributed, and that this sample is independent of previous
samples. Notice that the independent and identically distributed assumption
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regards only the sample at a given iteration—that is, samples at different it-
erations can be drawn from different distributions. With that setting, let �Nk

denote the Nk-fold Cartesian product of the sample space �, and let Pk be
a probability measure on �Nk . Also, let �̃=�N1 × �N2 × · · · , and let P̃ de-
note the corresponding probability distribution on �̃ generated by the Pks.
Notice that such construction is valid because of the assumption of indepen-
dence between samples at different iterations. In particular, it implies that
P̃ (Ak)= Pk(Ak), where Ak is any event in the σ -algebra corresponding to
iteration k.

Notice that a pointω= (ω1
1, . . . , ω1

N1
, ω2

1, . . . , ω2
N2

, . . .)∈ �̃ represents a sample-
path followed along the iterations of the algorithm. Define now the following
random variables on (�̃, P̃ ):

Gk
i (x, ω) :=G(x, ωk

i ), k= 1, 2, . . . , i= 1, . . . , Nk .

Now, for each ω∈ �̃, define the approximating functions

ĝ k(x) := Gk
1(x, ω)+ · · · + Gk

Nk
(x, ω)

Nk
, k= 1, 2, . . . (2)

(we omit the dependence of ĝ k(x) on ω for brevity). The function ĝ k(x) is the ap-
proximation to the original function g (x) that is used in the kth iteration. Notice
that, conditionally on x, the estimates { ĝ k(x)}, k= 1, 2, . . . , are all independent
of each other.

3.1 Consistency of Estimators

One approach to show convergence of a variable-sample simulation-based
method is to show that the algorithm converges for P̃ -almost all ω∈ �̃. It is
natural to think that, in order to have convergence for almost all sample paths,
we must have that the estimators used at each iteration are consistent, that is,
for all x ∈ X and P̃ -almost all ω∈ �̃, we must have that

lim
k→∞

ĝ k(x)= g (x). (3)

It is interesting to notice that, although condition (3) may seem a direct con-
sequence of the law of large numbers, this is not the case. Two factors contribute
to that: first, we do not impose that IE ĝ k(x)= g (x), that is, the estimator ĝ k(x)
is allowed to be biased. Second, even when this is not the case—for example,
when all measures Pk are identical—it could happen that, in principle, ĝ k(x, ω)
does not get close to g (x) with a sample of size Nk . To illustrate the latter point,
consider the function G(x, z)= z, where z is 0 or 1 with probability 1/2 each, and
a sequence ω formed by 2` ones followed by 2`+ 1 zeros, `= 0, 1, 2, . . . . That is,
ω= (0, 1, 1, 0, 0, 0, 1, 1, 1, 1, . . . ). Suppose that Nk = k, k= 1, 2, . . . . Then, after
a little algebra, we see that

`(n)
2`(n)+ 1

≤
∑n

j=1 ω j

n
≤ `(n)+ 1

2`(n)+ 1
, (4)
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where `(n) is the smallest nonnegative integer ` such that n ≤ (` + 1)(2` + 1).
The above inequalities imply that

lim
n→∞

∑n
j=1 ω j

n
= 1

2
= IEω,

so this sample path satisfies the law of large numbers for the overall sequence.
However, we have that ωk

i =uk , i= 1, . . . , Nk , where uk = 0 if k is odd and uk = 1
otherwise. Hence, we have that (ωk

1 + · · · + ωk
Nk

)/Nk =uk and thus the limit in
(3) does not exist.

Our initial task is therefore to show that pathological cases such as the one
described above happen only on a set of P̃ -probability zero. Moreover, we must
impose conditions on the bias IE ĝ k(x)− g (x). Then, we will be able conclude
that (3) holds. We start with the following assumptions:

Assumption A1. For each x ∈ X , there exists a positive constant
M =M (x)> 0 such that supk,i Gk

i (x) ≤ M with probability one.

Assumption A2. For each x ∈ X , we have that limk→∞ IE ĝ k(x)= g (x).

A few words about the above assumptions. Assumption A1 says that all ran-
dom variables are uniformly bounded with probability one. In a simulation
model, this is the case for example when all input distributions (e.g., service
times) have supports which are contained in a finite region that does not de-
pend on k. As we shall see below, this assumption can be relaxed, at a certain
expense. Assumption A2 says that the estimators ĝ k(x) are asymptotically un-
biased, and obviously holds in case all ĝ k(x) are unbiased estimators of g (x). We
must also notice that the term “constant” in assumption A1 refers to ω rather
than x, that is, constant means “nonrandom quantity”. This terminology is used
throughout the article.

We consider now the following alternative assumptions A1′ and A2′. As-
sumption A1′ is clearly weaker than assumption A1—rather than requiring
conditions on the support of the distributions, it only imposes a condition on
the second moments. Most distributions used in simulation have finite vari-
ances, so the only practical requirement of assumption A1′ is that there be a
common bound for all k. Since the measures Pk are controlled by the user, this
assumption might be easily enforceable. Assumption A2′, on the other hand,
deals with the special case when all probability measures Pk are identical.

Assumption A1′. For each x ∈ X , there exists a positive constant
M =M (x)> 0 such that supk Var[Gk

1(x)] ≤ M .

Assumption A2′. All probability measures Pk are identical and the estima-
tor ĝ k(x) is unbiased.

Before proceeding with the results, let us recall some basic facts from large
deviations theory. Let Y1, Y2, . . . be a sequence of independent and identically
distributed random variables with finite expectation µ, and for all N ≥ 1 define
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ȲN =
∑N

i=1 Yi/N ; then, the weak law of large numbers says that, for any δ >0,

lim
N→∞

P (|ȲN −µ| ≥ δ)= 0, (5)

and the large deviation theory asserts that the above probability converges to
zero exponentially fast. Indeed, for any N ≥ 1, Chernoff ’s bound yields

P (ȲN −µ≥ δ)≤ exp (−NI (µ+ δ)). (6)

Here, I (·) is the so-called rate function corresponding to the distribution of Y1,
which is defined by I (z) := supt∈IR{tz − log M (t)}, where M (t) := IE[etY1 ] is the
moment generating function of Y1 (which is assumed to be finite in a neighbor-
hood of zero). It is possible to show that I (·) is nonnegative, strictly convex and
attains its minimum atµ (with I (µ)= 0), so that the exponent on the right-hand
side of (6) is strictly negative. Next, by applying inequality (6) to the process
{−Yi}, we have that

P (ȲN −µ ≤ − δ)≤ exp (−NI (µ− δ))
and thus

P (|ȲN −µ| ≥ δ)≤ 2 exp (−Nγ (δ)), (7)

where γ (δ) := min(I (µ+δ), I (µ− δ)). This implies (5). It is possible to show that
the exponential bound in the above inequality is asymptotically sharp, in the
sense that

P (|ȲN −µ|>δ)= exp (−Nγ (δ)+ o(N )). (8)

The literature on large deviations theory is quite ample; we refer the reader
to the books by Dembo and Zeitouni [1998] and Shwartz and Weiss [1995], for
example, for comprehensive discussions. For our purposes, the results in (7)
and (8) will suffice.

The above results, while very important from a qualitative point of view, are
difficult to use directly since typically it is very hard to compute the rate function
I (·). Thus, estimates for I (·) are needed. A useful one can be derived when the
corresponding random variables are uniformly bounded, that is, |Yi| ≤ M with
probability one. In that case, we have that

I (z)≥ (z −µ)2

2M 2 for all z ∈ IR (9)

(see, e.g., Shapiro and Homem-de-Mello [2000] for a proof). A similar result
can be derived under the weaker assumption that the corresponding random
variables have finite variance σ 2. Then, there exists a neighborhood N of µ
such that

I (z)≥ (z −µ)2

3σ 2 for all z ∈N . (10)

This follows directly from the Taylor expansion of the function I ; see Kleywegt
et al. [2001] for a proof.

Another estimate of the deviation probability P (|Ȳ −µ|>δ) can be obtained
by a variant of the Central Limit Theorem. In that case, δ goes to zero with n,
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so that the deviations are never very large. In Chung [1974, Thm. 7.1.3],
the following result is proved: suppose the independent and identically dis-
tributed sequence {Yi} has finite variance σ 2 and finite third central moment
γ 3 := IE(|Y1−µ|3). Let an be a sequence of real numbers increasing to infinity,
and subject to the following growth condition:

lim
n→∞ log

nγ 3

(nσ 2)3/2 +
a2

n

2
(1+ ε)= −∞ for some ε >0. (11)

Then, for this ε, there exists N such that, for all n≥N , we have

exp−a2
n(1+ε)/2 ≤ P

(
Ȳ −µ≥ anσ√

n

)
≤ exp (−a2

n(1− ε)/2). (12)

We can now state the results:

PROPOSITION 3.1. Suppose that Assumptions A1 and A2 hold. Suppose also
that the schedule {Nk} satisfies the following property:

∞∑
k=1

αNk <∞ for all α ∈ (0, 1). (13)

Then, ĝk(x)→ g (x) for P̃-almost all ω∈ �̃.

PROOF. Fix x ∈ X , let k≥ 1 and δ >0. To simplify the notation, let
gk := IE ĝ k(x). Then, by inequality (7) above, we have that

Pk(| ĝ k(x)− gk| ≥ δ)≤ 2 exp (−Nkγk(δ)), (14)

where γk(δ) := min(Ik(gk + δ), Ik(gk − δ)), and Ik is the rate function of Gk
i (x).

By Assumption A1, we have that Gk
i (x) ≤ M with probability one for all k and

i and thus, from (9), we have

γk(δ)≥ δ2

2M 2

and hence

P̃ (| ĝ k(x)− gk| ≥ δ)= Pk(| ĝ k(x)− gk| ≥ δ)≤ 2 exp (−Nkδ
2/(2M 2)). (15)

It follows that
∞∑

k=1

P̃ (| ĝ k(x)− gk| ≥ δ)≤
∞∑

k=1

2 exp (−δ2/(2M 2))
Nk
. (16)

Notice that, if condition (13) holds, then the expression on the right-hand side
of the above inequality is finite for all δ >0. By the Borel–Cantelli lemma (see,
e.g., Chung [1974, Thm. 4.2.1]), we then have that

P̃ (| ĝ k(x)− gk| ≥ δ infinitely often (i.o.)) = 0 ∀δ >0.
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Finally, Assumption A2 implies that, given δ >0, |gk − g (x)|<δ/2 for k large
enough. It follows that

P̃ (| ĝ k(x)− g (x)| ≥ δ/2 infinitely often) = 0 ∀δ >0 (17)

and therefore ĝ k(x)→ g (x) for P̃ -almost all ω∈ �̃.

The above result can be strengthened in case the measures Pk are identical.
As the proposition below shows, in that case, condition (13) is also necessary for
convergence of ĝ k(x) to g (x).

PROPOSITION 3.2. Suppose that Assumptions A1′ and A2′ hold. Then, a
sufficient condition to have ĝk(x)→ g (x) for P̃-almost all ω∈ �̃ is that the
schedule {Nk} satisfies condition (13). If, in addition, Var[G1

1(x)]> 0, then
condition (13) is also necessary.

PROOF. Fix x ∈ X , let k≥ 1 and δ >0. Then, (7) and (8), together with
Assumption A2′, imply that there exists a sequence {ck} such that ck→ 0 and

Pk(| ĝ k(x)− g (x)| ≥ δ) ≤ 2 exp (−Nkγ (δ)) (18)
Pk(| ĝ k(x)− g (x)|>δ) ≥ exp (−Nk(γ (δ)+ ck)), (19)

where γ (δ) := min(I (g (x) + δ), I (g (x)− δ)), and I is the rate function of Gk
i (x).

Now, from (10) and Assumption A1′, we have that there exists a neighborhood
N of zero such that

γ (δ)≥ δ2

3M 2 for all δ ∈N

and thus, for δ small enough and all k,

P̃ (| ĝ k(x)− g (x)| ≥ δ)= Pk(| ĝ k(x)− g (x)| ≥ δ)≤ 2 exp (−Nkδ
2/(3M 2)). (20)

On the other hand, since the random variables Gk
i (x) are assumed to have

positive variance, it follows that the rate function I is finite in a neighborhood
of g (x), that is, γ (δ)<∞ for δ small enough. In fact, γ (δ)→ 0 as δ→ 0.

Next, let ε >0 be arbitrary. Since γ (δ)→ 0 and the sequence {ck} goes to zero,
we have from (19) that, for δ sufficiently small and k sufficiently large,

P̃ (| ĝ k(x)− g (x)|>δ)= Pk(| ĝ k(x)− g (x)|>δ)≥ exp (−Nkε)= [exp (−ε)]Nk . (21)

Together, (20) and (21) imply that
∑∞

k=1 P̃ (| ĝ k(x)− gk|>δ) is finite for all δ suf-
ficiently small if and only if condition (13) holds. By applying the full statement
of the Borel–Cantelli lemma (see, e.g., Chung [1974, Thms. 4.2.1 and 4.2.4]),
we conclude that, under assumption A1′, we have

(13) holds ⇒ ∃ δ0> 0 : P̃ (| ĝ k(x)− g (x)|>δ infinitely often)= 0
∀δ ∈ (0, δ0)

(13) does not hold ⇒ ∃ δ1> 0 : P̃ (| ĝ k(x)− g (x)|>δ infinitely often)= 1
∀δ ∈ (0, δ1).

It follows from the above implications that a necessary and sufficient condition
to have ĝ k(x)→ g (x) for P̃ -almost all ω∈ �̃ is that condition (13) holds.
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Some remarks about the above results are now in order. First, notice that
condition (13) imposes a mild constraint on the schedule of sample sizes. In-
deed, it is evident that such condition holds if Nk ≥ ck, where c is any positive
constant. Even a sublinear growth such as Nk =

√
k satisfies (13). Notice how-

ever that not all increasing schedules satisfy (13): for example, with Nk = c log k
we have, for any α >0,

∞∑
k=1

αc log k =
∞∑

k=1

ec log k logα =
∞∑

k=1

klogαc

which converges if and only if α < exp (−1/c). Therefore, condition (13) does
not hold in that case. A somewhat surprising consequence of Proposition 3.2
is that, when the measures Pk are identical and Nk = c log k, ĝ k(x) does not
converge to g (x) for P̃ -almost all ω∈ �̃. The proof of Proposition 3.2 shows why
this happens—there exists some δ >0 such that the deviation | ĝ k(x)− g (x)|
is larger than δ infinitely often with probability one. In that case, we can
only conclude that there exists a subsequence of { ĝ k(x)} converging to g (x).
Nevertheless, as we shall see later, in some cases it suffices to ensure that
P̃ (| ĝ k(x)− g (x)|>δ infinitely often)= 0 for some given δ >0 (rather than all
δ >0) on order to have convergence of the algorithm; in those situations, the
proof of Proposition 3.2 can be modified to show that even a schedule such as
Nk = c log k is acceptable, provided c is sufficiently large.

Another remark concerns the necessity of condition (13) in Proposition 3.2.
Observe the importance of the assumption of positive variance in that proposi-
tion, since otherwise Gk

i (x) ≡ g (x) and thus (13) would not be necessary. More-
over, condition (13) is not necessary under the conditions of Proposition 3.1,
particularly Assumption A2. Indeed, suppose, for example, that Gk

i (x) has dis-
tribution with mean g (x) and variance σ 2

k = 1/k; clearly, Gk
i (x) approaches the

constant g (x) with probability one as k grows and therefore any nondecreasing
schedule {Nk} (e.g., Nk = 1 for all k) guarantees that ĝ k(x) converges to g (x)
with probability one.

We conclude this section by proposing yet another alternative to Proposi-
tions 3.1 and 3.2. It requires a stronger assumption on the schedule {Nk} but
it requires weaker assumptions on the underlying random variables. A related
result was derived by Cooper et al. [2003] in a different context.

PROPOSITION 3.3. Suppose that Assumptions A1′ and A2 hold. Suppose also
that the schedule {Nk} satisfies the following property:

∞∑
k=1

1
Nk

<∞. (22)

Then, ĝk(x)→ g (x) for P̃-almost all ω∈ �̃.

PROOF. Fix x ∈ X , let k≥ 1 and δ >0. We apply Chebyshev’s inequality to
obtain

Pk(| ĝ k(x)− IE ĝ k(x)| ≥ δ)≤ Var[ ĝ k(x)]
δ2 = Var[Gk

1(x)]/δ2

Nk
≤ M/δ2

Nk
. (23)
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Thus,
∑∞

k=1 P̃ (| ĝ k(x)− IE ĝ k(x)| ≥ δ) converges if and only if (22) holds. The re-
mainder of the proof is identical to that of Proposition 3.1 and therefore is
omitted.

3.2 Sample-Path Bounds

The results in the previous section ensure consistency of the estimators used
at each iteration. Intuitively, this guarantees that, if k (and therefore Nk) is
sufficiently large, then ĝ k(x) is close to g (x) and so, in principle, when k is
large a variable-sample method should not behave too differently from a hypo-
thetical method that could solve the original problem (1). Notice however that
the basic argument for using a variable-sample method is to update the sample
sizes as the algorithm progresses; therefore, we may need stronger results than
just consistency. In particular, it is desirable to derive bounds on the deviation
| ĝ k(x)− g (x)|.

The theorem below provides such bound. Notice that the result is not stated
in terms of distributions, but rather for each sample path ω. In a sense, it cor-
responds to the law of the iterated logarithm in the standard independent and
identically distributed case. Observe that conditions imposed on the schedule
{Nk} are stronger than before. We shall also impose the following assumption:

Assumption A3. For each x ∈ X , there exist a positive constant M1=M1(x)
such that supk IE[|Gk

1(x)− IE ĝ k(x)|3]/(Var[Gk
1(x)])3/2 ≤ M1.

Assumption A3 holds, for example, if the random variables Gk
1(x) have uni-

formly bounded third moment (for all k) and their variances are uniformly
bounded away from zero.

THEOREM 3.4. Suppose that Assumption A3 holds. Suppose also that the
schedule {Nk} satisfies the following property:

Nk ≥ c1kρ for some c1> 0 and some ρ >2. (24)

Then, for P̃-almost all ω∈ �̃, there exists K = K (ω)> 0 such that

| ĝk(x)− g (x)| ≤ σk(x)

√
log Nk

Nk
+ |IE ĝ k(x)− g (x)| (25)

for all k> K , where σ 2
k (x) :=Var[Gk

1(x)].
If Nk ≤ c2kρ for some c2> 0 and some ρ ≤ 2, then for P̃-almost all ω∈ �̃ we

have that

| ĝ k(x)− g (x)| ≥ σk(x)

√
log Nk

Nk
− |IE ĝ k(x)− g (x)| infinitely often. (26)

PROOF. Fix x ∈ X and let k≥ 1. Our goal is to apply inequalities (12) to
estimate the deviation probabilities of ĝ k(x)− IE ĝ k(x). Let σ 2

k :=Var[Gk
i (x)]

and γ 3
k := IE[|Gk

i (x)− IE ĝ k(x)|3]. Let δ >0 be arbitrarily chosen, and define
ak :=√1/(1+ δ) log Nk . Clearly, ak→∞. Moreover, the sequence {ak} satisfies
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the growth condition (11), since

lim sup
k→∞

log
Nkγ

3
k

(Nkσ
2
k )3/2

+ a2
k

2
(1+ ε) = lim sup

k→∞
log

γ 3
k

σ 3
k
+ log N−1/2

k + 1+ ε
2(1+ δ) log Nk

≤ log M1 + lim sup
k→∞

(
1+ ε

2(1+ δ) −
1
2

)
log Nk

= −∞ for ε < δ.

Therefore, the conditions for (12) are satisfied when ε < δ. Fix now an ε < δ/(1+
2δ). Thus, from (12), we have

2 exp
(
− 1+ ε

2(1+ δ) log Nk

)
≤ Pk

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk


≤ 2 exp

(
− 1− ε

2(1+ δ) log Nk

)
,

that is,

2N
− 1+ε

2(1+δ)
k ≤ P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk

≤ 2N
− 1− ε

2(1+δ)
k (27)

for k large enough, say k≥ K .
Suppose now that the schedule {Nk} satisfies (24). By summing over k in

(27), we obtain

∞∑
k=K

P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk

≤ ∞∑
k=K

C1k−
(1− ε)ρ
2(1+δ) (28)

where C1 = 2/c1. Let δ ≤ (ρ− 2)/4. Since ρ >2, δ is positive. We have ρ ≥ 2(1+2δ)
and thus, in (28), we obtain

∞∑
k=K

P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk

≤ ∞∑
k=K

C1k−
(1− ε)(1+2δ)

1+δ . (29)

The expression on the right-hand side of the above inequality is finite if and
only if the exponent of k is less than −1, that is, if and only if ε < δ/(1 + 2δ).
Since ε was fixed above to satisfy such condition, it follows that the expression
on the left-hand side of (29) is finite when ρ >2.

Suppose now that the schedule {Nk} satisfies Nk ≤ c2kρ for ρ ≤ 2. Next,
recall that ε was fixed above to be smaller than δ. It follows from (27) that

∞∑
k=K

C2k−ρ/2≤
∞∑

k=K

P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk


(where C2= 2/c2) and so the series on the right-hand side of the above inequality
diverges if ρ ≤ 2.
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The above conclusions, together with the Borel–Cantelli lemma, imply that

P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk
infinitely often

 = 0 if ρ >2

P̃

| ĝ k(x)− IE ĝ k(x)| ≥ σk√
1+ δ

√
log Nk

Nk
infinitely often

 = 1 if ρ ≤ 2.

The first equation holds for all 0<δ ≤ (ρ− 2)/4, whereas the second holds for
any δ >0. Therefore, the assertion of the theorem follows.

Remark. The above theorem shows that, in a sense, ρ >2 is the weakest
requirement on ρ that yields a bound of order

√
log Nk/Nk . This means that

more restrictive bounds such as O(N−1/2
k ) require at least ρ >2. Similarly, if

ρ ≤ 2, then we cannot expect a convergence rate faster than
√

log Nk/Nk .

Notice that the right-hand side in (25) has a component due to the bias
IE[Gk

1(x)]− g (x). If this bias dominates the term
√

log Nk/Nk , then, of course,
the error | ĝ k(x) − g (x)| will be the order of the bias. Under Assumption A2′′

below, Theorem 3.4 yields a direct consequence.

Assumption A2′′. For each x ∈ X , there exists a positive constant D= D(x)
such that

∣∣IE [Gk
i (x)

] − g (x)
∣∣≤ D

√
log Nk

Nk
for all k≥ 1. (30)

COROLLARY 3.5. Suppose that Assumptions A1′, A2′′ and A3 hold. Suppose
also that the schedule {Nk} satisfies the following property:

Nk ≥ ck2+δ for some c> 0 and some δ >0. (31)

Then, there exists a constant C=C(x)> 0 such that, for P̃-almost all ω∈ �̃, there
exists K = K (ω)> 0 such that

| ĝk(x)− g (x)| ≤C

√
log Nk

Nk
(32)

for all k> K .

The above results provide the desired bound on the deviation | ĝ k(x)− g (x)|.
Note that no assumptions were made on the distribution of Gk

i (x), other than
some boundedness assumptions on the first three moments. This underscores
the generality of the results. Another remark is that, clearly, (32) implies that
ĝ k(x)→ g (x) with probability one, which was the conclusion of Propositions 3.1–
3.3. Those propositions, however, use weaker assumptions on the schedule {Nk}.
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3.3 Cumulative Samples

The results in the previous sections focus on a certain sampling structure—
namely, it is assumed that samples used at different iterations are independent.
It is natural to think of an alternative scheme, where at each iteration a new
sample is appended to the previous one. In other words, using the notation
defined earlier, if the sample used at the first iteration is ω1

1, . . . , ω1
N1

, then the
sample used at the second iteration is ω1

1, . . . , ω1
N1

, ω2
1, . . . , ω2

N2
and so on. Thus,

the estimator ḡk(x) used at iteration k is defined as

ḡk(x) := G1
1(x, ω)+ · · · + Gk

Nk
(x, ω)

N1 + · · · + Nk
, k= 1, 2, . . . (33)

for each ω∈ �̃.
It is clear that, under such scheme, consistency follows immediately from

the strong law of large numbers when the measures Pk are identical. If the
measures Pk are not identical, then we need extra conditions on the bias
|IE[Gk

i (x)]− g (x)], as the proposition below shows:

PROPOSITION 3.6. Suppose that Assumptions A1′ and A2′′ hold. Then, for all
x ∈ X ,

lim
k→∞

ḡk(x)= g (x) (34)

for P̃-almost all ω∈ �̃, provided that limk→∞ N1 + · · · + Nk =∞.

PROOF. Fix x ∈ X , and let Y k
i =Gk

i (x)− IE[Gk
i (x)], k= 1, 2, . . . , i= 1, . . . , Nk .

Then, IE[Y k
i ]= 0 and, by assumption A1′, IE|Y k

i |2 ≤ M . It follows from a classi-
cal result in Probability that limk→∞(Y 1

1 + · · · + Y k
Nk

)/(N1 + · · · + Nk)= 0 with
probability one (see, e.g., Chung [1974, p. 125]) and hence, by Assumption A2′′,
we have that

lim
k→∞

G1
1(x)+ · · · + Gk

Nk
(x)

N1 + · · · + Nk
= lim

k→∞
IE
[
G1

1(x)
]+ · · · + IE

[
Gk

Nk
(x)
]

N1 + · · · + Nk

≤ lim
k→∞

∑k
i=1 Ni

(
g (x)+ D

√
log Ni

Ni

)
∑k

i=1 Ni

≤ g (x)+ lim
k→∞

D
∑k

i=1

√
Ni log Ni∑k

i=1 Ni

= g (x)

for P̃ -almost all ω∈ �̃. Similarly, one can show that limk→∞(G1
1(x) + · · · +

Gk
Nk

(x))/(N1 + · · · + Nk)≥ g (x), so the assertion of the proposition follows.

A bound similar to the one given by Theorem 3.4 can also be derived in this
case. It is a direct consequence of the law of the iterated logarithm—which can
be seen from the “log log” term on the bound.
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PROPOSITION 3.7. Suppose that any of the conditions below is satisfied:

(i) Assumption A2′ holds;
(ii) Assumption A1 holds;

(iii) There exist constants A> 0 and 0<ε<1 such that
0k

63
k
≤ A

(log6k)1+ε ,

where62
k := ∑k

i=1 Niσ
2
i , σ 2

i :=Var[Gi
1(x)], 0k =

∑k
i=1 Niγ

3
i , and also γ 3

i :=
IE[|Gi

1(x)− IE[Gi
1(x)]|3].

Suppose also that Assumption A1′ holds and that IE[Gk
1(x)]= g (x) for all x ∈ X

and all k= 1, 2, . . . . Then, for P̃-almost all ω∈ �̃, there exist positive constants
C and K = K (ω) such that

| ḡk(x)− g (x)| ≤C

√
log log(N1 + · · · + Nk)

N1 + · · · + Nk
∀ k≥ K , (35)

provided that limk→∞ N1 + · · · + Nk =∞.

PROOF. Fix x ∈ X . Then, conditions (i)–(iii) above, together with indepen-
dence of the variables Gk

i (x), imply that we can use the law of the iterated
logarithm for the sequence G1

1(x), . . . , Gk
Nk

(x), so that, with probability one,

lim sup
k→∞

(
G1

1(x)− IE
[
G1

1(x)
])+ · · · + (Gk

Nk
(x)− IE

[
Gk

Nk
(x)
])√

262
k log log6k

= 1 (36)

lim inf
k→∞

(
G1

1(x)− IE
[
G1

1(x)
])+ · · · + (Gk

Nk
(x)− IE

[
Gk

Nk
(x)
])√

262
k log log6k

= −1 (37)

(see, e.g., Chung [1974], and Rao [1984]). Since IE[Gk
1(x)]= g (x) for all k and

62
k =

∑k
i=1 Niσ

2
i ≤ M

∑k
i=1 Ni, it follows from the above inequalities that, given

δ >0, there exists K = K (ω) such that∣∣(G1
1(x)− g (x)

)+ · · · + (Gk
Nk

(x)− g (x)
)∣∣≤ (1+ δ)

√
262

k log log6k ∀ k≥ K

and thus∣∣∣∣∣G1
1(x)+ · · · + Gk

Nk
(x)

N1 + · · · + Nk
− g (x)

∣∣∣∣∣ ≤ (1+ δ)
√

2M log log
√

M (N1 + · · · + Nk)
N1 + · · · + Nk

≤ C

√
log log(N1 + · · · + Nk)

N1 + · · · + Nk

for some C> 0 and k large enough.

The task of showing convergence of a variable-sample simulation-based
method is facilitated by the above results. Assuming that a proof of conver-
gence of the underlying deterministic algorithm is given (in the deterministic
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setting), the goal becomes to prove that the convergence properties of such algo-
rithm are kept when, at each iteration k, one replaces the original function g (x)
by an approximating function ĝ k(x) such that ĝ k(x)→ g (x) with probability one
as k goes to infinity.

The main task is to show that, in some sense, the deterministic error dom-
inates the stochastic error resulting from approximating g (x) by ĝ k(x). In
that sense, Theorem 3.4 and Proposition 3.7 are crucial, as they provide up-
per bounds on the error | ĝ k(x)− g (x)|. An important aspect of those bounds is
that they are distribution-free, which allows for applicability of those results in
fairly general contexts. Moreover, because those bounds are derived for sample
paths, one can analyze the underlying algorithm for each individual sample
path, which typically leads to stronger “with probability one” results. Finally,
we emphasize that the properties derived in the previous section hold both
when new samples are drawn at each iteration as well as when samples are
accumulated from one iteration to the next. Therefore, the convergence results
will be valid under either sampling scheme.

In the next section we will discuss the application of the ideas developed
above to a random search method.

4. RANDOM SEARCH METHODS

Random search methods have become quite popular in global optimization.
The basic idea in those methods—roughly speaking, of course—is to search
“at random” for points in the feasible set, and then compare the value of the
objective function at those points. Many known algorithms fall into this class
of methods. The simplest form of a random search method is the pure random
search. The algorithm can be described very briefly:

Algorithm PRS

Select a point x1 in X at random;
k := 1;
Repeat

Choose a point y in X at random;
If g ( y)< g (xk)

then xk+1 := y
else xk+1 := xk;

k := k + 1;
Until {stopping criterion is satisfied}.
Of course, it is well known that the above algorithm is not particularly ef-

ficient, and may take considerable time to escape local minima. Nevertheless,
under appropriate conditions on X and g the algorithm is convergent with prob-
ability one. One such case occurs when X is finite, since at every iteration there
is probability at least 1/|X | of sampling a minimizer x∗ of g—and after that we
have xk = x∗ for all k. More generally, when X is compact and g is continuous the
algorithm converges to the set of ε-optimal solutions (i.e., the set Sε such that
such that |g (x)− g (x∗)|<ε for all x ∈ Sε) with probability one. One advantage of
the simplicity of the method is that it allows for the development of easily imple-
mentable stopping rules for the algorithm (see Dorea [1990] and Hart [1999]).

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 2, April 2003.



126 • T. Homem-de-Mello

Algorithm PRS can be easily modified to incorporate other sampling schemes
instead of the uniform sampling used in it. For example, suppose we define a
metric on X and let B(x, δ) denote the set of points that lie within a distance
δ from x. We can modify the selection of y in X in the algorithm to use the
following sampling scheme:

—Select a point y in X according to a conditional distribution that depends on
Bδ := B(x1, δ) ∪ · · · ∪ B(xk , δ).

This conditional distribution can simply assign zero likelihood to the set Bδ
[Devroye 1978] or, more generally, it can sample from Bδ with a certain pre-
specified probability p [Dorea and Gonçalves 1993]. Such scheme is also con-
vergent, and it has been observed that the expected number of steps until con-
vergence is smaller than for the pure random search algorithm [Dorea and
Gonçalves 1993].

Consider now the pure random search method adapted to random func-
tions. Using the variable-sample scheme described in Section 3, Algorithm PRS
becomes the following.

Algorithm SPRS

Select a point x1 in X at random;
N1 := initial sample size;
k := 1;
Repeat

Choose a point y in X at random;
Generate a sample ωk

1 , . . . , ωk
Nk

from a distribution Pk;
Compute ĝk(xk), ĝ k( y) according to (2) or (33);
If ĝk( y)< ĝ k(xk)

then xk+1 := y
else xk+1 := xk;

Update Nk to obtain Nk+1;
k := k + 1;

Until {stopping criterion is satisfied}.

The theorem below shows that Algorithm SPRS does converge to the set of
optimal solutions. For simplicity, we shall assume that X is finite, but the result
is easily extendable to the continuous case with ε-optimal solutions mentioned
earlier. Notice that, besides the probability space (�̃, P̃ ) that drive the sampling
points ωk

i , in the above scheme there is another underlying probability space—
call it (4, P )—to govern the choice of states in X .

THEOREM 4.1. Suppose that the feasibility set X is finite. Assume that either
Assumptions A1 and A2 hold, or Assumptions A1′ and A2′ hold. Consider Algo-
rithm SPRS, with the sample size schedule satisfying (13). Then, for P̃-almost
all ω∈ �̃ and P-almost all ξ ∈4, there exists k0= k0(ω, ξ ) such that

xk ∈ S∗ for all k≥ k0, (38)

where S∗ is the set of optimal solutions of (1).
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PROOF. As shown in the proofs of Propositions 3.1 and 3.2, if {Nk} satisfies
(13), then we have that, for each x ∈ X and each δ >0,

P̃ (| ĝ k(x)− IE ĝ k(x)| ≥ δ infinitely often) = 0.

This means that, given δ >0 and ω∈ �̃, there exists K 1
x = K 1

x (δ, ω) such that
| ĝ k(x)− IE ĝ k(x)|<δ/2 for all k≥ K 1

x . Moreover, by Assumption A2 (or A2′)
there exists K 2

x = K 2
x (δ) such that |g (x)− IE ĝ k(x)|<δ/2 for all k≥ K 2

x . By taking
K := maxx∈X max(K 1

x , K 2
x ), we have that

|g (x)− ĝ k(x)| < δ for all k≥ K and all x ∈ X . (39)

Now, let δ := (1/2) minx, y∈X |g (x)− g ( y)|. Let x, y be two arbitrary points in X
with g (x)< g ( y). When k≥ K , we have

ĝk(x)− ĝ k( y) = ĝ k(x)− g (x)+ g (x)− g ( y)+ g ( y)− ĝ k( y)
< min

x, y∈X
|g (x)− g ( y)| − (g ( y)− g (x)) ≤ 0.

It follows that, when a point x∗ ∈ S∗ is selected at some iteration k0≥ K —which
happens with P -probability one—we have that ĝ k(xk)< ĝ k( y) for all y 6∈ S∗ and
all k≥ k0. From that iteration on, xk ∈ S∗.

Theorem 4.1 shows that any accumulation point of a sequence {xk} produced
by Algorithm SPRS will belong to the optimal set S∗. Of course, in case S∗ is a
singleton the whole sequence converges to the element in S∗.

In essence, the proof of Theorem 4.1 is based on the fact that the approxi-
mation ĝ k(x) approaches g (x) uniformly on X . Although the theorem is proved
for the pure random search method, it is clear that the same argument can be
used in other settings where only selection of feasible points and comparison of
function values are involved. An important requirement, however, is that every
point in X be visited infinitely often with probability one. While this is trivially
true for the pure random search method, not all algorithms satisfy the require-
ment. For example, consider the modified version of the pure random search
method, mentioned earlier, where points are selected according to conditional
distributions. If those conditional distributions block any point that had been
previously selected, then a variable-sample version of such algorithm may not
be convergent. Nevertheless, if one allows selection of previously visited points
with some probability—as in Dorea and Gonçalves [1993]—then the require-
ment is satisfied and so the proof of Theorem 4.1 will be applicable to such
algorithm.

An important feature of Algorithm SPRS results from the fact that the points
are selected independently of previous choices. This implies that we can allow
the underlying distributions to depend on the decision variables x, that is, we
can have

g (x)=
∫
�

G(x, ω) Px(dω).

This, is turn, yields considerable flexibility to the model, since in that case we
can have Pk = Pxk , that is, Pk may depend on the point selected at iteration k.

It is also worthwhile mentioning that, although Theorem 4.1 covers a number
of random-search type methods, some algorithms may require more elaborate
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proofs. Such is the case, for example, of a variable-sample version of the sim-
ulated annealing (SA) method. The reason is that the SA algorithm involves,
in addition to selection of feasible points and comparison of function values,
probabilities of moves that depend directly on function values. Nevertheless,
the tools derived in Section 3—particularly Theorem 3.4—allow for derivation
of a proper sample size schedule that ensures convergence of a variable-sample
version of SA for stochastic problems. We refer to Homem-de-Mello [2001] for
details.

5. A PRACTICAL IMPLEMENTATION OF SAMPLE SIZE UPDATES

The results in the previous section ensure that, as long as the sample sizes grow
at a certain rate, a variable-sample version of random-search type methods
will converge to the correct set of solutions. A simplistic implementation of
that concept, however, can be impractical in terms of computational effort. The
main issue is that, since the sample size is increased automatically along the
algorithm, as the number of iterations grows the sampling procedure will take
longer and longer.

A key observation to remedy the problem comes from the proof of
Theorem 4.1. As discussed earlier, the basic property used in that proof is the
fact that, once the approximations ĝ k(x) get “sufficiently close” to g (x), the
variable-sample scheme starts behaving exactly like the deterministic method.
This suggests that sample sizes need to increase only up to a certain point.

One way to detect whether it is necessary to increase the sample size further
is to perform a t-test to check if the values of ĝ k(·) at the current point xk and at
the candidate point y are statistically different. If they are, then the sample size
is not increased. In order to ensure theoretical convergence, we can increase
the sample size (regardless of the t-test) only at some specific points in time.

As a concrete example, consider Algorithm SPRS described in Section 4, and
suppose we want to implement a linear schedule. The step “update Nk to obtain
Nk+1” can be specified as

(1) Perform a paired t-test between ĝ k(xk) and ĝ k( y) to test the hypothesis
H0 : g (xk)= g ( y);

(2) If the p-value of the test is large (say, at least 0.2), then Nk+1 :=Nk ; other-
wise, Nk+1 :=Nk + C, where C is some constant.

(3) Every K iterations (K specified a priori), do Nk+1 :=Nk + C.

Notice that we must perform a paired rather than an independent t-test, since
the estimates ĝ k(xk) and ĝ k( y) use the same random numbers. Also, if N1≥C,
then clearly we have that Nk ≥ kC/K , so the linear schedule applies.

5.1 Numerical Results

We present now some numerical results to illustrate the adaptive approach
discussed above. For that, we consider a stochastic version of the traveling
salesman problem (TSP) defined in the following way. The nodes in the graph
are numbered 0, 1, . . . , n. Node zero is fixed as the starting (and ending) point;
therefore, there are n! possible tours. The cost of traveling to or from node zero to
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any other node is constant, whereas the other arcs in the graph have a random
cost associated with them. The graph is directed, so arcs (a, b) and (b, a) can
have different costs. The goal is to find the tour with least expected cost.

Because the cost of each tour is simply the sum of the costs of the arcs that
compose the tour, the objective function is linear with respect to the random
variables. Therefore, it is clear that the problem can be solved with a determin-
istic algorithm, with the cost of each arc being replaced by its expected value.
That is, there is no need to use a stochastic optimization method to solve the
problem; nevertheless, we discuss this example because it allows us to verify
whether the stochastic optimization method converges to the correct solution.

In order to test the adaptive approach discussed above, we incorporated those
ideas into Algorithm SPRS—a variable-sample implementation of pure random
search—described in Section 4. Let us call the resulting algorithm SPRS-AVS
(the suffix “AVS” stands for “adaptive variable-sample”). For the sake of com-
parison, we also consider two alternative versions of Algorithm SPRS:

—SPRS-FVS: A variable-sample scheme with fixed sample size;
—SPRS-FFS: A fixed sample scheme with fixed sample size.

Of course, given the results derived in Section 3, Algorithm SPRS-FVS theo-
retically does not converge. Algorithm SPRS-FFS, on the other hand, falls into
the framework of the sample average approximation (SAA) approach, studied
by Kleywegt et al. [2001] in the context of discrete stochastic optimization.
In Kleywegt et al. [2001], the following important properties are proved: for
almost all sample paths, there exists a number N̄ such that, if the sample size
used for the SAA is larger than N̄ , then the solution given by the SAA algorithm
coincides with the solution of the original problem. Moreover, the probability
that such event occurs (i.e., the two solutions coincide) goes to one exponentially
fast with the sample size. Thus, for a fixed sample size N , Algorithm SPRS-FFS
will converge to the optimal solution with some probability.

We used the following methodology in our tests. First, we randomly generated
a cost matrix for a 6-node TSP (i.e., n= 6); the cost of each arc was generated
independently from a discrete uniform distribution on [4, 20]. The resulting
matrix was

C =


14 7 4 10 7 17
8 4 14 18 6 12
17 4 8 17 7 8
11 14 18 13 11 15
15 7 18 17 15 11
9 11 12 14 7 9.


Each element Cij corresponds to the mean cost of arc (i, j ). The actual cost
of arc (i, j ) was assumed to have uniform distribution on (Cij − 4, Cij + 4). As
pointed out above, we can solve this problem by solving a deterministic TSP. The
optimal solution is the sequence 4, 1, 3, 2, 5, 6 corresponding to a cost equal to
36. We must notice here we ran several test cases, all with comparable results;
thus, we chose one of them—the one corresponding to the above matrix C—as
a representative.
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Table I. Evolution of the Algorithms Under Study for the Stochastic TSP

AVS FVS FFS
CPU 10 50 10 100 500 10 100 500

0 0 (10) 0 (50) 0 0 0 0 0 0
30 0 (46) 0 (72) 0 0 0 8 0 0
60 0 (56) 0 (78) 10 0 0 15 0 0
90 0 (60) 0 (84) 18 0 0 15 0 0

120 0 (61) 0 (84) 11 0 0 15 0 0
150 1 (68) 0 (84) 2 0 0 15 0 0
180 14 (76) 0 (89) 16 20 0 15 20 0
210 18 (78) 14 (91) 15 20 0 15 20 0
240 18 (79) 20 (92) 9 20 0 15 20 0
270 18 (79) 20 (92) 4 20 0 15 20 0
300 18 (79) 20 (92) 18 20 0 15 20 0

We then tested the following configurations:

—Algorithm SPRS-AVS with N0= 10 and 50 and the constants C= 10, K = 100;
—Algorithm SPRS-FVS with N = 10, 100 and 500;
—Algorithm SPRS-FFS with N = 10, 100 and 500.

The rationale for these choices was that Algorithm SPRS-AVS, being adap-
tive, can start with a low sample size and increase it as needed. Algorithms
SPRS-FVS and SPRS-FFS, on the other hand, require a fixed sample size to be
established a priori. Thus, we used small, medium and large sample sizes to
compare the behavior of the algorithms.

We did twenty independent runs for each configuration. To ensure fairness in
the comparison, we used a different seed to generate the stream of random num-
bers for each run; the same seeds were used in all configurations. Moreover, the
sequence of permutations used by the random search procedure was generated
from an independent random stream and fixed across all runs; in other words,
all runs see the same sequence of permutations. We made this choice because
the purpose of the test is to compare different sampling schemes rather than
the random search method itself; thus, by using the same sequence of permu-
tations, we can compare how fast each algorithm reaches the optimal solution,
if ever.

Table I displays the results. In order to compare the progress of the algo-
rithms, we keep track of the best solution obtained after a certain amount of
CPU time. Each row in Table I corresponds to a certain number of units of CPU
time, and the columns indicate how often (out of twenty runs) the optimal so-
lution was found by that time. The numbers in parentheses correspond to the
average sample size used in the AVS method at the selected times. Since all the
algorithms were coded in the same environment and have the same structure,
the comparison really addresses the efficiency of each method. For brevity, we
dropped the prefix SPRS from the names of the algorithms in the table.

Let us comment on the results shown in Table I. First, we can see that
Algorithm SPRS-AVS is fairly consistent—even when the initial sample size
is small (N0= 10), it still converges to the optimal solution 90% of the time.
With a larger initial sample size, convergence occurs for all runs. Algorithm
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SPRS-FVS, on the other hand, behaves erratically for the small sample size
N = 10—the numbers show that the algorithm jumps in and out the optimal
solution. This is expected, given the large error of the estimates. For N = 100,
however, the algorithm behaves much better and converges perfectly—which is
interesting to observe considering that the algorithm is not convergent in the-
ory. The phenomenon is explained by (20): when δ in that inequality is less than
(1/2) minx 6=x∗ g (x)− g (x∗) (where x∗ denotes the optimal solution), the proba-
bility that the algorithm jumps out of x∗ is small when Nk is large. Thus, in
theory the algorithm will eventually jump out of x∗, but that did not happen
before the time limit we imposed to the runs. Similarly, the zeros in the column
corresponding to N = 500 result from the large amount of time spent per iter-
ation, which prevented the algorithm to reach the optimal solution even once
before time expired. Finally, the results for Algorithm SPRS-FFS corroborate
the theory developed in Kleywegt et al. [2001]: the probability of convergence
(which, from the table, can be estimated as 75% for N = 10) grows exponen-
tially fast with N , so that it is very close to one when N = 100. When N = 500
we see the same problem as with Algorithm SPRS-FVS: the large amount of
time spent per iteration prevented the algorithm to reach the optimal solution
even once.

In summary, Table I shows that, if “optimal” sample sizes are known, then
algorithms SPRS-FVS and SPRS-FFS are a better choice than the adaptive
version SPRS-AVS. Under- or over-estimation of those sample sizes, however,
will cause those algorithms to behave poorly. In those cases the adaptive version
can be very useful.

6. CONCLUSIONS

We have presented a general framework to show convergence of a certain class
of methods to solve stochastic optimization problems, which we called variable-
sample methods. Such procedures essentially consist of incorporating sampling
into deterministic algorithms that use function evaluations only. Although a
complete proof of convergence will depend on the method under scrutiny, we
have provided general results to aid in that task. In particular, we have given
conditions on the schedule of sample sizes {Nk} that ensure consistency of
the estimators and also guarantee some bounds on the deviation from true
values. The results provided are general, in that no particular distribution is
assumed.

To illustrate the type of analysis made possible by this framework, we have
presented a modification of a random search algorithm to adapt it to the
variable-sample scheme. Our results provide a schedule of sample sizes that
guarantees convergence of the algorithm, without making strong assumptions
on the underlying distributions. The ideas can be extended to similar methods.
We have also proposed an adaptive version of the algorithm that automatically
controls the sample sizes, and illustrated the ideas with numerical results. The
numbers show that the variable-sample scheme is a viable alternative to fixed-
sample methods, particularly if information about appropriate sample sizes is
difficult to obtain.
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Some questions, of course, remain open: on the theoretical side, the study
of rates of convergence is very important to provide some intuition on the be-
havior of the algorithm. Unfortunately, however, the very definition of rate of
convergence is not standard in the stochastic optimization literature, so some
further study is required. On the practical side, the implementation of an al-
gorithm based on the techniques described in this article in a realistic setting
would require the development of appropriate stopping criteria (such as the
ones suggested in Dorea [1990] and Hart [1999]). One possibility to implement
these criteria in the stochastic context would be to perform multiple t-tests or
use analysis of variance techniques in order to compare estimates of the ob-
jective function. This would be possible under the variable-sample structure,
since the estimates obtained at different iterations are independent.
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