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Abstract

Models for decision-making under uncertainty use probability distributions to represent vari-

ables whose values are unknown when the decisions are to be made. Often the distributions

are estimated with observed data. Sometimes these variables depend on the decisions but the

dependence is ignored in the decision maker’s model, that is, the decision maker models these

variables as having an exogenous probability distribution independent of the decisions, whereas

the probability distribution of the variables actually depend on the decisions. It has been shown

in the context of revenue management problems that such modeling error can lead to systematic

deterioration of decisions as the decision maker attempts to refine the estimates with observed

data. Many questions remain to be addressed. Motivated by the revenue management, newsven-

dor, and a number of other problems, we consider a setting in which the optimal decision for

the decision maker’s model is given by a particular quantile of the estimated distribution, and

the empirical distribution is used as estimator. We give conditions under which the estimation

and control process converges, and show that although in the limit the decision maker’s model

appears to be consistent with the observed data, the modeling error can cause the limit decisions

to be arbitrarily bad.

1 Introduction

1.1 Quantiles as Solutions

Various decision problems have optimal solutions that are given by a particular quantile of a

probability distribution. The following are examples of such problems:



Classical Newsvendor Problem A seller has to choose the amount q of inventory to obtain

at the beginning of a selling season. The decision is made only once — there is no opportunity

to replenish inventory during the selling season. The demand D during the selling season is a

nonnegative random variable with probability distribution F . The cost of obtaining inventory is c

per unit. The product is sold at a given price r per unit during the selling season, and at the end

of the season unsold inventory has a salvage value of v per unit. The seller wants to choose the

amount q of inventory to maximize the objective function

z(q) := r

∫ ∞
0

min{q, ξ} dF (ξ) + v

∫ q

0
(q − ξ) dF (ξ)− cq. (1)

If v < c < r, then any q∗ that satisfies

F (x) ≤ r − c
r − v

for all x < q∗ and F (x) ≥ r − c
r − v

for all x > q∗

is an optimal amount of inventory to obtain at the beginning of the selling season. That is, the set

of optimal solutions is given by the set of γ-quantiles of the distribution F , which can be written

as

Ψγ(F ) := {q ∈ R : F (x) ≤ γ for all x < q and F (x) ≥ γ for all x > q} , (2)

where γ = (r − c)/(r − v). Note that Ψγ(F ) is a nonempty closed interval for all γ ∈ (0, 1).

Revenue Management Problem (Littlewood, 1972) A seller has Q units of inventory to sell.

Each unit is sold for a price of r1 or r2, with r1 > r2. During the first phase of the selling season,

customers arrive who will buy the product at price r2, but not at price r1. During the second phase

of the selling season, customers arrive who will buy the product at price r1. The demand D2 for

product at price r2 is a random variable with distribution F2, and the demand D1 for product at

price r1 is a random variable with distribution F1, independent of anything that happened during

the first phase of the selling season. The seller wants to choose the amount ` of inventory to reserve

for the high price customers, that is, the amount Q − ` of inventory to be made available at the

low price r2, to maximize the objective function

z(`) := r1

∫ Q−`

0

∫ ∞
0

min{Q− y, x} dF1(x) dF2(y) + r1

∫ ∞
0

min{`, x} dF1(x) [1− F2(Q− `)]

+r2
∫ ∞

0
min{Q− `, y} dF2(y).

Note that all inventory that is not sold during the first phase is available in the second phase. The

set of optimal solutions is given by Ψγ(F1), where γ = 1− r2/r1.
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Call Center Staffing Problem (Harrison and Zeevi, 2005; Bassamboo and Zeevi, 2009) A

manager has to choose the number b of staff members to employ at a call center. Calls arrive at

the call center at an arrival rate which has distribution F , that is, F (λ) is the fraction of time that

the arrival rate is less than or equal to λ. Each staff member serves customers at a rate µ. Waiting

customers abandon the system at rate γ per waiting customer. Thus, while there are Q customers

waiting, the total abandonment rate is γQ. The manager pays a cost of c per staff member per unit

time, and a penalty of p per customer who abandons the system. The manager wants to choose the

number b of staff members to minimize the average cost per unit time. Consider a stochastic fluid

version of the process described above (the adjective “stochastic” indicates that the call arrival

rate λ still has distribution F ). Then, if λ < µb, all the customers are served, and there are no

abandonments, so that the rate at which cost is incurred is cb. If λ ≥ µb, then customers abandon

the system at total rate γQ = λ− µb, so that the rate at which cost is incurred is cb+ p(λ− µb).

Thus the objective for the stochastic fluid model is to minimize

z(b) := cb+ p

∫ ∞
µb

(λ− µb) dF (λ).

The set of optimal solutions is given by Ψγ(F )/µ, where γ = (pµ− c)/(pµ).

Operating Room Booking Problem (Olivares et al., 2008) A decision maker has to choose

the amount q of time to book in an operating room (OR) for a surgery case. It is not known in

advance exactly how long the surgical procedure will take, but the distribution F of the duration D

of similar procedures is known. There is a booking cost c per unit time for the OR, even if the OR

is not occupied for the entire booked time q. If the OR is occupied for a time longer than q, then

there is a penalty p > c per unit time that the OR is occupied beyond the booked time, including

the overtime paid to the OR staff and the penalty levied by the hospital for using the OR beyond

the booked time. The decision maker wants to choose the amount q of booked time to minimize

z(q) :=
∫ ∞

0
[Co max{q − ξ, 0}+ Cu max{ξ − q, 0}] dF (ξ)

where Co := c denotes the overage cost and Cu := p− c denotes the underage cost. Then it follows

that the set of optimal solutions is given by Ψγ(F ), where γ = Cu/(Co + Cu) = (p− c)/p.

1.2 Estimation and Modeling Error

In applications, the underlying distribution F is not known, and is usually estimated with observed

data. Suppose that k observations have been collected. Then, it is natural to use the current
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estimate Ĥk as given input, and choose a decision qk ∈ Ψγ(Ĥk) that is optimal for the estimate.

Often the situation is part of repeating operations: An estimate is constructed, a decision is made,

new data are observed, the estimate is updated, a decision is made, and so on.

Another feature common in applications is that the model used by the decision maker is often

incorrect or misspecified, that is, there does not exist a value of the estimate such that the resulting

model of the decision maker is correct. In many cases the decision maker is not aware that the model

is structurally incorrect. For example, as will be demonstrated below, when the decision maker

uses a learning procedure to fit the incorrect model to observed data, the incorrect model with

the fitted quantities often appears to be consistent with the observed data, so that the modeling

error can easily go unnoticed, that is, the decision maker may be lured into a false sense of security

that the model employed is correct. In some cases the decision maker is aware that the model is

structurally incorrect, but does not know a model with correct structural form for the problem

under consideration. Even if the decision maker would know a correct model, he may choose to use

a simpler model to make the calculations tractable.

In the setting considered in this paper, not only is the estimate Ĥk not equal to some unknown

true F , but there may not exist an exogenous distribution F such that the model gives a true

description of the decision problem under consideration (although, as will be shown, there may exist

an F that is consistent with the observed process). One situation in which such a phenomenon

occurs is when the demand for the retailer’s product may depend on the initial amount q of

inventory. As an example, consider a movie rental store. Many customers browse the shelves to

decide which movie to rent. Such customers may be more motivated to rent a movie which has

many empty cases displayed on the shelves, indicating that many copies of the movie are checked

out, and thus that the movie is popular. As another example, consider an artist who produces a

work of which several copies are going to be made and sold. Each copy indicates the number of

the copy and the total number of copies, and thus the total number of copies have to be chosen

and fixed in advance of any sales. The scarcer the work is, the higher the perceived value of each

copy; equivalently, the smaller the total number of copies, the higher the demand at each fixed

price. Giri et al. (1996) and Benkherouf et al. (2001) consider the so-called inventory model with

stock-dependent demand, in which the demand rates depend on the inventory levels. Balakrishnan

et al. (2004) consider a situation in which high inventory stimulates demand — for example, in

the superstore, tall stacks of a product impact its visibility, which can lead more customers to buy

the displayed products. They present various reasons for evidence of the dependence between the

inventory level and customer demand. Dana and Petruzzi (2001) study pricing and inventory policy
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where demand depends on both price and inventory level.

In the situations discussed above, there is not a single exogenous distribution F of the demand

for the newsvendor’s product independent of the chosen inventory level q, and thus the newsvendor

model is an incorrect model. Similarly, the revenue management model described earlier may be

incorrect, because the distribution of the demand for product at the high price may depend on

the amount Q− ` of product made available at the low price. Also, the call center staffing model

described above may be incorrect, because the call arrival rate (or the call reneging rate) may

depend on the waiting times, and thus on the number of servers chosen. In the operating room

booking problem, the surgeon may work faster if he knows that the operating room has been

booked for a short amount of time only, and thus the distribution of time in the operating room

may depend on the booked time.

1.3 Iterative Decision Process

Taking into account the possibility of modeling error, next we give a general description of an

iterative decision process (IDP) involving estimation, decision making, and data collection. Let Ĥk

denote the estimate used in iteration k, which may be a real number, a real vector, a probability

distribution on the real line, a continuous function on the real line, or any other quantity of interest.

For any estimate Ĥ, let Ψ(Ĥ) denote the set of optimal decisions for the (possibly incorrect) model

of the decision maker using estimate Ĥ as input (e.g., the set Ψγ(Ĥ) of γ-quantiles of Ĥ for some

γ ∈ (0, 1)). Let qk ∈ Ψ(Ĥk) denote the decision in iteration k, which may also be any quantity

of interest. Let Fk denote the σ-algebra generated by the history q0, X1, q1, . . . , Xk, qk up to

iteration k. Let G(qk, ·) denote the conditional probability distribution of the next observed data

Xk+1, given Fk, that is, the conditional probability distribution of the observed data depends on

the history of the process only through the most recent decision. For any finite sequence X1, . . . , Xk

of observed data, let φ(X1, . . . , Xk) denote the resulting estimate. Sometimes φ is referred to as

the forecasting method. Next we summarize the IDP.

Iterative decision process (IDP)

Initialization: Select initial estimate Ĥ0.

For k = 0, 1, 2, . . ., repeat the following steps:

Step 1: Choose a decision qk ∈ Ψ(Ĥk) optimal for the model.

Step 2: Observe Xk+1 which has distribution G(qk, ·).

Step 3: Compute updated estimate Ĥk+1 = φ(X1, . . . , Xk+1).
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1.4 Consequences of Modeling Error

Modeling error can result in poor and even systematically deteriorating performance of the system

as the decision maker attempts to improve the fitted model with observed data. Cachon and Kok

(2007) analyze a situation in which the newsvendor model is used with an incorrect assumption of a

fixed salvage value, while the salvage value actually depends on the number of salvaged items. It is

shown that estimates for the salvage value exist that are consistent with the observed data but when

such estimates are used in the newsvendor model the resulting solutions are not optimal. Cachon

and Kok (2007) do not analyze learning and convergence for their setting, but rather propose an

estimation method that takes the dependency into account. Cooper et al. (2006) consider the

behavior of the dynamical process involving data collection, estimation, and decision making in the

revenue management setting in which the revenue manager uses an incorrect model. It is shown

that the decisions may deteriorate systematically as the revenue manager attempts to improve the

estimates with observed data, leading to a phenomenon that is called the spiral-down effect.

Many alternative approaches besides the iterative decision process described above exist. Ap-

proaches to optimization when appropriate probability distributions are not known include robust

optimization and min-max approaches. Some approaches separate learning and optimization. For

example, Besbes and Zeevi (2006) propose an approach for network revenue management problems,

where in the first phase the learning procedure approximates the demand function using a chosen

set of experimental prices. Thereafter, in the second phase, the optimization procedure follows us-

ing the estimate obtained with the learning procedure, i.e., the process does not alternate between

learning and optimization. However, it can be costly to have such an experimentation phase, and

in such situations it would be natural for the revenue manager to alternate between estimation and

optimization as in the iterative decision process. Other approaches combine estimation and opti-

mization. For example, Liyanage and Shanthikumar (2005) propose a method, called “operational

statistics”, that integrates the estimation and optimization into one task. The expected profit given

by the inventory decision operational statistic is higher than the expected profit given by the tra-

ditional approach. In addition, the procedure is consistent in the sense that the decision converges

to the true optimal solution. However, it requires that the observed demands be independent and

identically distributed, which does not hold in the setting studied in this paper.
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1.5 Goals of the Paper

In this paper, we study the dynamic behavior of the estimates and decisions for problems with

quantile solutions where the unknown distributions of observed data depend on the decisions, but

this dependence is not taken into account correctly in the models used for decision making. The

decision maker uses an iterative decision process for repeated estimation and decision making. We

establish sufficient conditions for convergence of the estimated distribution, the decision, and the

corresponding objective value. Furthermore, we show that if the decision maker uses an erro-

neous model, then the decisions resulting from the iterative decision process can be arbitrarily bad

compared with the solution of the correct model.

This paper complements the work started in Cooper et al. (2006), who studied some conse-

quences of modeling error for the revenue management problem described in Section 1.1. Con-

vergence results were provided for some specific forecasting techniques, but, as pointed out in the

conclusion of that paper, many questions remain unanswered, such as the behavior of the dynamic

process if the empirical distribution is used to generate forecasts. This paper addresses that gap.

In addition, we provide analytical results comparing the limit point resulting from the iterative

decision process with the solution of the correct model under some conditions.

The remainder of the paper is organized as follows. In Section 2 we discuss some issues re-

lated to convergence of quantiles, which lead to the more general notion of stability of stochastic

optimization problems. In Section 3 we investigate the asymptotic behavior of the IDP. Section 4

provides numerical experiments that verify our analytical convergence results in the newsvendor

framework. Section 5 provides comparisons between the true optimal decision and the decision

obtained under modeling error, and between the corresponding objective function values. We offer

concluding remarks and discussions in Section 6.

2 Stability Issues

2.1 Convergence of Quantiles

Some natural questions are raised when the IDP discussed in Section 1.3 is considered, such as

whether the sequences of estimates and decisions converge, and if so, how the limit decisions

compare with the optimal solution for the correct model. Several difficulties arise in this context.

First, note that the sequence X1, X2, . . . of observed data is neither an independent sequence nor are

the observations identically distributed (unless very specific initial conditions are chosen). Consider

the newsvendor setting, in which the estimate Ĥ is a probability distribution on R, and Ψγ(Ĥ) 6= ∅,
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for a specific value of γ ∈ (0, 1), is the set of decisions that are optimal for the model used by the

decision maker. Suppose that {G(qk, ·)} converges, say in the sense of weak convergence, to a limit

distribution, say G∞, as k → ∞. If φ is a “good” forecasting method, then {Ĥk} also weakly

converges to G∞ as k →∞. (For example, it was shown in Cooper et al. (2006) that the empirical

distribution is a good forecasting method in this sense.)

However, the following example shows that it may not follow that the distance between Ψγ(G(qk, ·))

and Ψγ(Ĥk) becomes small, even in a weak sense. For all k such that max{1/γ, 1/(1−γ)} < k ≤ ∞,

let Gk(·) and Ĥk(·) be distributions with support on {0, 1} that assign masses equal to γ + 1/k

and γ − 1/k respectively to 0. Then for all k > max{1/γ, 1/(1− γ)}, sup{|G∞(x)−Gk(x)| : x ∈

R} = sup{|G∞(x) − Ĥk(x)| : x ∈ R} = 1/k → 0 as k → ∞, which implies that both {Gk} and

{Ĥk} converge (uniformly and thus also weakly) to G∞ as k → ∞. However, Ψγ(Gk) = {0} and

Ψγ(Ĥk) = {1} for all k, and thus the distance between Ψγ(Gk) and Ψγ(Ĥk) does not become small.

In other words, convergence of forecasts does not imply convergence of decisions.

In some special cases, stronger results hold. For example, suppose that {Gk} and {Ĥk} converge

pointwise on a dense set to G∞ as k →∞, and suppose that Ψγ(G∞) is a singleton, say Ψγ(G∞) =

{x∞}. Then, it is possible to show that for all k sufficiently large, the Hausdorff distance1 between

Ψγ(Gk) and Ψγ(Ĥk) is small, and both Ψγ(Gk) and Ψγ(Ĥk) are close to Ψγ(G∞) = {x∞}.

As another special case, suppose that the decision maker’s model is correct, that is, although

the true distribution G is unknown to the decision maker, it does not depend on the decision q.

Then the sequence {Xk} of observed quantities is an i.i.d. sequence, with distribution G. If the

decision maker uses a good forecasting method, such as the empirical distribution, to estimate G,

then the sequence {Ĥk} converges weakly to G as k →∞ and hence, by Lemma 4 in Cooper et al.

(2006), it follows that any choice qk ∈ Ψγ(Ĥk) satisfies qk → Ψγ(G) as k → ∞ (however, Ψγ(Ĥk)

may be much smaller than Ψγ(G) even for large k).

2.2 General Stability Concepts

The discussion in Section 2.1 suggests the need to impose some regularity conditions in order to

ensure convergence of the decisions when the estimates converge. In the stochastic optimization

literature, such a property is known as stability. In what follows we briefly review these ideas, and

then apply them to the newsvendor setting.
1The Hausdorff distance dH(X,Y ) between two subsets X and Y of a metric space with metric d is defined by

dH(X,Y ) := max{ supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y) }. In words, dH(X,Y ) is small if all points in X are

close to Y and all points in Y are close to X.
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Consider general stochastic optimization problems of the form:

max
q∈Q

EP [R(q, ξ)] (3)

whereQ is a subset of Rn, ξ is a real-valued random variable with distribution P , andR : Q×R 7→ R.

Consider the solution set of (3) as a function of the probability distribution P of ξ, which for the

moment we assume does not depend on q. Let D denote the set of distribution functions on R, let

2Q denote the collection of subsets of Q, and let Ψ : D 7→ 2Q be given by

Ψ(P ) := arg max
q∈Q

{
EP [R(q, ξ)] =

∫
R
R(q, ξ)dP (ξ)

}
. (4)

Solving (3) directly may be hard because the expectation may not be easily computed. In such

cases, we can approximate problem (3) with

max
q∈Q

∫
R
R(q, ξ)dPN (ξ),

where PN is an approximation of P . For example, a sample average approach (i.e., solve the

problem maxq∈Q 1
N

∑N
j=1R(q, ξj) where ξ1, . . . , ξN is an i.i.d. sample from P ) can be used. In this

case, PN is the empirical distribution corresponding to the sample. The resulting solution set —

henceforth called the empirical decision — can be represented as Ψ(PN ).

The following is an example of an often used stability condition for problem (3). For any x ∈ Rn

and S ⊂ Rn, let dS(x, S) := infy∈S ‖x− y‖ denote the distance between x and S, and let d denote

a metric on D. Consider a fixed P ∈ D. Then the stability condition is that there exist κ, δ > 0

such that for all F ∈ D with d(F, P ) < δ and for all qF ∈ Ψ(F ) it holds that

dS(qF ,Ψ(P )) ≤ κd(F, P ). (5)

More generally, stability refers to continuity properties of the optimal value function and the solution

mapping Ψ when both are regarded as mappings on a certain set of probability measures (see Rachev

and Römisch 2002). The stability condition (5) is a specific kind of those addressed in Rachev and

Römisch (2002). Stability in stochastic optimization can also be defined in other ways (Römisch

2003). When F in (5) is chosen as a forecasting distribution obtained from observations from P ,

the stability condition (5) provides a consistent decision, in the sense that the empirical decisions

converge to the set of true optimal decisions as long as the forecasting method is good — in other

words, as long as the approximating measure PN converges to P as we collect more data. Moreover,

the distance between the empirical decisions and the set of optimal decisions can be quantified in

terms of the distance between PN and P , as long as the constant κ is known.
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2.3 Stability Conditions for the Newsvendor Model

In this section we discuss stability issues for the newsvendor model without modeling error. The

choice of metric on D is important when studying the stability condition (5) as well as when using

such a condition to show convergence of decisions. Consider the first order Wasserstein metric,

defined as

dW1(H,F ) :=
∫

(0,1)

∣∣H−1(u)− F−1(u)
∣∣ du =

∫
R
|H(x)− F (x)| dx (6)

where F−1(u) := min{x : F (x) ≥ u} denotes the smallest u-quantile of F .

Proposition 1 below presents the stability conditions under this metric. The proposition gives

an explicit value for κ in (5), which will be useful in our analysis. Note that the result is valid for

discrete distributions, which is the case we shall consider for the remainder of the paper. First we

state Lemma 1, the proof of which is given in the Online Appendix.

Lemma 1 Consider problem (3), and the solution mapping Ψ defined in (4). Suppose that there

exists an L > 0 such that ∣∣∣R(q, ξ)−R(q, ξ̃)
∣∣∣ ≤ L

∥∥∥ξ − ξ̃∥∥∥
for all q, ξ, ξ̃ ∈ R. Then, for any distributions P and F on R, and any q̃ ∈ Ψ(F ), it holds that

d(q̃,Ψ(P )) ≤ φ
−1
P (2LdW1(P, F ))

where φ−1
P (y) := sup{τ : φP (τ) ≤ y}.

Proposition 1 Consider the newsvendor problem (1). Assume that the distribution F has support

on the integers, so that F (x) =
∑bxc

j=0 πj where πj := F (j) − limx↑j F (x), and let H ∈ D be any

distribution on R. Let Ψγ(F ) = [q∗, q∗], let L := r − v, and let AF := min{(r − c)− (r − v)F (q∗ −

1), (r − v)F (q∗)− (r − c)}. Then, for any q̃ ∈ Ψγ(H) it holds that

d(q̃,Ψγ(F )) ≤ 2L
AF

dW1(H,F ). (7)

Proof

We follow the analysis in Römisch (2003). Let ϑ(F ) denote the optimal objective value of (1).

Consider the growth function φF : R+ 7→ R+ given by

φF (τ) := inf {ϑ(F )− EF [R(q, ξ)] : d(q,Ψγ(F )) ≥ τ, q ∈ R} .

10



Lemma 1 shows that if there exists an L̂ such that the function R(q, ξ) satisfies∣∣∣R(q, ξ)−R(q, ξ̃)
∣∣∣ ≤ L̂|ξ − ξ̃| (8)

for all q, ξ, ξ̃ ∈ R, then for any H ∈ D, and any q̃ ∈ Ψγ(H), it holds that

d(q̃,Ψγ(F )) ≤ φ
−1
F (2L̂dW1(H,F )), (9)

where φ−1
F (y) := sup{τ : φF (τ) ≤ y}. Therefore, it suffices to show that (i) the function R(q, ξ)

satisfies (8) with L̂ = r − v, and (ii) φ−1
F (η) ≤ η/AF for any η ≥ 0.

Recall that the objective function is given by

R(q, ξ) = rmin{q, ξ}+ vmax{q − ξ, 0} − cq = (r − v) min{q, ξ} − (c− v)q. (10)

Clearly, R is concave in both in q and ξ and satisfies (8) with L̂ = L := r − v. Moreover,

EF [R(q, ξ)] = (r − v)
bqc∑
j=0

jπj + (r − v)q
∞∑

j=bqc+1

πj − (c− v)q

= (r − v)
bqc∑
j=0

jπj − (r − v)q
bqc∑
j=0

πj + (r − c)q.

Note that the function EF [R(·, ξ)] is concave piecewise linear. Its subdifferential ∂EF [R(q, ξ)] is

given by

∂EF [R(q, ξ)] =
[
(r − c)− (r − v)F (q), (r − c)− (r − v) lim

x↑q
F (x)

]
. (11)

Concavity of the objective function implies that an optimal solution q∗ must satisfy 0 ∈ ∂EF [R(q∗, ξ)],

and thus

lim
x↑q∗

F (x) ≤ r − c
r − v

= γ and F (q∗) ≥ r − c
r − v

= γ,

i.e., q∗ ∈ Ψγ(F ) = [q∗, q∗]. Since F has support on the integers, it follows that q∗ and q∗ are

integers, and the objective function EF [R(·, ξ)] changes linearly between q∗ − 1 and q∗ and also

between q∗ and q∗ + 1, with slopes (r − c)− (r − v) limx↑q∗ F (x) = (r − c)− (r − v)F (q∗ − 1) > 0

and (r − c)− (r − v)F (q∗) < 0 respectively. Thus, for τ ∈ [0, 1], φF (τ) is given by

φF (τ) = τ min
{

(r − c)− (r − v)F (q∗ − 1), (r − v)F (q∗)− (r − c)
}
.

Let

AF := min
{

(r − c)− (r − v)F (q∗ − 1), (r − v)F (q∗)− (r − c)
}

> 0.
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Then φF (τ) = AF τ for τ ∈ [0, 1]. Moreover, concavity of R implies that φF (τ) ≥ AF τ for τ ≥ 1.

Thus, φ−1
F (η) ≤ η/AF for any η ≥ 0. �

Remark: When dW1(H,F ) < δF := AF /(2L), then inequality (7) actually yields a stronger result.

Suppose that both H and F has support on the integers. Then Ψγ(H) and Ψγ(F ) are intervals

with integer endpoints. If dW1(H,F ) < δF , then the right side of (7) is less than one, and thus

d(q̃,Ψγ(F )) = 0 for all q̃ ∈ Ψγ(H). Hence, Ψγ(H) ⊆ Ψγ(F ) for all H ∈ D with support on

the integers such that dW1(H,F ) < δF . Such a conclusion agrees with the results in Shapiro

and Homem-de-Mello (2000) and Homem-de-Mello (2008) — in those papers, it is shown that,

in case of piecewise linear convex stochastic optimization problems with discrete distributions, the

solution obtained with the sample average approximation problem belongs to the set of true optimal

solutions if the sample size is large enough. Proposition 1 specializes to the newsvendor model but

on the other hand it quantifies the error in terms of the distance between the distributions.

It follows from Proposition 1 that if distribution F has support on the integers, then there exists

κ = 2L/AF such that (5) holds with d = dW1 for any δ > 0. That is, a global stability condition

holds for the newsvendor problem — in fact, it is easy to see from the proof of Proposition 1 that

such global stability holds more generally for problems with piecewise linear concave (or convex)

objective functions for which (8) holds if the distribution is discrete. Thus, the empirical inventory

decision derived by the newsvendor model converges to the optimal decision as more data are

collected if the forecast distribution Ĥk converges to the true distribution (assuming there is a

single true distribution) under the first order Wasserstein metric. Moreover, the error can be

quantified since the stability constant κ is given explicitly.

3 Asymptotic Behavior of the IDP

In this section, we study the convergence of the IDP described in Section 1.2 for settings in which

newsvendor-type decisions are used, that is, Ψ(Ĥk) = Ψγ(Ĥk) for some γ ∈ (0, 1), and the empirical

distribution is used to construct Ĥk, for cases in which the family of actual distributions G(·, ·) has

structure as specified.

3.1 Empirical Distribution

As mentioned, we study the dynamics of the IDP when the empirical distribution is used as a

forecasting method. The empirical distribution function Ĥk constructed with k observations is

12



given by

Ĥk(x) :=
1
k

k∑
j=1

I{Xj≤x}

where Xj ’s are the observations. Note that we can write Xj+1 = G−1(qj , U j+1), where {U j}∞j=1 is

an independent sequence of uniform [0, 1] random variables (w.p.1, ΨUj+1(G(qj , ·)) is a singleton).

As before, at iteration j the decision maker chooses some qj ∈ Ψγ(Ĥj). We indicate the chosen

element by ψ(Ĥj). We can write the empirical distribution at iteration k + 1 in terms of the

empirical distribution at iteration k as follows:

Ĥk+1(x) =
1

k + 1

k+1∑
j=1

I{Xj≤x} =
k

k + 1

1
k

k∑
j=1

I{Xj≤x}

+
1

k + 1
I{Xk+1≤x}

=
k

k + 1
Ĥk(x) +

1
k + 1

I{G−1(qk,Uk+1)≤x}

=
(

1− 1
k + 1

)
Ĥk(x) +

1
k + 1

[
P
[
G−1(qk, Uk+1) ≤ x|Fk

]
+
(
I{G−1(qk,Uk+1)≤x} − E

[
I{G−1(qk,Uk+1)≤x}|Fk

])]
= Ĥk(x) +

1
k + 1

[
G(ψ(Ĥk), x)

+
(
I{G−1(ψ(Ĥk)),Uk+1)≤x} − E

[
I{G−1(ψ(Ĥk),Uk+1)≤x}|F

k
])
− Ĥk(x)

]
.(12)

The form of (12) allows us to use stochastic approximation results to study the dynamics of the

IDP. Note however that the iterates of (12) are elements of the space D of distribution functions

on R. Stochastic approximation convergence results have been established in different spaces. For

example, convergence results in Rm are studied in Bertsekas and Tsitsiklis (1996) and Kushner and

Yin (1991). Revesz (1973) and Walk (1977) deal with Hilbert spaces. Walk (1978) considers the

space D[0, 1] of real-valued functions on [0, 1] that are right continuous with left limits, endowed

with Skorohod’s J1-topology. Although the results in Walk (1978) can in principle be adapted to

the present setting, the assumptions in that work are difficult to verify.

In the following sections we restrict ourselves to the case of distributions with finite support.

More specifically, we make the following assumption:

Assumption 1 There exists a finite subset of R, denoted by X = {x1, x2, . . . , xn}, such that each

member of the family of distributions {G(q, ·) : q ∈ R} has support on X .

Such a restriction allows us to study the convergence of the iterates Ĥk by using results for

stochastic approximation in Rn, which we review in the Online Appendix.
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3.2 The Contraction Case

In this section we consider the case where the family of distributions {G(q, ·) : q ∈ R} possesses a

certain contraction property, which will be described later. Let DX denote the set of distribution

functions with support on X . Without loss of generality, assume that x1 < · · · < xn. Then, each

P ∈ DX can be written as P (x) = p1I{x1≤x<x2} + p2I{x2≤x<x3} + · · ·+ pn−1I{xn−1≤x<xn} + I{xn≤x}

where pi = P (xi), i = 1, . . . , n are the cumulative probabilities corresponding to the xi-values.

Based on such a representation, we can define mappings from DX to R2n in various ways. One

example is M(P ) := (x1, p1, x2, p2, . . . , xn, pn = 1), that is, a pairwise list of x-values and their

corresponding cumulative probabilities. Another example of such a mapping is

T (P ) = (x1, 0, x2, p1(x2 − x1), . . . , xj , pj−1(xj − xj−1), . . . , xn, pn−1(xn − xn−1)), (13)

that is, a pairwise list of x-values and their corresponding integrated areas under the distribution

function curve.

Recall the first order Wasserstein metric dW1 defined in (6). The proposition below shows that

the Wasserstein distance between two distribution functions with finite support is the same as the

l1 distance between the T mappings of those two distribution functions.

Proposition 2 Let P and F be distributions in DX . Let dl2n
1

be the metric in R2n defined by the

l1 norm. The mapping T : DX 7→ R2n defined in (13) is distance-preserving with respect to the first

order Wasserstein metric, i.e., dl2n
1

(T (P ), T (F )) = dW1(P, F ).

Proof

Let us write T (F ) as (x1, 0, x2, f1(x2 − x1), . . . , xj , fj−1(xj − xj−1), . . . , xn, fn−1(xn − xn−1)),

where fi = F (xi). Then, dl2n
1

(T (P ), T (P )) =
∑n−1

i=1 |pi − fi|(xi+1 − xi). Since for xi ≤ x < xi+1

we have P (x) = pi and F (x) = fi, i = 1, . . . , n, it follows that dW1(P, F ) =
∫

R |P (x) − F (x)|dx =∑n−1
i=1 |pi − fi|(xi+1 − xi). Therefore, dW1(P, F ) = dl2n

1
(T (P ), T (F )). �

Proposition 2 enables us to measure distances between probability distributions by measuring

distances between vectors in R2n. Next, define Φ : DX 7→ DX as

Φ(P )(x) := G(ψ(P ), x). (14)

The above definition allows us to write the recursive formula (12) for the stochastic iterates as

Ĥk(x) =
(

1− 1
k

)
Ĥk−1(x) +

1
k

[
(Φ(Ĥk−1))(x) +W k(x)

]
(15)
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where W k is given by

W k(x) := I{G−1(ψ(Ĥk−1)),Uk)≤x} − E
[
I{G−1(ψ(Ĥk−1)),Uk)≤x}|F

k−1
]
. (16)

In the following, we use T defined in (13) to represent distribution functions in DX as vectors. Let

pki := P(G−1(ψ(Ĥk−1), Uk) ≤ xi|Fk−1), i = 1, . . . , n. Then we have

T (Φ(Ĥk−1)) = (x1, 0, x2, p
k
1(x2 − x1), . . . , xn, pkn−1(xn − xn−1)). (17)

Moreover,

T (I{G−1(ψ(Ĥk−1)),Uk)≤x}) = (x1, 0, x2, 0, . . . , xj+1, (xj+1 − xj), ...xn, (xn − xn−1)) (18)

with probability pkj − pkj−1, j = 1, . . . , n.

Our goal is to use the above vector representation to extend Proposition OA–1 in the Online

Appendix to the space DX . We state some assumptions and a result that will be used in the sequel.

Assumption 2 The point-to-set mapping Ψγ(G(q, ·)) defined in (2) has a singleton fixed point q•,

i.e., Ψγ(G(q•, ·)) = {q•}.

Assumption 3 There exists an α ∈ [0, 1) such that

dW1(G(q, ·), G(q•, ·)) ≤ α |q − q•|

for all q ∈ R, where q• is the fixed point in Assumption 2. That is, G(q, ·) is a pseudo-contraction

with respect to q in the first order Wasserstein metric.

Assumption 4 The solution-set mapping Ψγ(·) defined in (2) is stable with respect to G(q•, ·)

under the first-order Wasserstein metric, i.e., there exists a κ < 1/α, where α is the constant in

Assumption 3, such that for any F ∈ D and any qF ∈ Ψγ(F ), it holds that

dS(qF ,Ψγ(G(q•, ·))) ≤ κ dW1(F,G(q•, ·)).

Let us verify whether Assumptions 1–4 hold. Recall that the solution of the newsvendor model

is given by the set of quantiles of the underlying distribution. In the following analysis we assume

that the smallest quantile is always chosen for the sake of of the IDP, i.e., ψ(P ) = P−1(γ) where

P−1(u) := min{x : P (x) ≥ u}.

In order to establish some structure on the dependence of the underlying distribution G on the

decisions q, we shall assume in the sequel that G(q, ·) can be written as G̃(µ(q), ·), where G̃ is a
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distribution parameterized by one argument (e.g., its mean) and µ is a function of the decision q,

so the distribution changes depending on the control.

Within this setting, the mapping Φ in (14) is written as

Φ(P )(x) = G(P−1(γ), x) = G̃(µ(P−1(γ)), x)

where γ = r−c
r−v .

Consider a family of distributions G indexed by the integers 0, . . . , Q with support contained

in {0, . . . , Q1}, with Q1 ≥ Q. Suppose also that the function µ(q) is given by the integral part of

µ̃(q), where µ̃ is some function such that µ̃(q) ≤ Q for all q ∈ R. Then Assumption 1 holds in this

case, with X = {0, . . . , Q1}.

An example of the situation described above is when G̃ belongs to the location-scale family, as

defined below.

Definition 1 The location-scale family is a set of probability distributions parameterized by a

location parameter λ and a scale parameter σ ≥ 0 such that, if Y is a random variable whose

probability distribution belongs to such a family, then Y is of the form Y = λ + σZ, where the

distribution of Z is also in the family.

For example, suppose that G̃(λ, ·) is the distribution of Y = λ + σZ, where Z has support on

{0, . . . , Q} and σ is a positive integer. If µ and µ̃ are defined as before, then the support of G(q, ·)

is a subset of {0, . . . , (σ + 1)Q}.

Next, note that Assumption 2 holds if there exists q• such that G(q•) has a unique γ-quantile

and G−1(q•, γ) = q• (i.e., G̃−1(µ(q•), γ) = q•). For the location family, this holds if

q• = inf
{
x : FZ

(
x− µ(q•)

σ

)
≥ γ

}
where FZ denotes the distribution of Z in Definition 1. Then, the fixed point exists if q• satisfies

q• − µ(q•)
σ

= F−1
Z (γ). (19)

As an example, let µ(q) := min{b√qc, Q}. Then, since the function q − µ(q) is nondecreasing and

takes on every integer value, it can be easily seen that there exists q• such that

q• − b
√
q•c = σF−1

Z (γ). (20)

We check now Assumption 3. Note that for the location family we have

G−1(q, u)−G−1(q̃, u) = µ(q)− µ(q̃) (21)
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for any q, q̃ ∈ R. It follows that Assumption 3 holds if the function µ and the point q• have the

property that there exists α ∈ (0, 1) such that, for each q ∈ R,

|µ(q)− µ(q•)| ≤ α(q − q•). (22)

For example, let µ(q) := min{b√qc, Q}, and suppose that µ(q•) = µ(q• − 1) = µ(q• + 1). Then, it

is easy to see that (22) holds with α = 1/2.

Finally, consider Assumption 4. Proposition 1 ensures that the newsvendor problem is stable

with respect to the first order Wasserstein metric. Thus, by taking the distribution G(q•) as the

reference distribution, the stability constant κ is equal to 2(r− v)/Aq• , where Aq• = min{(r− c)−

(r − v)G(q•, q• − 1), (r − v)G(q•, q•)− (r − c)}. Thus, Assumption 4 holds as long as κ is not too

large (more specifically, less than 1/α, where α is the constant in (22)).

Lemma 2 If Assumptions 2-4 hold, then Φ in (14) is a pseudo-contraction under the first order

Wasserstein metric, i.e., there exist a θ ∈ [0, 1) and a P • ∈ DX such that dW1(Φ(P ), P •) ≤

θdW1(P, P •). Moreover, P • = G(q•), where q• is the fixed point in Assumption 2.

Proof

We have

dW1(Φ(P ), G(q•)) =
∫ 1

0

∣∣G−1(ψ(P ), u)−G−1(q•, u)
∣∣ du (from (6))

≤ α |ψ(P )− q•| (by Assumption 3)

= α |ψ(P )− ψ(G(q•))| (by Assumption 2)

≤ ακdW1(P,G(q•)). (by Assumption 4)

The result follows by taking θ := ακ < 1. �

The following theorem shows that the forecasts constructed with the IDP described in Sec-

tion 1.2 converge under the first order Wasserstein metric, and the limit point of the decisions is

the fixed point in Assumption 2.

Theorem 1 Consider the stochastic recursion given by (12). Suppose that Assumptions 1–4 hold.

Then dW1(Ĥk, G(q•)) → 0 as k → ∞ with probability 1, where q• is the fixed point given in

Assumption 2. Moreover, qk → q• with probability 1.
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Proof

By Assumption 1, the distribution of demand in any iteration k belongs to DX . Thus, Ĥk has

a vector representation in Rn, for which we will use the mapping T defined in (13). We prove the

convergence of the sequence {Ĥk} as k → ∞ using the results in Proposition OA–1 in the Online

Appendix, applied to the sequence {T (Ĥk)}. In that case, following (17), recursion (15) becomes

T (Ĥk(x)) =
(

1− 1
k

)
T (Ĥk(x)) +

1
k

[
T (Φ(Ĥk−1)) + W̃ k(x)

]
(23)

where W̃ k(x) is defined as a random vector such that

W̃ k(x) = (0, 0, 0,−pk1(x2 − x1), . . . , 0, (xj+1 − xj)(1− pkj ), . . . , 0, (xn − xn−1)(1− pkn−1)) (24)

with probability pkj − pkj−1, j = 1, . . . , n, where pk0 = 0 and pkn = 1.

We check now the conditions of Proposition OA–1:

1. In this case, βk = 1/k, and thus
∑∞

k=0 β
k =∞ and

∑∞
k=0(βk)2 <∞.

2. It follows from Proposition 2 and Lemma 2 that there exist an α ∈ [0, 1) and a q• ∈ R (which

is the fixed point in Assumption 2) such that

dl2n
1

(T (Φ(Ĥk)), T (G(q•))) = dW1(Φ(Ĥk), G(q•)) ≤ αdW1(Ĥk, G(q•))

= αdl2n
1

(T (Ĥk), T (G(q•))).

3. For each k and x,

E
[
W̃ k(x) | Fk−1

]
=

=
n∑
j=1

(
0, 0, 0,−pk1(x2 − x1), . . . , 0, (xj+1 − xj)(1− pkj ), . . . , 0, (xn − xn−1)(1− pkn−1)

)
(pkj − pkj−1)

=
(

0, 0, 0, (x2 − x1)(1− pk1), . . . , 0, (xj+1 − xj)(1− pkj ), . . . , 0, (xn − xn−1)(1− pkn−1)
)

(pk1) + . . .+(
0, 0, 0, (x2 − x1)(−pk1), . . . , 0, (xj+1 − xj)(−pkj ), . . . , , 0, (xn − xn−1)(1− pkn−1)

)
(pkn − pk−1

n−1)

= (0, . . . , 0).

4. For all k and x,

E
[
W̃ k(x)2 | Fk−1

]
=

n∑
j=1

(
0, 0, 0,−pk1(x2 − x1), . . . , 0, (xj+1 − xj)(1− pkj ), . . . ,

, . . . , 0, (xn − xn−1)(1− pkn−1)
)2

(pkj − pkj−1)

≤
n−1∑
j=1

|xj+1 − xj |2 (which is constant)
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5. In this case, Zk = 0 for all k.

Therefore, it follows from Proposition OA–1 that dl2n
1

(T (Ĥk), T (G(q•))) → 0 with probability

1 as k → ∞. Since dl2n
1

(T (Ĥk), T (G(q•)) = dW1(Ĥk, G(q•)), we have that dW1(Ĥk, G(q•)) → 0

with probability 1 as k →∞. The last assertion then follows from Proposition 1. �

Theorem 1 shows that the IDP does converge under some conditions. We emphasize that the

conditions we have derived are sufficient conditions; it is quite possible that convergence holds in

more general settings. We shall see some numerical illustrations of this phenomenon in Section 4.

3.3 The Stochastically Monotonic Case

In this section we study the convergence of the IDP under the following assumption:

Assumption 5 The family of distributions {G(q, ·) : q ∈ R} is stochastically decreasing in q, i.e.,

if q1 ≤ q2, then G−1(q1, u) ≥ G−1(q2, u) for all u ∈ (0, 1), or equivalently, G(q1, x) ≤ G(q2, x) for

all x ∈ R.

The assumption is relevant in situations where demand decreases as the order quantity increases.

Some examples were discussed in Section 1.

Recall that the family of distributions {G(q) : q ∈ R} has support on a set X = {x1, x2, . . . , xn}.

Suppose that Assumption 2 holds, and let xi be the point in X such that xi = q•. Then, by definition

of q•, we have

G(q•, xi) ≥ γ and G(q•, xi−1) < γ.

Our goal is to show that

ˆ̂
Hk(xi−1)→ G(q•, xi−1) (25)

ˆ̂
Hk(xi)→ G(q•, xi), (26)

since these equations imply that qk = ψ( ˆ̂
Hk) = (Ĥk)−1(γ) = xi for k large enough, i.e., qk → q•.

To show (25)–(26), consider the dynamics of the bi-variate process hk := (hk1, h
k
2) := (Ĥk(xi−1), Ĥk(xi)).

It follows from (12) that

Ĥk+1(x) = Ĥk(x) +
1

k + 1

[
I{G−1(qk,Uk+1)≤x} − Ĥk(x)

]
.

Let Sk :=
(
I{G−1(qk,Uk+1)≤xi−1} − Ĥ

k(xi−1), I{G−1(qk,Uk+1)≤xi} − Ĥ
k(xi)

)
denote the direction of

movement of the process {hk}. Then, we have

sk := E[Sk | Fk] =
(
G(qk, xi−1)− Ĥk(xi−1), G(qk, xi)− Ĥk(xi)

)
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=
(
G(qk, xi−1)− hk1, G(qk, xi)− hk2

)
. (27)

Define now the function

L(y1, y2) :=
1
2
[
(G(q•, xi−1)− y1)2 + (G(q•, xi)− y2)2

]
. (28)

Clearly,

∇L(y1, y2) = (y1 −G(q•, xi−1), y2 −G(q•, xi))
T .

We aim to prove convergence of {hk} by using a classical convergence result for stochastic ap-

proximation, based on the existence of a Lyapunov function (see Proposition OA–2 in the Online

Appendix), which ensures that ∇L(hk) → 0. It is easy to see that all assumptions for that result

are immediately satisfied, except for the so-called pseudo-gradient property, which states that there

exists some constant c > 0 such that

c‖∇L(hk)‖2 ≤ −∇L(hk)T sk ∀ k. (29)

Rather than working with the standard scalar product, it will be convenient to work with a M -

product, defined as 〈x, y〉M = xTMy for a positive definite matrix M . In particular, we shall use

the matrix

M :=

 1 0

0 r

 , where r := ∆1/∆2, (30)

with ∆1 := γ − G(q•, xi−1), ∆2 := G(q•, xi) − γ. Definition (30) assumes that ∆1 ≥ ∆2; if the

opposite relation holds, we can define M =

s 0

0 1

 with s := ∆2/∆1 and the analysis is very

similar. Thus, we assume without loss of generality that

∆1 ≥ ∆2. (31)

We shall also impose the following assumption:

Assumption 6 There exists an ε > ∆1 such that

G(q, xi)−G(q, xi−1) ≥ ε

for all q ∈ R.

Assumption 6 ensures that the value xi = q• can be generated with positive probability in any

iteration, i.e., regardless of the value of the current iterate qk. Lemma 3 shows that (29) is satisfied

under the M -norm. The proof is presented in the Online Appendix.
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Lemma 3 Suppose that Assumptions 5 and 6 hold. Then, there exists c > 0 such that

∇L(hk)TMsk ≤ −c‖∇L(hk)‖2M ∀ k.

We summarize the above discussion in the following result.

Theorem 2 Consider the stochastic recursion given by (12). Suppose that Assumptions 2, 5 and 6

hold. Then qk → q• as k →∞ with probability 1, where q• is the fixed point given in Assumption 2.

Remark: It is possible that Assumption 6 can be relaxed, but some form of it is necessary. To

see that, consider the case where the distributions G(λ, ·) are indexed by λ ∈ {1, . . . , 2n} and

are all point masses (i.e., mass one on a single point), with G(1, ·) =mass on the value 2n − 1,

G(2n, ·) =mass on the value 1, G(λ, ·) =mass on the value n for all λ ∈ {2, . . . , 2n − 1}. Let µ(·)

be defined as µ(q) = 1 for q ≤ 1, µ(q) = 2n for q ≥ 2n, and µ(q) = bqc otherwise. Clearly, we have

q• = n for any γ ∈ (0, 1). Also, G satisfies Assumption 5. Suppose now γ = 1/2, and that the

initial q is q1 = 2n − 1. Then, it is clear that the IDP will produce iterates q1 = 2n − 1, q2 = 1,

q3 = 2n− 1, q4 = 1, etc., i.e., the process oscillates and never converges.

4 Numerical Experiments

In this section we present numerical experiments to illustrate the theoretical results derived in

Section 3. More specifically, we simulate the iterative procedure described in Section 1.2 for three

families of distributions, check convergence, and compare the limit point with the theoretical results

in Section 3. Since those results were derived for the case of distributions with finite support, we

“discretize” the support and “truncate” the tails if necessary. For completeness, though, we also

present results for the original distributions, i.e. without discretization or truncation. For example,

we show convergence results for the truncated and discretized normal distribution and (continuous)

normal distribution. Although we have not proved whether the stochastic approximation approach

can be applied to the space of distribution functions with infinite support, the numerical results

suggest that even in that case the procedure converges to a fixed point solution, as proven in

Theorem 1 for the finite support case.

When a distribution function belongs to the location-scale family described in Definition 1,

the limit point can be computed analytically. To see this, let Zλ be a random variable with

distribution Gσ(λ, ·) belonging to the location-scale family with a location parameter λ = µ(q) and

a scale parameter σ. Then, as seen in (19), the fixed point q• = G−1(q•, γ) satisfies

q• = µ(q•) + σG−1
1 (0, γ).
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Consider first the contraction case discussed in Section 3.2. Let µ(q) :=
√
αq (with 0 < α < 1)

for the case of continuous distributions. Then, we have a closed form solution for q•, since it as a

root of a quadratic equation. We obtain

q• =

√α+
√
α+ 4σG−1

1 (0, γ)

2

2

. (32)

In the case of truncated and discretized distributions, we take µ(q) := min{b√αqc, Q}, where Q is

the number of points in the discretization of Z0. In that case, q• is found in a similar fashion to

(20).

For the numerical experiments, we set r = 700, c = 100, v = 80, α = 0.99, and consider

two cases for the demand distribution: normal and uniform, which belong to location-scale family.

Figure 1 depicts the decisions at each iteration of the sequential procedure, for the case of normal

distributions.2 As expected, larger variance leads to slower convergence.
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Figure 1: Convergence of iterative inventory decision when demand follows a normal distribution

with σ=10 and 100, µ(q) =
√
αq.

Tables 1 and 2 compare the numerical results from the simulation with the theoretical ones for

the case of normal and uniform distributions.

We also conducted experiments for the Poisson distribution. Let G̃(λ, ·) be a Poisson distribution

with parameter λ. Then we have

q• = G̃−1(µ(q•), γ) = min{x : G̃(µ(q•), x) ≥ γ} = min

{
x :

x∑
n=1

e−µ(q•)µ(q•)n

n!
≥ γ

}

We can find q• satisfying the above expression by using numerical methods. For the case of the

parameters r, c, v, and α listed above, we obtained q• = 6. The simulation also yielded qN = 6. For
2For this graph, we used λ = C + µ(q) for some constant C in order to facilitate the depiction of convergence.

22



σ Normal(q•) Normal(qN ) TnD Normal(q•) TnD Normal(qN )

10 23.29 23.37 18 18

50 102.50 102.26 79 79

100 198.89 198.33 153 153

Table 1: Theoretical (q•) and experimental (qN ) limit values, for normal distribution, µ(q) =
√
αq.

“TnD” indicates a truncated and discretized distribution.

δ Uniform (q•) Uniform (qN ) D Uniform (q•) D Uniform(qN )

50 54.09 54.24 54 54

100 103.68 103.61 104 104

200 201.21 201.38 202 202

Table 2: Theoretical (q•) and experimental (qN ) limit values, for uniform distribution, µ(q) =
√
αq.

“D” indicates a discretized distribution and δ is the half-width.

a truncated Poisson distribution — obtained by truncating the upper tail at 95% — we obtained

q• = 5, and the simulation also yielded qN = 5.

Next, we consider the case of stochastically decreasing distributions discussed in Section 3.3.

Let µ(q) = 300 − q (µ(q) = b300 − qc in the discretized case). As before, we use (19) and (20)

to determine q• analytically. Figure 2 depicts the decisions at each iteration of the sequential

procedure, for the case of normal distributions. Tables 3 and 4 compare the numerical results from

the simulation with the theoretical ones for the case of normal and uniform distributions (both the

original and the truncated/discretized versions).

The numerical results above suggest that the conclusions of Theorem 1 are valid not only for

finite support distributions, but also, for infinite support distributions. Therefore, we confirm that

σ Normal(q•) Normal(qN ) TnD Normal(q•) TnD Normal(qN )

10 159.24 159.32 157 157

50 196.21 196.37 185 185

100 242.43 242.27 220 220

Table 3: Theoretical (q•) and experimental (qN ) limit values, for normal distribution, µ(q) = 300−q.

“TnD” indicates a truncated and discretized distribution.
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Figure 2: Convergence of iterative inventory decision when demand follows a normal distribution

with σ=10 and 100, µ(q) = 300− q.

δ Uniform (q•) Uniform (qN ) D Uniform (q•) D Uniform(qN )

50 173.39 173.06 173 173

100 196.77 196.44 197 197

200 243.55 243.32 244 244

Table 4: Theoretical (q•) and experimental (qN ) limit values, for uniform distribution, µ(q) =

300− q. “D” indicates a discretized distribution and δ is the half-width.
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a fixed point solution is the limit of sequences of the decisions in the iterative procedure. In the

next section, we compare the limit point with the true optimal solution.

5 Optimal Decision vs. Iterative Decision

The results presented in the previous sections demonstrate that, under appropriate conditions, the

IDP described in Section 1.2 converges to the fixed point q• of a certain function — more specifically,

we have q• = ψ(G(q•)), with ψ as defined earlier. When the distribution G is exogenous to the

system, we simply have q• = ψ(G), which is the optimal solution to the problem. When G depends

on the decisions q, however, the fixed point may not be optimal.

It is no surprise that the limit point q• is not optimal in case of dependency — after all, the

main thrust of this paper is the study of the situation where the decision maker uses an incorrect

model in which such dependency is ignored. It is natural then to ask, how does the limit point

q• compare with the solution obtained in case the dependency between the random components of

the model and the decisions is known? The answer to such a question yields the price of modeling

error.

In this section we provide a comparison between the true optimal solution and the limit point q•

in terms of the objective function in the newsvendor framework. Although the convergence results

provided in the previous sections are valid under the assumption that the demand distribution has

finite support, in the discussion that follows we assume that the demand distribution is continuous

with support in R. This facilitates the analysis and provides more insightful results on the impact

of using an incorrect model within the context of the IDP. Note that the numerical experiments

of Section 4 have already suggested that convergence holds under more general assumptions than

those made in Theorem 1.

Let ξ denote the demand random variable, and assume its distribution belongs to a location

family with location parameter λ and scale parameter σ. As before, we assume that the demand

depends on the order quantity q through the location parameter, so that λ = µ(q). Let G(q, ·)

and gq(·) denote respectively be the cumulative distribution function and the probability density

function of ξ. As described earlier, r is the unit selling price, c is the unit production cost, and v is

the unit salvage value. The revenue function is given by (10), hence the expected revenue is given

by

E[R(q, ξ)] =
∫

R
(rmin(ξ, q)− cq + vmax(q − ξ, 0))gq(ξ)dξ. (33)
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Let q∗ be an optimal solution, i.e.,

q∗ ∈ argmaxq∈RE[R(q, ξ)]. (34)

We write ξ as ξ = Z + µ(q) where Z is a random variable that does not depend on q. The

random variable Z can be chosen in such a way that its distribution (call it F ) has the same scale

parameter as ξ but with location parameter equal to 0, so that E(ξ) = E(Z) + µ(q) = µ(q) and

V ar(ξ) = V ar(Z) = σ2. In that case, we have G(q, x) = F (x − µ(q)) and gq(x) = f(x − µ(q)),

where f is the density of F . By performing the change of variables x := ξ − µ(q), we rewrite (33)

as

E[R(q, ξ)] = (r − c)q − (r − v)(q − µ(q))F (q − µ(q)) + (r − v)
∫ q−µ(q)

−∞
x f(x)dx. (35)

Throughout the section we assume that µ(q) is a nondecreasing differentiable concave function.

It can be easily seen that the expected revenue function is also concave in q (due to the concavity

of µ). Given that the expected revenue function is concave in q and the problem is unconstrained,

the optimal decision q∗ can be computed by solving ∂E[R(q,ξ)]
∂q = 0. We obtain

E
[
∂R(q)
∂q

]
= E

[
∂((r − c)q)

∂q
I{ξ≥q} +

∂(rD − cq + v(q − ξ))
∂q

I{ξ<q}
]

= E
[
∂((r − c)q)

∂q
I{x+µ(q)≥q} +

∂(r(x+ µ(q))− cq + v(q − (µ(q) + x)))
∂q

I{x+µ(q)<q}

]
= E

[
(r − c)I{x+µ(q)≥q} +

(
(r − v)

∂µ(q)
∂q

+ v − c
)

I{x+µ(q)<q}

]
= (r − c)− (r − v)

(
1− ∂µ(q)

∂q

)
F (q − µ(q)) = 0. (36)

If follows from (36) that q∗ satisfies

F (q − µ(q)) =
r − c

(r − v)(1− µ′(q))
=

γ

(1− µ′(q))

where γ = r−c
r−v .

Recall from Section 4 that the limit (denoted by q•) of the iterative decision process satisfies

F (q• − µ(q•)) = γ. (37)

On the other hand, as shown in (36), the true optimal solution (denoted by q∗) satisfies

F (q∗ − µ(q∗))(1− µ′(q∗)) = γ. (38)

Proposition 3 shows how much the limit inventory decision resulting from the IDP deviates

from the optimal order quantity. The results are stated in terms of the critical ratio γ of the
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newsvendor model. Below we use the notation h(x) = Θ(g(x)) if there exist constants c and C

such that c < h(x)
g(x) < C as x→∞.

Proposition 3 Suppose that Assumption 3 holds. Let q• and q∗ be points satisfying equations (37)

and (38). Assume that (i) µ(·) is increasing and concave, µ′(q) = Θ(qδ) where δ < 0; (ii) F is

differentiable and concave on [infγ∈(0,1)(q•−µ(q•)), supγ∈(0,1)(q∗−µ(q∗)]; (iii) f(q) = o(µ
′(q)
q ) where

f = F ′(·). Then, we have

1. q∗ ≥ q• for all γ ∈ (0, 1);

2. As γ → 1, both q• and q∗ go to ∞;

3. As γ → 1, q∗

q• → ∞.

Proof

We begin with the first statement. Since F belongs to a location family, then it follows from

Assumption 3 that µ is a contraction. Therefore, µ′(·) < 1. It is immediate from (37) and (38)

that q•−µ(q•) ≤ q∗−µ(q∗) since 0 < (1−µ′(q∗)) < 1 holds (note that µ(·) is increasing function).

Since q−µ(q) is increasing in q, it follows that q∗ ≥ q• for all γ ∈ (0, 1). As γ → 1, it is immediate

from (37) and (38) that both q∗ and q• go to ∞.

Let x• = q• − µ(q•) and x∗ = q∗ − µ(q∗). As γ → 1, it follows from (ii) that

f(x∗) ≤ F (x∗)− F (x•)
x∗ − x•

≤ f(x•). (39)

It follows from (37) and (38) that

F (x∗)− F (x•) =
γ

1− µ′(q∗)
− γ =

µ′(q∗)γ
1− µ′(q∗)

.

Thus,

µ′(q∗)γ
1− µ′(q∗)

1
f(x•)

≤ x∗ − x• ≤ µ′(q∗)γ
1− µ′(q∗)

1
f(x∗)

(40)

and since µ(q∗)− µ(q•) ≥ 0, we have

µ′(q∗)γ
1− µ′(q∗)

1
f(x•)

≤ x∗ − x• ≤ q∗ − q•. (41)

Moreover, since we assume that 0 < µ′(q) < 1, we have

µ′(q)
f(x)

≤ µ′(q)
(1− µ′(q))f(x)

. (42)
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By dividing both sides of (41) by q•, and combining with (42), we obtain

µ′(q∗)
q•f(x•)

≤ q∗

q•
− 1. (43)

We prove that q∗

q• →∞ by showing the left hand side of (43) goes to ∞. Indeed, suppose that
µ′(q∗)
q•f(x•) < ∞, which is equivalent to µ′(q∗)µ′(q•)

q•µ′(q•)f(x•) < ∞. By assumption (iii), we have µ′(q•)
q•f(x•) → ∞

as γ → 1. Together, the two inequalities imply µ′(q∗)
µ′(q•) → 0. Finally, under assumption (ii) we have

µ′(q) = Θ(qδ) and thus µ′(q∗)
µ′(q•) → 0, which in turn implies that q∗

q• →∞. �

We turn now to a comparison between the expected revenues at q• and q∗. By combining

expressions (35), (37) and (38), we obtain

E[R(q•, ξ)] = (r − c)µ(q•) + (r − v)
∫ q•−µ(q•)

−∞
xf(x)dx

and

E[R(q∗, ξ)] = (r − c)(q∗ − q∗ − µ(q∗)
1− µ′(q∗)

) + (r − v)
∫ q∗−µ(q∗)

−∞
xf(x)dx.

Figure 3 shows how the expected revenue function changes as γ goes to 1. As shown in the graph,

the difference between the fixed point and the optimal solution increases as γ goes 1. Proposition 4

below formalizes that result.
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Figure 3: Expected revenue function for different values of the critical ratio γ

Proposition 4 Under the assumptions of Proposition 3, E[R(q∗)]
E[R(q•)] →

µ(q∗)−µ′(q∗)q∗
(1−µ′(q∗))µ(q•) as γ → 1.
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Proof

As shown in Proposition 3, both q• and q∗ go to infinity as γ → 1. Since
∫ q−µ(q)
−∞ (r−v)xf(x)dx→

E[Z] = 0 as q →∞, we have

E[R(q∗)]
E[R(q•)]

→
(r − c)(q∗ − q∗−µ(q∗)

1−µ′(q∗) )

(r − c)µ(q•)
=

(q∗ − q∗−µ(q∗)
1−µ′(q∗) )

µ(q•)
as γ → 1. (44)

�

Remark: Suppose we choose µ(q) =
√
αq, where 0 < α < 1. Then, since µ′(q∗) =

√
α

2
√
q∗

, the

numerator of the right-hand side of (44) becomes

µ(q∗)− q∗µ′(q∗)
1− µ′(q∗)

=

√
αq∗ − q∗

√
α

2
√
q∗

1−
√
α

2
√
q∗

=
2
√
αq∗ − q∗

√
α

2
√
q∗ −

√
α

=
q∗
√
α

2
√
q∗ −

√
α
.

Thus, we have E[R(q∗)]
E[R(q•)] = Θ(

√
q∗√
q•

). Since q∗

q• →∞ by Proposition 3, it follows that E[R(q∗)]
E[R(q•)] → ∞.

6 Conclusions

The probability distributions used in stochastic optimization models usually are estimated with

observed data. Often the estimates are updated when new data become available. Sometimes the

observed data depend on the decisions made, and such dependence is not known to the decision

maker, or the decision maker chooses for the sake of tractability not to incorporate the dependence

into the model. Even if the decision maker attempts to incorporate the dependence into the model,

the exact structure of the dependence may not be known to the decision maker and may thus be

incorporated incorrectly. The resulting process is an iterative decision process in which the decision

maker uses a misspecified model to make decisions, and estimated model parameters are updated

as new data become available.

One may ask whether the decision maker would be able to detect the dependence of the dis-

tribution on the decision. Figure 4 indicates why it may be hard to do so with the observed data.

The graph on the left side is a scatter plot indicating how the distribution of the observed quantity

depends on the decision. The graph on the right side is a scatter plot of the observed quantity

versus the chosen decision resulting from the iterative decision process when the same dependence

as in the left graph holds. The data generated by the IDP may not facilitate detection of the

dependence. In applications, selection of a variety of decisions just to learn about some possible

dependence may be too costly. Also, as mentioned before, even if the dependence can be detected,

the decision maker may still not know the correct structure of the dependence.

29



0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

order quantity q

ob
se

rv
ed

 d
em

an
d

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

order quantity q

ob
se

rv
ed

 d
em

an
d

Figure 4: The left figure shows a scatter plot indicating how the distribution of the observed

quantity depends on the decision. The right figure shows a scatter plot of the observed quantity

versus the chosen decision resulting from the IDP.

This paper considers the case in which the empirical distribution is used as estimator, and the

chosen solution for the decision maker’s model is given by a particular quantile of the distribution.

We provide sufficient conditions for the estimates and the resulting decisions to converge. In the

limit the observed data appear to be consistent with the decision maker’s model, that is, the data

do not indicate that the decision maker is using an incorrect model. However, as shown, the limit

decision may be arbitrarily bad compared with the true optimal solution.

Complex systems may be prone to modeling error and unpredictable behavior of iterative de-

cision processes. However, in this paper we consider some of the simplest settings in operations

research, and show that even in such simple settings modeling error may have severe long term

consequences.

One may be motivated to consider estimating the underlying distribution with an approach

other than building the empirical distribution. The use of the empirical distribution is common in

practice and has a sound foundation — indeed, the Glivenko-Cantelli theorem establishes that with

i.i.d. data, the empirical distribution converges w.p.1 to the distribution of the data in the vertical

distance dV(H,F ) := supx∈R |H(x)− F (x)| and, moreover, it was shown in Cooper et al. (2006)

that if the sequence of conditional distributions of the data converges weakly, then the empirical

distribution converges weakly to the same limit w.p.1. However, in either case the empirical dis-

tribution may not converge in the horizontal distance dH(H,F ) := supu∈(0,1)

∣∣H−1(u)− F−1(u)
∣∣.

The latter metric is useful when quantiles are of interest, since it may lead to a proof of convergence
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of estimates and quantiles under more general conditions than those presented in this paper. Fur-

ther research may consider estimators that have more robust properties in terms of the horizontal

distance.

One may attempt to reduce the possibility of modeling error by using data-driven or model-free

methods. These methods are aimed at optimizing the objective as a function of the decisions by

directly using observed pairs of decisions and objective values, without intermediate estimation

of an objective function. A well-known such method is response surface methodology (Kleijnen

et al., 2004). A related approach that constructs local approximations to the objective function

based on noisy observations of objective values to optimize the objective is given in Bharadwaj

and Kleywegt (2005, 2008). Related future research includes a data-driven method that combines

ideas from operational statistics (Liyanage and Shanthikumar, 2005) and kernel density estimation

techniques in order to optimize the objective directly, based on observed objective values.
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Online Appendix for the Paper

“Newsvendor-Type Models with Decision-Dependent

Uncertainty”

Online Appendix

OA–1 General Results for Stochastic Approximation

The following results on the convergence of stochastic approximation iterations are described in

Bertsekas and Tsitsiklis (1996). They give sufficient conditions for the convergence of the stochastic

iterates in Rm, one under a condition called pseudo-contraction and the other for a Lyapunov

function.

Proposition OA–1 Consider a random sequence {(Y k,W k, Zk)}∞k=0 in Rm satisfying

Y k+1 = (1− βk)Y k + βk
(
F (Y k) +W k + Zk

)
. (OA–1)

Suppose that the following assumptions hold:

1. The deterministic nonnegative step size sequence {βk}∞k=0 satisfies
∑∞

k=0 β
k =∞ and

∑∞
k=0(βk)2 <

∞.

2. There exists an y∗ and an α ∈ [0, 1) such that∥∥∥F (Y k)− y∗
∥∥∥ ≤ α

∥∥∥Y k − y∗
∥∥∥

for all k. (Such a function F is called a pseudo-contraction. A contraction is a pseudo-

contraction.)

3. For every k, E
[
W k | Fk−1

]
= 0.

4. There exist constants K1,K2 > 0 such that

E
[
‖W k‖2 | Fk−1

]
≤ K1 +K2‖Y k‖2

for all k.

5. There exists a random nonnegative sequence {θk}∞k=0 such that θk → 0 w.p.1 as k →∞, and

such that

‖Zk‖ ≤ θk
(
‖Y k‖+ 1

)
for all k.
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Then Y k → y∗ with probability 1 as k →∞.

Proposition OA–2 Consider a random sequence {(Y k,W k, Zk)}∞k=0 in Rm satisfying

Y k+1 = Y k + βkZk. (OA–2)

Suppose that the following assumptions hold:

1. The deterministic nonnegative step size sequence {βk}∞k=0 satisfies
∑∞

k=0 β
k =∞ and

∑∞
k=0(βk)2 <

∞.

2. There exists a function L : Rm 7→ R+ with the following properties:

(a) There exists a constant M > 0 such that

‖∇L(y1)−∇L(y2)‖ ≤ M‖y1 − y2‖

for all y1, y2 ∈ Rm.

(b) There exists a positive constant c such that w.p.1, ∇L(Y k)TE[Zk | Fk] ≤ −c‖∇L(Yk)‖2.

(c) There exist constants K1,K2 > 0 such that w.p.1,

E
[
‖Zk‖2 | Fk

]
≤ K1 +K2‖∇L(Y k)‖2.

Then, ∇L(Y k)→ 0 with probability 1 as k →∞.

OA–2 Auxiliary Results

Lemma 1 Consider problem (3), and the solution mapping Ψ defined in (4). Suppose that there

exists an L > 0 such that ∣∣∣R(q, ξ)−R(q, ξ̃)
∣∣∣ ≤ L

∥∥∥ξ − ξ̃∥∥∥ (OA–3)

for all q, ξ, ξ̃ ∈ R. Then, for any distributions P and F on R, and any q̃ ∈ Ψ(F ), it holds that

d(q̃,Ψ(P )) ≤ φ
−1
P (2LdW1(P, F ))

where φ−1
P (y) := sup{τ : φP (τ) ≤ y}.
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Proof Let

dR(P, F ) := sup
q∈Q

∣∣∣∣∫
R
R(q, ξ) dP (ξ)−

∫
R
R(q, ξ) dF (ξ)

∣∣∣∣
and δ• := dR(P, F ). Then, taking q∗ ∈ Ψ(P ) we have

2δ• ≥ δ• + EF [R(q̃, ξ)]− EP [R(q∗, ξ)] (OA–4)

≥ EP [R(q̃, ξ)]− EP [R(q∗, ξ)] (OA–5)

≥ φP (d(q̃,Ψ(P )) (OA–6)

where (OA–4) and (OA–5) hold by the definition of dR, whereas (OA–6) holds by the definition of

φP stated in Proposition 1.

On the other hand, condition (OA–3) implies that

dR(P, F ) ≤ LdFM1(P, F ) (OA–7)

where dFM1 is the first-order Fortet-Mourier metrics (see Rachev (1991)). It follows from (OA–6)

and (OA–7) that

φP (d(q̃,Ψ(P )) ≤ 2dR(P, F ) ≤ 2LdFM1(P, F ).

Furthermore, Rachev (1991) has shown that, for any p ≥ 1,

dFMp(P, F ) ≤ (1 + EP [‖ξ‖]p + EF [‖ξ‖]p)
p−1

p dWp(P, F ).

In particular, for p = 1 we have

dFM1(P, F ) ≤ dW1(P, F )

and thus

φP (d(q̃,Ψ(P ))) ≤ 2LdW1(P, F ).

It follows that

d(q̃,Ψ(P )) ≤ φ
−1
P (2LdW1(P, F )).

�

Lemma 3 Suppose that Assumptions 5 and 6 hold. Then, there exists a c > 0 such that

∇L(hk)TMsk ≤ −c‖∇L(hk)‖2M ∀ k.
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Proof Note that

∇L(hk)TMsk =
(
hk1 −G(q•, xi−1), hk2 −G(q•, xi)

)
M
(
G(qk, xi−1)− hk1, G(qk, xi)− hk2

)T
=

[
G(qk, xi−1)− hk1

] [
G(q•, xi−1)− hk1

]
+ r

[
G(qk, xi)− hk2

] [
G(q•, xi)− hk2

]
.

Consider the following cases regarding the sign of G(q•, xi−1)− hk1 and G(q•, xi)− hk2:

1. G(q•, xi−1)− hk1 ≥ 0

2. G(q•, xi−1)− hk1 < 0

a. G(q•, xi)− hk2 ≥ 0

b. G(q•, xi)− hk2 < 0

The combinations of these cases will be denoted by 1a, 2a, 1b and 2b. A key observation concerning

the above cases is that, since qk = ψ(Ĥk) = (Ĥk)−1(γ) we have, in case 1,

hk1 = Ĥk(xi−1) ≤ G(q•, xi−1) < γ =⇒ qk ≥ q• =⇒ G(qk, x) ≥ G(q•, x) ∀x, (OA–8)

whereas in case b we have

hk2 = Ĥk(xi) > G(q•, xi) ≥ γ =⇒ qk ≤ q• =⇒ G(qk, x) ≤ G(q•, x) ∀x. (OA–9)

In both cases, the right-most implications follow from the assumption that G(q) is stochastically

decreasing in q.

We now analyze the four cases above:

Case 1b: From (OA–8) and (OA–9) we have that qk = q• and hence[
G(qk, xi−1)− hk1

] [
G(q•, xi−1)− hk1

]
+ r

[
G(qk, xi)− hk2

] [
G(q•, xi)− hk2

]
=
[
G(q•, xi−1)− hk1

]2
+ r

[
G(q•, xi)− hk2

]2
≥ c‖∇L(hk)‖2M

for any c ∈ (0, 1].

Case 2b: From (OA–9) we have that, for any c ∈ (0, 1),

hk1 > G(q•, xi−1) =
G(q•, xi−1)− cG(q•, xi−1)

1− c
≥ G(qk, xi−1)− cG(q•, xi−1)

1− c

and thus

G(qk, xi−1)− hk1 ≤ c
[
G(q•, xi−1)− hk1

]
< 0.
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Moreover, (OA–9) implies that G(qk, xi)− hk2 ≤ G(q•, xi)− hk2 < 0. It follows that[
G(qk, xi−1)− hk1

] [
G(q•, xi−1)− hk1

]
+ r

[
G(qk, xi)− hk2

] [
G(q•, xi)− hk2

]
≥ c

[
G(q•, xi−1)− hk1

]2
+ r

[
G(q•, xi)− hk2

]2
≥ c‖∇L(hk)‖2M

for any c ∈ (0, 1).

Case 1a: From (OA–8) we have that, for any c ∈ (0, 1),

hk2 ≤ G(q•, xi) =
G(q•, xi)− cG(q•, xi)

1− c
≤ G(qk, xi)− cG(q•, xi)

1− c

and thus

G(qk, xi)− hk2 ≥ c
[
G(q•, xi)− hk2

]
≥ 0.

Moreover, (OA–8) implies that G(qk, xi−1)− hk1 ≥ G(q•, xi−1)− hk1 ≥ 0. It follows that[
G(qk, xi−1)− hk1

] [
G(q•, xi−1)− hk1

]
+ r

[
G(qk, xi)− hk2

] [
G(q•, xi)− hk2

]
≥
[
G(q•, xi−1)− hk1

]2
+ cr

[
G(q•, xi)− hk2

]2
≥ c‖∇L(hk)‖2M

for any c ∈ (0, 1).

Case 2a: We shall show that there exists a constant c ∈ (0, 1) such that[
G(qk, xi−1)− hk1

] [
G(q•, xi−1)− hk1

]
+ r

[
G(qk, xi)− hk2

] [
G(q•, xi)− hk2

][
G(q•, xi−1)− hk1

]2 + r
[
G(q•, xi)− hk2

]2 ≥ c (OA–10)

for all k.

Suppose initially that hk1 = Ĥk(xi−1) ≥ γ > G(q•, xi−1). This implies that qk < q• and hence

G(qk, x) ≤ G(q•, x) for all x. Moreover, since hk1 ≥ γ, we have that

G(q•, xi−1)− hk1 ≤ G(q•, xi−1)− γ = −∆1.

Also, since γ ≤ hk1 ≤ hk2 ≤ G(q•, xi), we have

G(q•, xi)− hk2 ≤ G(q•, xi)− γ = ∆2.

Finally, note that

|G(q•, xi−1)− hk1| ≤ |G(q•, xi−1)−G(q•, xi)| = ∆1 + ∆2
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and

G(qk, xi)− hk2 ≥ G(qk, xi−1) + ε−G(q•, xi−1) +G(q•, xi−1)− hk2

≥ G(qk, xi−1)−G(q•, xi−1)− (G(q•, xi)−G(q•, xi−1)) + ε

= (G(qk, xi−1)− hk1)− (G(q•, xi−1)− hk1)− (∆1 + ∆2 − ε)

Thus, a lower bound on the minimum value of the term on the left-hand side of (OA–10) can

be determined by solving the minimization problem

min
uv + rzw

v2 + rw2
(OA–11)

s.t.

u ≤ v < 0 (OA–12)

0 ≤ w ≤ ∆2 (OA–13)

∆1 ≤ |v| ≤ ∆1 + ∆2 (OA–14)

z ≥ u− v − (∆1 + ∆2 − ε). (OA–15)

We solve problem (OA–11)-(OA–15) analytically by solving for one variable at a time:

• For each feasible u, v, w, it is clear from (OA–15) that the optimal z is given by z∗(u, v) =

u− v − (∆1 + ∆2 − ε) since w ≥ 0.

• For each feasible u, v, define the function f(w) := (uv + rz∗(u, v)w)/(v2 + rw2). We claim

that min{f(w) : 0 ≤ w ≤ ∆2} occurs at w∗ := ∆2. Indeed, note that

f ′(w) =
rz∗(u, v)[v2 − rw2]− 2ruvw

(v2 + rw2)2
,

which implies that the sign of f ′(w) is given by the sign of the quadratic function q(w) :=

z∗(u, v)[v2− rw2]−2uvw. Since z∗(u, v) < 0 for all feasible u, v, it follows that q(·) is convex.

Moreover, we have q(∆2) = z∗(u, v)[v2 − r∆2
2] − 2uv∆2 < 0 since z∗(u, v) < 0, v2 ≥ r∆2

2

(from (OA–14), (30), and assumption 31), and uv∆2 > 0 (from (OA–12)). Thus, q(·) — and

therefore f ′(·) — has negative sign on [0,∆2], which proves our claim.

• For each feasible v, define the function

g(u) :=
uv + rz∗(u, v)w∗

v2 + r(w∗)2
=

u(v + r∆2)− r(v + ∆1 + ∆2 − ε)∆2

v2 + r∆2
2

It is clear from (30), (OA–12), and (OA–14) that u ≤ v ≤ −∆1 = −r∆2 < 0, so g(·) is

minimized at u∗(v) := v.
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• Finally, consider the function

h(v) :=
u∗(v)v + rz∗(u∗(v), v)w∗

v2 + r(w∗)2
=

v2 − r(∆1 + ∆2)∆2

v2 + r∆2
2

= 1− r(∆1 + ∆2 − ε)∆2 + r∆2
2

v2 + r∆2
2

.

It follows that the minimum of h(·) over the region (OA–14) is achieved at v∗ := −∆1.

It follows from the above developments that the optimal value of (OA–11)-(OA–15) is given by

θ∗ :=
u∗(v∗)v∗ + rz∗(u∗(v∗), v∗)w∗

(v∗)2 + r(w∗)2
=

∆2
1 − r(∆1 + ∆2 − ε)∆2

∆2
1 + r∆2

2

.

It follows that θ∗ > 0 if and only if ∆2
1 > r(∆1 + ∆2− ε)∆2. Since r = ∆1/∆2, the inequality holds

if ε > ∆2, a condition that is satisfied by Assumption 6.

Now, suppose that hk1 = Ĥk(xi−1) < γ. If hk2 = Ĥk(xi) ≥ γ, then we have qk = q• and thus the

analysis is identical to that of Case 1b. Therefore, we only need to consider the case Ĥk(xi) < γ,

which implies that qk > q• and hence G(qk, x) ≥ G(q•, x) for all x. Moreover, since hk2 < γ, we

have that

G(q•, xi)− hk2 > G(q•, xi)− γ = ∆2. (OA–16)

Also, since γ > hk2 ≥ hk1 ≥ G(q•, xi−1), we have

0 ≥ G(q•, xi−1)− hk1 > G(q•, xi−1)− γ = −∆1.

Finally, note that

G(q•, xi)− hk2 ≤ G(q•, xi)−G(q•, xi−1) = ∆1 + ∆2

and

G(qk, xi−1)− hk1 ≤ G(qk, xi)− ε−G(q•, xi) +G(q•, xi)− hk1

≤ G(qk, xi)−G(q•, xi) + (G(q•, xi −G(q•, xi−1))− ε

= (G(qk, xi)− hk2)− (G(q•, xi)− hk2) + (∆1 + ∆2 − ε)

Thus, the minimum value of the term on the left-hand side of (OA–10) can be determined by

solving the minimization problem

min
uv + rzw

v2 + rw2
(OA–17)

s.t.

0 ≤ w ≤ z (OA–18)

0 ≥ v > −∆1 (OA–19)
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∆2 < w ≤ ∆1 + ∆2 (OA–20)

u ≤ z − w + (∆1 + ∆2 − ε). (OA–21)

As before, we can solve problem (OA–17)-(OA–21) analytically by solving for one variable at a

time:

• For each feasible v, z, w, it is clear from (OA–21) that the optimal u is given by u∗(z, w) =

z − w + (∆1 + ∆2 − ε) since v ≤ 0.

• For each feasible z, w, define the function f(v) := (u∗(z, w)v + rzw)/(v2 + rw2). We claim

that min{f(v) : 0 ≥ v ≥ −∆1} occurs at v∗ := −∆1. Indeed, note that

f ′(v) =
u∗(z, w)[rw2 − v2]− 2rzvw

(v2 + rw2)2
,

which implies that the sign of f ′(v) is given by the sign of the quadratic function q(v) :=

u∗(z, w)[rw2−v2]−2rzvw. Since u∗(z, w) > 0 for all feasible z, w, it follows that q(·) is strictly

concave. Moreover, since q(0) = u∗(z, w)rw2 ≥ 0, we conclude that q(·) — and therefore f ′(·)

— has positive sign on [−∆1, 0], which proves our claim.

• For each feasible w, define the function

g(z) :=
u∗(z, w)v∗ + rzw

(v∗)2 + rw2
=

z(rw −∆1) + (w −∆1 −∆2 − ε)∆1

∆2
1 + rw2

It is clear from (31), (30), (OA–18) and (OA–20) that rw ≥ r∆2 = ∆1 > 0, so g(·) is

minimized at z∗(w) := w.

• Finally, consider the function

h(w) :=
u∗(z∗(w), w)v∗ + rz∗(w)w

(v∗)2 + rw2)
=

rw2 − (∆1 + ∆2 − ε)∆1

∆2
1 + rw2

= 1−(∆1 + ∆2 − ε)∆1 + ∆2
1

∆2
1 + rw2

.

It follows that the minimum of h(·) over the region (OA–20) is achieved at w∗ := ∆2.

It follows from the above developments that the optimal value of (OA–17)-(OA–21) is given by

θ∗ :=
u∗(z∗(w∗), w∗)v∗ + rz∗(w∗)w∗

(v∗)2 + r(w∗)2
=

r∆2
2 − (∆1 + ∆2 − ε)∆1

∆2
1 + r∆2

2

.

It follows that θ∗ > 0 if and only if r∆2
2 > (∆1 + ∆2− ε)∆1. Since r = ∆1/∆2, the inequality holds

if ε > ∆1, a condition that is satisfied by Assumption 6. �
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