Math. Program., Ser. A 94: 1-19 (2002)

Digital Object Identifier (DOI) 10.1007/s10107-002-0313-2

Alexander Shapiro* - Tito Homem-de-Mello - Joocheol Kim
Conditioning of convex piecewise linear stochastic programs

Received: May 2000 / Accepted: May 2002-07-16
Published online: September 5, 2002 — (© Springer-Verlag 2002

Abstract. In this paper we consider stochastic programming problems where the objective function is given
as an expected value of a convex piecewise linear random function. With an optimal solution of such a problem
we associate a condition number which characterizes well or ill conditioning of the problem. Using theory of
Large Deviations we show that the sample size needed to calculate the optimal solution of such problem with
a given probability is approximately proportional to the condition number.
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1. Introduction

Consider the stochastic programming problem
Min {/(x) == Eplh(x. )1}, (1.1

where £ is a random vector having probability distribution P with support & C R?, §
is a nonempty closed subset of R” and /# : R™ x E — R is a real valued function (we
use the bold face for the random vector & in order to distinguish it from its realization
£ € R?). We discuss in this paper ill or well conditioning of an optimal solution xq of
the above problem (1.1). We study the problem of conditioning of x¢ from the point of
view of Monte Carlo sampling approximation approach. That is, suppose that an i.i.d.
random sample &', ..., ¢V, with the common distribution P, is generated and that the
problem (1.1) is approximated by the problem

~ 1 & :
Min | fy(0) = = > h(x, €) . (1.2)

i=1
We refer to (1.1) and (1.2) as the “true” (or expected value) and the sample average
approximating (SSA) problems, respectively.
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It turns out that, for a certain class of problems, an optimal solution of the SAA
problem (1.2) provides an exact optimal solution of the true problem (1.1) with proba-
bility one (w.p.1) for the sample size N large enough. In particular, this happens if the
following assumptions hold:

(A1) For all £ € E the function A (-, §) is piecewise linear and convex.
(A2) The set S is polyhedral, i.e., is defined by a finite number of linear constraints.
(A3) The probability distribution P has a finite support, i.e., the set E is finite.

Moreover, if the true problem (1.1) has unique optimal solution xg, then probability of
the event “Xy = x(” approaches one exponentially fast as N tends to infinity. That is,
there exists a constant 8 > 0 such that

lim %log [1 - PGy =x0)] = -5 (1.3)

N—o0

(Shapiro and Homem-de-Mello [20], see also derivations below). By the event “Xy =
X0~ we mean that the corresponding SAA problem has unique optimal solution equal to
x0. By “Xn # xo” we denote the complement of that event.

In the subsequent analysis we assume that conditions (A1)-(A3) hold, and
refer to problems satisfying conditions (A1)—(A3) as convex piecewise linear. An
important class of such problems is given by two-stage linear stochastic program-
ming problems with recourse and a finite number of scenarios (see, e.g., Birge and
Louveaux [2] for a discussion of two-stage programming with recourse). As compared
with other studies of exponential rates of convergence, based on the theory of Large
Deviations (see, e.g., Kaniovski, King and Wets [10] and Dai, Chen and Birge [3]
and references therein), the result (1.3) is different in that it asserts that Xy is equal
exactly to xo with probability approaching one exponentially fast. Of course, this is
possible since we consider a specific class of problems satisfying assumptions (Al)-
(A3).

The above is a qualitative result showing that one may not need a large sample in
order to solve the true problem exactly with a high probability by solving the SAA prob-
lem. The required sample size N is, of course, problem dependent and may be difficult
to estimate a priori. In some cases the optimal solution xg of the true problem is stable
and a relatively small sample size N is needed in order to determine xo with a high
probability by solving the corresponding SAA problem. It is natural to say that in such
cases xg is well conditioned, as opposed to ill conditioned problems where a much larger
sample is required. One may argue that in practical applications there is no need to solve
the true problem exactly. Let us remark, however, that if the true problem has a large
number of optimal or nearly optimal solutions (i.e., the problem is ill conditioned), then
it may be difficult to validate a calculated solution for optimality. This is because in such
cases the optimal value 0y of the SAA problem tends to give a downwards biased esti-
mator of the optimal value vg of the true problem (see Mak, Morton and Wood [13] for
a discussion of statistical lower bounds obtained via optimal values of SAA problems,
Shapiro [21] and Kleywegt, Shapiro and Homem-de-Mello [11] for a discussion of the
bias phenomenon for ill conditioned problems, and Linderoth, Shapiro and Wright [12]
for additional numerical experiments).
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From the above point of view, any problem (1.1) with multiple solutions is ill con-
ditioned. In some cases the function 4 (x, £) can be represented in the form

h(x, &) :=c'x + g(Ax, £),

where c is an m-dimensional column vector, Aisann x m matrixand g : R" x 8 - R
is a real valued function. For example, this is the case in two stage linear stochastic
programming with recourse and nonrandom technology matrix A. If the matrix A has a
deficient row rank less than m, then the function A (-, &) is constant on any affine sub-
space of R™ parallel to the linear space defined by the equations Ax = 0. This may
result in nonuniqueness of optimal solutions of the corresponding true (expected val-
ue) problem. Nevertheless, such a problem can be “well-conditioned”. Let us observe
that the true and SAA problems (1.1) and (1.2) can be transformed into the following
respective equivalent problems

I;/Eg{Q(X) =900 +Eplgx, 1}, (1.4)

~ 1< 4
I;/Ieig{QN(x) = w(x)+ﬁ2g(x,£’)}, (1.5)

i=1

where C := A(S) and ¥ (x) := inf{c'x : Ax = x, x € S}. Note that the feasible
set C of the above problem is convex if S is convex, and is polyhedral if S is polyhe-
dral. Note also that the function () is convex piecewise linear if the set S is convex
and polyhedral. Therefore, if the true problem (1.1) is convex piecewise linear, then the
transformed true problem (1.4) is also convex piecewise linear. If the problem (1.4) has
a unique optimal solution xo which is well-conditioned, then it is natural to say that the
true problem (1.1) is also well-conditioned with the same condition number.

Let us also mention that it is well known in almost every branch of numerical analysis
that large problems tend to be ill conditioned, e.g., large linear programming problems
tend to be degenerate, linear regression models with a large number of predictors tend
to have the multicollinearity problem, etc. It is natural to assume that stochastic pro-
gramming problems are no exceptions in this respect and large stochastic programming
problems tend to be ill conditioned. However, our (admittedly limited) numerical expe-
rience suggests that in some cases stochastic problems with a finite but huge set = are
well conditioned. Of course, more numerical experiments are needed before a definite
conclusion could be made.

In this paper we introduce a quantitative concept of the condition number associ-
ated with the optimal solution x( of the true problem. That condition number gives a
characterization of ill (or well) conditioning of the problem from the point of view of
Monte Carlo sample average approximation approach. It should be mentioned that the
approach to conditioning discussed in this paper is stochastic in nature. From this point
of view any deterministic problem with unique solution is well conditioned since in
such case a sample of size N = 1 suffices to solve the problem exactly. Therefore, the
impetus here is somewhat different from the one in a purely deterministic optimization
(see Renegar [17] and Freund and Vera [6], and references therein, for a discussion of
modern concepts of condition number in deterministic optimization).
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We use the following notation and terminology throughout the paper. By f”(xo, d)
and hé(xo, d) we denote the directional derivative of f(-) and h(-, §), respectively, at
xo in the direction d. The tangent cone to a convex set S at a point x € § is denoted by
Ts(x),and by S”~! := {x € R” : ||x|| = 1} we denote the unit sphere in the space R".
By Var[X] we denote the variance of the random variable X.

2. Condition number

We assume that conditions (A1)-(A3) hold, and that the true problem (1.1) has unique
optimal solution xg. It follows that the expected value function f(x) is also convex
piecewise linear. Moreover, we have then by the theory of linear programming that the
optimal solution xq of the true problem is sharp, that is

f/(x0,d) >0, Vd e Ts(xo)\ {0}. (2.1)

Furthermore, since it is assumed that the problem is convex piecewise linear the follow-
ing property holds [20]:

(B) There exists a finite set {di, ..., d¢} C Ts(xp) \ {0} of directions, independent of the
sample, such that if f]Q(xo, dj) > 0for j =1,..., ¢ then Xy = xo.

Let us also remark that because of the assumed piecewise linearity, we have here that
. . . . . -/

if xp is a unique optimal solution of the SAA problem, then f (xo,d) > 0 for any
d € Ts(xo) \ {O}.

Definition 1. We call
Var[h’s(xo, dj)]

K= max ——————— (2.2)
jell,...e) [f/(XOvdj)]

the condition number of the true problem (1.1).

The above definition is motivated by the following result which means that the sam-
ple size N required to achieve a given probability of the event “Xy = xo” is roughly
proportional to the condition number «.

Theorem 1. Suppose that the assumptions (A1)—-(A3) are satisfied and that the true
problem (1.1) has unique optimal solution xo. Then the exponential rate (1.3) holds and
the corresponding constant B is approximately equal to (2k)~', where « is given by
(2.2).

A formal derivation of the above theorem and exact meaning of the approximation
B~ (2k)~ " will be given in the remainder of this section.

It could be noticed that the above definition of the condition number k depends on
a choice of the set {dy, ..., d¢} satisfying property (B). This set is not uniquely defined,
since by adding any d € Ts(xp) \ {0} one still gets a set satisfying (B). We will see later
that, for well conditioned problems, actually only a few directions are important.
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Before giving a formal derivation of Theorem 1, let us make the following remarks.
Under mild regularity conditions (e.g., [20]), and in particular if the true problem is
convex piecewise linear, it follows that

Ep[hg(o.d)] = f'(x0. d). @3)

Thus, k can be viewed as the largest squared coefficient of variation of random vari-
ables i (x0.d). d € {d1. ... ds}. Moreover, we have that if Var [h’g(xo, d)] — 0, then
h’ (x0, d )= f' (xo, d) for almost every &. If this holds for every d € Ts(xp), thenxk =0
and in that case Xy = xo for any sample.
We glve now a derivation of Theorem 1. By property (B) we have that the event
“Xn # x0” is included in the union of the events ¢ fN (x0,dj) <07, j=1,..,¢. Fora
direction d € {d, ..., d¢} consider the random variable

n(d, &) 1= h(xo, d),

its mean 14 := E[n(d, £)], moment generating function My(t) := Ep[e'"@#)] and its
rate function

14(s) == sup [ts — Aq(1)], (2.4)
teR
where Ag(t) := log M;(t). Note that uy = f’(x9,d) and hence, by (2.1), ug > 0.
Since £ is finite, we hz}ye that the moment generating.function M () is finite valued for
all 7 € R. Moreover, f]\/, (x0,d) = N~! ZlNzl n(d, &), and hence it follows that

1 N
N log [P(fN(xo, d) < 0)] < —14(0), (2.5)

and
lim inf — log [P(f,(,(xo, d) < o)] > —1,(0). (2.6)
N—ooco N -

The inequalities (2.5) and (2.6) correspond to the respective upper and lower bounds of
Cramér’s Large Deviation theorem. Note that the upper bound (2.5) is exact and holds
forany N =1, ..., while the lower bound (2.6) is asymptotic.

Since the probability of the union of the events “fl\/, (x0,dj) <07, j=1,...,¢,is
less than or equal to the sum of the probabilities of these events, we obtain by (2.5) that

P(Ry # x0) < ie‘”’”’f W < peNP, @7
j=1
where
B := min {1d1 O, ..., Id((O)}. (2.8)
Moreover, if f,(, (x0,d) < 0 for some d € {di, ..., d¢}, then x¢ is not an optimal solu-

tion of the SAA problem. Therefore probability of the event “Xy # xo” is greater than
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or equal to the probability of each individual event E(, (x0,dj) <07, j e{l,.. ¢}
Together with (2.6) this implies that

1 -
lim inf — log [ PGy #20)] = -8 2.9)

N—o0

It f()ll()WS f]()“l (2. ;) aIld (2.9) that
th N lcg 1 XN 7 X0 ﬁ' . O

Of course, we also have that P (EC\N = xo) =1- P(YN #* xo), and hence (1.3) follows.

Let us estimate the constant 8. Consider a direction d € {dy, ..., d¢}. Since the mo-
ment generating function M, (¢) is finite, it is infinitely differentiable. Hence the function
A 4(¢) is also infinitely differentiable and

Ay(0) =E[n(d, §)] = pna and AG(0) = Var[n(d, §)].

Suppose further that the variance of 7(d, ) is not zero, and hence A’j(0) > 0. For
s = (g the maximum in the right hand side of (2.4) is attained at ¢ = 0. It follows that
Ig(ug) = —Ag(0) =0and I (; (ngq) = 0. Moreover, by the Implicit Function Theorem
we have that

8%¢ (0,
I(;’(,ud) _ ¢( Md) _ |:

ds2

9290, ud)]z [82¢(o, w)}‘
dt ds a2 ’

where ¢ (t, s) :=ts — A4(t), and hence

1 1
Al0)  Var[nd, &1’

1y (na) =

Therefore, for “small” w4 the second-order Taylor expansion of I;(s), at s = g, gives
us

wi _ [En@ o] _ [f'xod]
2050)  2Var[n(d,&]  2Var[n(d, &)]

1,(0) ~ (2.11)

That is, for such d that f'(xg, d) is close to zero, I;(0) is approximately (up to the
remainder of order o(utzi)) equal to [ f/(xo, d)1?/Var[n(d, &)].

Therefore for problems where the minimal of the numbers w1y ; is “small”, we have
that

o [S@o ]
min .
jell...ty 2Var[n(d;, &)]

~

(2.12)

The above derivations show that for convex piecewise linear problems g ~ 1/(2«),
where the constant « is defined in (2.2).
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3. Estimation of sample sizes

The results in the previous section provide estimates for the constant 8 in (1.3), which
in turn yields some information on how fast the probability P (X = xo) approaches one
with increase of the sample size N. Note, however, that the upper bound (2.5), given by
the Large Deviations theory, can be quite crude for “not too large” values of N. There-
fore, the above Large Deviations type results have more of a qualitative rather than a
quantitative value. One might then investigate sharper estimates for the corresponding
probabilities. If such estimates can be obtained, then it will be possible to compute the
sample size N required to make the probability of the event “Xy # x(” smaller than a
specified tolerance «.

Let us start by discussing some general results. Consider a sequence X1, X, ...
of i.i.d. realizations of a (real valued) random variable X with finite mean u and finite
variance 2. The reader may think of X; as the random variable 7 (d, fi) = h/g" (x0, d),

where d is a given direction and & I ... is the generated random sample. Suppose that
for a given § > 0 we want to estimate the probability

N
pN(8) =P <N—‘ Y Xi<pu- 5) ) (3.1)
i=1

We have by the Central Limit Theorem (CLT) that N —1/2 Z,N: 1(Xi — w) converges
in distribution to normal N (0, '2), and hence the probability py (N —1/28) tends to
®(—§/0) as N — oo (here ®(-) denotes the cumulative distribution function of the
standard normal distribution).

Of course, if the random variables X; have a normal distribution, then their average
is also normally distributed, and in that case py (N ~1/28) = ®(—8/0), or equivalently
pn(8) = ®(—8+/N /o). Note, however, that the CLT does not give a justification for the
asymptotics ®(—8+/N /o) of py(8),as N — oo, for a general distribution. We have that
®(—38+/N /o) approaches zero, as N — oo, at the exponential rate exp (—%Néz/oz)
which can be different from the corresponding exponential rate provided by the Large
Deviations theory. It is interesting to note, however, that for ill-conditioned problems
(where 82 /o2 is “small”) the exponential rate of convergence of py (8) is well approx-
imated by the one suggested by the CLT (see formula (3.7) below). Let us also note
that in cases where the sample size N is not “too large” and §+/N /o is well inside the
interval (0, 2), the value <I>(—8\/ﬁ/o*) is not small. In such cases @(—Sx/ﬁ/d) tends
to give a better approximation of py (§) than the one suggested by the exact asymptotics
discussed below.

We discuss now the so-called exact asymptotics for the probabilities px(8). That
theory provides an estimate Jy (§) of py(8) in the sense that

pn(8)
im =1
N—oo Jy(6)

Let A(-) and I (-) denote the logarithmic moment generating and the rate functions of X,
respectively. We assume that the moment generating function of X, and hence A(¢), is
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finite valued for all ¢ in a neighborhood V' of zero, which implies that the mean and vari-
ance of X are finite. This assumption also implies that A(-) is C* on N. The following
proposition shows that A (-) is strictly convex on N.

Proposition 1. Let X be a real valued random variable with positive variance such
that the moment generating function of X is finite valued for all t in an open convex
neighborhood N of zero. Then A(-) is strictly convex on N.

Proof. As mentioned earlier, it follows from the assumption that the moment generating
function of X is finite valued for all # € A that A(-) is C* on N. By differentiating
A(t) = log E[eX] we obtain, for t € N,
E[x2 Y] B[] - (E[Xe¥])"

(E[X])’ |

Furthermore, by the Cauchy-Schwarz inequality,

E[Xe’X] < E[|X|e’X] < (IE [Xze”‘])l/2 (E [e’X])l/z. (3.2)

Notice that the second inequality is strict if and only if there does not exist a constant
¢ > 0 such that X2e'X = ce'X w.p.1 (see, e.g., Royden [18, p.121]). This of course
means that the second inequality in (3.2) is strict if and only if X? is not a.e. constant.
Moreover, since it is assumed that Var(X) > 0, we have that X is not a.e. constant. All
together this implies that at least one inequality in (3.2) is strict, and hence we have that

(E [Xefx])2 < E[x%¥|E[eY].

We obtain that A”(¢) > 0 for all t € A/, and hence A(-) is strictly convex on \V. O

A//(t) —

In particular, if the set & is finite, then the moment generating function is finite
valued for all ¢ € R. In that case Proposition 1 shows that A(-) is strictly convex on R.

Let a € R be such that A’(a) = u — 8. From Proposition 1 we have that A(-) is a
strictly convex function on a neighborhood N of zero, and hence A’(-) is monotonically
increasing on V, with A’(0) = p and A”(0) = o> > 0. Therefore, for § near zero, the
solution a of the above equation exists and is unique, a < 0if § > 0, and a — O as
8 — 0. Moreover, A”(a) > 0. The estimate Jy (8) is then given by

Ce=N11=9)

Va2A"(a)2n N

([4, Thm. 3.7.4]). The constant C is equal to one if X has a non-lattice distribution. Other-
wise, C can be calculated as follows. Let b be the largest number such that (X —u+46)/b
is an integer with probability one, i.e., b is the period of the distribution of X — u + §.
If such b does not exist, then again we take C = 1. If such b exists (which is true for
example if X is rational w.p.1 and p — & is rational as well), then the constant C is given
by C = (ab)/(1 — e~*"). Note that (ab)/(1 — e~?") tends to one as a — 0. Therefore,
in any case we can take C ~ 1.

IN(S) = (3.3
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Let us now write the Taylor expansions of A and A’ around zero. We have

A(t) = A0) + A O) + LA 0 +0(t?) = put + Lo’ +o(t?), (3.4)

A(@) = ANO)+ A" O +0() = p+ 0%t + o), (3.5)

and since A’(a) = u — 8, we can approximate a (when §, and hence a, is close to zero)
by

B
-t (3.6)

a~ —
Moreover, we have that if A’(¢) = y, then I (y) = ry — A(t), and thus

8
I(u—98)=a(u—38) — Ala) = —as — Lo’a® + o(a®) ~ —.
20

Using also the approximation A”(a) &~ A”(0) = o2, we obtain that the estimate Jy (8)
of pn(8) can be approximated by

(o 2 2
ING) ~ ——= N/, (3.7)
82N

It is interesting to compare the above estimate of py(§) with the corresponding
Large Deviations bounds. In the present one-dimensional case the upper Large Devia-
tions bound is a consequence of Chebyshev’s inequality. Therefore, we have

pN@) < e NIW=d) » (=N&/Qo?) (3.8)

Comparing the right hand sides of (3.7) and (3.8), we see that, while the exponential
term is identical, the factor multiplying the exponential term is one in (3.8) and inversely
proportional to VN in (3.7). Therefore, the estimate Jy (6) tends to be sharper.

Let us remark that the above estimates were computed using Taylor expansions (3.4)
and (3.5). One can use, of course, higher order expansions, which will then provide more
accurate estimates. This is developed in [8], to which we refer for details.

We now apply the above results to the estimation of the probability in the left hand
side of (2.5). Let {dy, ... , d¢} be a set of directions satisfying property (B). For each
j=1,...,¢ denote

wj=E[he(x0,d))] = f'(x0.d)) and o} := Var[h(x0,d})],

and let /; denote the rate function of h’g(xo, dj). Then p; > 0 and ;(0) gives the
corresponding exponential constant. Using 6 = u; in (3.7) we obtain

1 e_ﬁ.fN

JEN

P (Fyeo.d <0) ~
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where 8; := M%/(Zaiz) ~ 1;(0). We have that

t
Py #x0) = Y P(Fyto.dp) =0)

=1

~.
~

~ Z e BiN < _t e PN (3.9)
]=11/47r,3] = J4nByN

where By := min; <<, B;. Note that By ~ 8, with the constant 8 defined in (2.8), and
that By is equal to 1/(2k), where « is the condition number defined in (2.2).
Also, we have that, for every j € {1, ..., £},

P(Xy # x0) > P(fl\/,(xo,dj) <0) ~ ;e*ﬁﬂ\/

1/471/%’]\/

which in particular implies that

1
JATBoN

The right sides of the inequalities (3.9) and (3.10) differ from each other by the factor
£. This illustrates again that the condition number « characterizes the overall rate of
convergence of P(')?N #* xo) to zero.

We can now use the above results to obtain estimates of the sample size N which
is needed to make P(fN #+ xo) smaller than a specified tolerance «. A “sufficient”
condition for N can be obtained by requiring the right hand side of (3.9) to be less than
« (the quotes are due to the fact that the inequality in (3.9) is approximate). We get

P(Xy #x0) R e PN, (3.10)

EZ
2BoN +log(2BoN) > log <W> .

In order for N to satisfy the above inequality, it suffices that

1 2
N > ﬁmax 1, log 5 = Cik, (3.11)

0 2o

where C| := max {1, log(ﬂz/(Znaz))} .
A more accurate estimate can be obtaining by solving the nonlinear equation

z +logz = log(£2/(2ma?)). (3.12)
By taking zop = C; as the initial point, this equation can be easily solved, say by New-
ton’s method. Let C» denote the solution of equation (3.12). We can then estimate N

by

N > Caxk. (3.13)
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Of course, the constant (condition number) k is unknown a priori. Note, however, that
the above estimates can also be written ( fori = 1, 2) as

C;Var [h/g(xo, d)]
>
- [f'(x0, d)]?

Therefore, N can be estimated using a single direction such that f'(xg, d) is small. We
discuss that in the next section.

The sample size estimate (3.14), while accurate, is difficult to compute in practice.
Indeed, the expression on the right-hand side of (3.14) implies that both the mean and the
variance of directional derivative of A (-, £) at xq in each direction d are known, which
is hardly the case. Usually, those quantities can only be estimated. Even if a certain
direction is given, the estimates of mean and variance will be typically noisy and thus
the estimate will not be reliable.

A simpler method to obtain estimates for the sample size is based on the following
two-stage procedure. Let Ny be an initial sample size, whose value is determined by the
user. Suppose the SAA problem (1.2) is solved R times (each time with a new stream of
random numbers), and let Xy denote the most frequent solution obtained, say, Ry times.
By taking Xy as a candidate for the optimal solution, we can estimate the probability
P(Ec\N * xo) above as &y := 1 — Ryg/R. Let Cy denote the solution of the nonlinear
equation

foralld € {di, ..., d;). (3.14)

z+logz = log (62/(27162(2))) . (3.15)

Then, in parallel with inequality (3.13), we can estimate k by

k= &. (3.16)
Co
This estimate, in turn, can be substituted in inequality (3.13) to yield a new estimator
for the sample size N that guarantees that the optimal solution will be obtained with a
given probability at least 1 — «. Such procedure is, of course, heuristic; nevertheless,
it requires little information about the system — in fact, only estimates for £ and o are
needed. Notice that £ = 1 gives the highest estimate for k. In the next section we will
see an example of application of this procedure.

4. Examples

We present now some examples to illustrate the ideas developed in the previous sections.
Consider initially the following “median” problem. Let £ be a (one dimensional) random
variable, S := R and & (x, &) := |x — &|. Suppose that &€ has a discrete distribution with
the odd number r = 2k + 1 of values equally spaced on the interval [—1, 1], each having
equal probability 1/r. We have then that xo = 0 is the unique optimal solution of the
true problem and for direction d = 1,

E[h (x0, d)] =r~! and Var[hg (xo, d)] = 1 — 2
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Consequently the condition number is
kK = r>—1 = 4k(k +1). 4.1
In that example the exact value of the exponential constant 8 is
B = Lloglr?/(? = DI~ 1/@2r* = 1), 4.2)

while the approximation 8 &~ 1/(2«) gives 1/(2x) = 1/(2r> — 2) (see Shapiro and
Homem-de-Mello [20] for a derivation).

Now let & = (&, ..., &,,) be a random vector with independent components &;
each having the above discrete distribution, and let A(x,§) := Y /L, |x; — &. Then
xo = (0, ..., 0) is the optimal solution of the true problem with the same exponential
constant and the condition number as in (4.1) and (4.2), respectively. This shows that for
r not “too large”, this separable problem is well conditioned, and hence a small sample
suffices in order to solve it exactly with high probability (see Table 1).

We use this example to verify the accuracy of the estimates of the sample sizes given
in (3.11) and (3.13). Let us fix @« = 0.05, i.e., we wish to obtain the true optimal so-
lution with probability 0.95. Notice that both constants C; and C5 in (3.11) and (3.13)
depend on the number ¢ of directions; in this separable case, we have £ = 2m. Table
1 below displays the values of N obtained with (3.11) (called N;) and (3.13) (called
N>), as well as the corresponding probabilities that Xy = x¢, which for large N are
very closeto 1 —2P(X > N/2), where X is a binomial random variable B(N, g) with
qg = (r — 1)/(2r) (see [20]). Those probabilities are computed for various values of
m and r, as the table shows. The last column displays the ratio N1/N. Notice that the
number of scenarios is given by r"*. Moreover, as remarked in [20], we can see that the
sample size grows quadratically with r and logarithmically with m. Observe also that
the probabilities corresponding to the more precise estimate N, are smaller than 0.95
for small r; this happens because, as remarked in section 3, the sample size estimates
are more accurate when the underlying problem is ill-conditioned.

In the above example, the condition number «k was known. In general, however, «
can be difficult to compute, even for simple problems, and moreover it depends on the
optimal solution xo which, of course, is not known a priori. In the next two examples be-
low we use the following procedure to estimate « at a given optimal solution xo: first, we
generate the corresponding Monte Carlo approximation problem with sample size Ny to
obtain an approximate solution Xy, 1. We then independently replicate the experiment
T — 1 more times, hence obtaining 7" approximate solutions fNO,l, . ,FENO,T. Note
that we are not interested here in the approximate objective values of the problem, but
rather in the frequencies of the approximate solutions. Observe also that if the problem is
ill-conditioned, then the most frequent approximate solution may not coincide with the
true minimizer xg. We exclude those ’x\NO, i, i =1,...,T, which coincide with xq, and
find the most frequent approximate solution from the remaining Xy, ;’s. Let the chosen
solution be denoted by x;. With xo and x|, we can calculate the normalized direction
d := (x1 — x0)/llx1 — xoll. Another possibility is to pick x| as the point X, ; whose
objective function value is the closest to f (xp). Next, we fix ¢ to be a small number, say
0.01, and compute the objective values at xo and xo + ed exactly, i.e., by enumerating all
possible scenarios. Of course, these small examples allow such computations; for larger
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Table 1. Estimated sample sizes to attain probability 0.95 and exact probabilities P(Xy = x¢) for the median
problem

r m Ny PNy Ny PN, Ni/N>

5 5 211 0.984 165 0.954 1.279
5 10 244 0.980 194 0.941 1.258
5 100 355 0.986 294 0.937 1.207
5
5

500 432 0.984 366 0.934 1.180
1000 465 0.987 398 0.934 1.168
11 5 1052 | 0.983 821 0.956 1.281
11 10 1218 | 0.984 968 0.950 1.258
11 100 1771 0.987 1470 | 0.949 1.205
11 500 2157 | 0.988 1830 | 0.948 1.179
11 | 1000 | 2323 | 0.989 1986 | 0.947 1.170
21 5 3854 | 0.984 | 3009 | 0.956 1.281
21 10 4464 | 0985 | 3546 | 0.953 1.259
21 100 6491 0.988 | 5388 | 0.952 1.205
21 500 7907 | 0.989 | 6708 | 0.951 1.179
21 | 1000 | 8517 | 0.989 | 7282 | 0.951 1.170
31 5 8409 | 0985 | 6564 | 0.955 1.281
31 10 9740 | 0.985 | 7737 | 0.956 1.259
31 100 14161 | 0.988 | 11756 | 0.953 1.205
31 500 17251 | 0.989 | 14636 | 0.952 1.179
31 | 1000 | 18582 | 0.989 | 15888 | 0.952 1.170
51 5 22773 | 0985 | 17775 | 0.956 1.281
51 10 26378 | 0.985 | 20952 | 0.955 1.259
51 100 | 38351 | 0.988 | 31838 | 0.953 1.205
51 500 | 46720 | 0.989 | 39637 | 0.954 1.179
51 | 1000 | 50325 | 0.989 | 43028 | 0.953 1.170

problems, one can estimate those values by large samples. The directional derivative is
then estimated by [ f (xo + ed) — f(x0)]/e.

We consider now the following two numerical examples. The first example is CEP1,
which was used in [20] to illustrate the exponential rate of convergence to the optimal
solution. The problem was originally described in [7]. The second problem is APL1P,
which was described in [9] and also studied in [1].

The CEP1 problem has 8 decision variables with 5 constraints (plus lower bound
constraints) on the first stage, and 15 decision variables with 7 constraints (plus lower
bound constraints) on the second stage. The random variables appear only on the right
hand side of the second stage. There are 3 independent and identically distributed ran-
dom variables, each taking 6 possible values with equal probability, so the sample space
has size 6> = 216.

For the sake of verification, we solved the problem exactly by the Benders decompo-
sition algorithm, and obtained the true minimizer x¢ of the problem, which in this case
is unique. We then solved the corresponding Monte Carlo approximating problems with
sample size No = 10 for T = 100 replications. Using the procedure outlined above, we
calculated f/(xg, d) and Var[h/£ (x0, d)] for the direction d := x; — xg, where x is the
second most often obtained solution. Table 2 below displays the results. The table also
displays the value of N estimated with (3.13) that guarantees that the optimal solution
will be obtained with probability at least 0.95. Note that this requires an estimate for £. In
this case we chose £ = 1 due to the small number of decision variables. Note also that the
estimate obtained for N (N > 57) is in agreement with the results obtained in [20] — in
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that paper it was verified computationally that a sample size equal to 50 yields the op-
timal solution with probability 0.97. Larger values of ¢, of course, yield larger sample
sizes; for example, with £ = 6 (which can be justified by the fact that there are 3 degrees
of freedom for the first stage variables), we get the more conservative estimate N > 111.

The APL1P example is an electric power capacity expansion problem on a transpor-
tation network. The problem has two decision variables with 2 constraints (plus lower
bound constraints) on the first stage, and 9 decision variables with 5 constraints (plus
lower bound constraints) on the second stage. The random variables appear on both the
right hand side and the technology matrix of the second stage. There are 5 independent
random variables. The number of realizations per random variables yields a total of
4 x5 x4 x4 x4 = 1280 scenarios. To estimate k, we used the same procedure outlined
above, with sample size No = 200, T = 100 replications, and d = x; — xo, where xg
is an optimal solution and x; is an obtained solution whose objective function value is
the closest to f(xp). As with the CEP1 problem, table 2 below displays the directional
derivative in the direction d and its variance at the optimal solution, and the value of
N estimated with (3.13) (and ¢ = 1) that guarantees that the optimal solution will be
obtained with probability at least 0.95. Note that the directional derivative is extremely
small; this suggests that the problem is ill conditioned or even has multiple solutions, at
least up to a certain precision. Hence, the estimate obtained for N is much larger than the
total number of scenarios. That happened since the problem is small and ill conditioned.
Of course, it makes sense to use Monte Carlo sampling techniques only for problems with
a very large number of scenarios, so this example is given for illustration purposes only.

For the sake of verifying the alternative strategy for sample size estimation described
at the end of section 3, we also list in Table 2 the estimate of « obtained via (3.16), using
the same respective number of samples and replications as above for problems CEP1
and APL1P. Those estimates for k and N (which again correspond to 0.95 probability
of optimality) are indicated by x4}y and Nyj¢. As the table indicates, the estimate for
problem CEP1 is reasonably close to the one obtained with (3.14) — and it is far easier to
compute. For example, the sample size equal to 26 indicated by N,y was verified in [20]
to yield the optimal solution with probability between 0.905 and 0.958. The estimate
for problem APLIP, in turn, is quite different from the one obtained with (3.14). Notice
however that such estimate was based on an initial frequency of only 8% of occurrences
of the optimal solution (more precisely, 8 occurrences out of 100 replications). In such
cases, we would recommend using a larger sample size in the first stage of the two-stage
estimation procedure, in order to obtain a more reliable estimate of the probability of
obtaining the correct answer.

Table 2. Condition number and sample size estimates for the CEP1 and APL1P problems

CEPI1 APLIP
f(xo, d) 7.59 0.0005
Var[hy (xo, )] | 1068.3 195
K 18.49 | 7.73 x 107

N 57 | 236 x 10°

Kalt 833 12438.4

Nalt 26 3797
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Our final example is a stochastic vehicle allocation model in a single commodi-
ty network, described in Donohue and Birge [5] and also studied in Mak, Morton and
Wood [13]. This minimization problem, called DB 1 in the latter paper, has 5 decision vari-
ables and only one constraint (plus bound constraints) in the first stage, and 102 variables
and 71 constraints (plus bound constraints) in the second stage. There are 46 independent
and identically distributed random variables, which results in 4.5 x 105 scenarios.

The size of the problem, of course, precludes its exact solution. To have a better un-
derstanding of the behavior of the model, we solved M = 50 independent replications
of the SAA problem (1.2), each with the sample size N = 250 (notice that N = 250 is
a tiny fraction of the total number of scenarios of the considered problem). We obtained
the following solutions of the corresponding SAA problems:

xp= (11 13 8 12 7) (24 times)
xp= (11 14 8 11 7) (13 times)
x3=(11 139 11 7) (8 times)
x4=(12 13 8 11 7) (5 times)

The SAA problems were solved using an adapted version of the Stochastic Solutions
model from the IBM Optimization Library.

We also solved the SAA problems with the same sample size and the same number
of replications, but instead of using a standard Monte Carlo sampling we applied the
Latin Hypercube Sampling (LHS) method. This sampling technique consists of dividing
the (0, 1) interval into N subintervals of equal size (where N is the size of the sample)
and picking one number randomly from each interval. The N obtained numbers are then
randomly shuffled, and the resulting sequence is used to generate random variates from
a given distribution, e.g., by means of the inverse transform method. The procedure is re-
peated for each of the components of the underlying random vector, yielding a stratified
sample of size N of that vector. This technique, initially proposed by McKay, Conover
and Beckman [14], has been thoroughly studied in terms of its theoretical properties
and numerical efficacy; see, for instance, Stein [22] and Owen [16]. In the context of
stochastic programming, Bailey, Jensen and Morton [1] have used the LHS strategy
embedded in a response surface method.

The solution of 50 independent replications were:

x; = (11 13 8 12 7) (24 times)
xp= (11 14 8 11 7) (14 times)
x3=(11 13 9 11 7) (7 times)
xa=(12 13 8 11 7) (3 times)
xs= (10 14 8 12 7) (2 times)

While the frequencies of each solution obtained with the LHS method were very similar
to the standard Monte Carlo sampling, the variances of the point estimates were reduced
about 200 times; therefore, we will present only the results obtained with LHS.
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Table 3 below displays the results. The first row contains the average optimal value
of the approximating problem (1.2) over the 50 replications, together with the half-width
of a 95% confidence interval. Notice that such value constitutes an estimate for a lower
bound of the original problem (see [13, 15] for discussions). The next four rows contain
respectively the point estimates of the function values at the points x1, x2, x3 and x4 listed
above, together with the half-width of 95% confidence intervals. These point estimates
were calculated with the same random numbers used to solve the approximating prob-
lem. Thus, the estimate of f(x;) correspond to 50 batches of LHS samples of size 250
each, so the total sample size was 12,500. Notice that these point estimates all constitute
estimates of upper bound to the optimal value of the original problem. Finally, the last
row contains an estimate of the optimality gap obtained from the difference between
the upper bound with x| minus the lower bound, together with the half-width of a 95%
confidence interval. Notice that the gap is very small. Also, the obtained numbers agree
with the results presented in Mak et al. [13], although more precise due to the use of a
larger sample as well as the LHS strategy.

Notice that the ranking of xy, x2, x3 and x4 according to function values is the same
as the ranking according to the frequency of each solution. However, the proximity of
the those values among each other, and also among those values and the lower bound,
suggest that those four points could, in principle, be accepted as optimal solutions. This
can be made precise by testing whether the directional derivatives f’(x;;x; — x;) are
zero or less.

Table 4 below displays the results of these tests. The second column displays the
mean of each directional derivative, together with the half-width of a 95% confidence
interval. The third and fourth columns correspond to respectively the hypothesis tests
and the p-values of each test. All tests were performed after checking for normality of the
data, to ensure validity of the tests. It is worthwhile mentioning that, unlike the function
values estimates, the directional derivative estimates hardly benefit from the use of the
LHS strategy — the variance reduction compared to standard Monte Carlo was minimal.
This explains why the frequencies of solutions were about the same in both cases.

From table 4, we can see that both x3 and x4 are definitely worse points than x; and
x> and thus can be discarded as candidates for the optimal solution. The results on the
first row show that, with the sample size used, the hypothesis that x is a better solution
than x; can be rejected with the p-value of about 7%, and the 95% confidence interval
for f/(x1, xo — x1) contains zero. This suggests that we cannot use formula (3.14) to
estimate the value of N that guarantees that the optimal solution will be obtained with
probability 95%.

Table 3. Optimal value for approximating problem and point estimates

Optimal value of approx. problem | —17719.61 +3.17
Evaluation of point x; —17718.35 £3.12
Evaluation of point x; —17717.61 £ 3.28
Evaluation of point x3 —17716.03 £+ 3.37
Evaluation of point x4 —17715.06 &+ 3.43
Optimality gap 1.26 + 0.49
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Table 4. Estimates of directional derivatives and hypothesis tests

Derivative mean A Hypothesis p-value

fl(x1,xa—x1) | 074+£097 | Hy: f'(x1:x2—x1) <0 | 0.0696
[, x3—x1) | 231+ 1.13 | Hy: f'(x1;x3 —x1) <0 | 0.0001
flx15x4 —x1) | 3294+ 1.13 | Hoy: f/(x1;x4 —x1) <0 | 0.0000
(2, x5 —x2) | 1.584£0.99 | Hy: f/(x2:x3 —x2) <0 | 0.0013
f/(x2, x4 —x2) | 2554081 | Hy: f'(x2; x4 —x2) <0 | 0.0000

In order to overcome this difficulty, we shall use the two-stage estimation method
presented at the end of section 3. Following the notation introduced in that discussion,
let No = 250 be the initial sample size and R = 50 the initial number of replications.
Let X) = x1 denote the most frequent solution obtained (Ry = 24 times), which yields
the estimate &y = 1 — Ryp/R = 0.52 for the probability of not obtaining the optimal
solution. As an estimate for ¢, we take o = 4. The rationale for this choice is that,
among x1, X2, x3 and x4, the first four coordinates vary along one direction and the fifth
coordinate does not change. Next, let Cy denote the solution of the nonlinear equation
(3.15), which is Cy = 1.71. From (3.16) we obtain the estimate ¥ = 146.41 and thus,
using (3.13) we have that an estimate for the value of N that guarantees that the optimal
solution will be obtained with a probability 1 — « is

N > Cik,

where C; solves equation (3.12). For example, with @ = 0.2, « = 0.1 and « = 0.05 we
obtain, respectively, N > 446, N > 604 and N > 771. Using £o = 1 instead of £y = 4
(i.e., a more conservative estimate) we get N > 757, N > 1294 and N > 1920 corre-
sponding to the respective values of «. Notice that even the most conservative estimate
(N = 1920) is far smaller than the number of scenarios. This is a strong indication that
the underlying problem is, in fact, well-conditioned.

5. Conclusions

We have introduced in this paper the concept of conditioning of convex piecewise linear
stochastic programs. In a well-conditioned problem, the solution of the Monte Carlo
SAA problem coincides with the solution of the original problem with high probabili-
ty, even for relatively small sample sizes. We also showed that conditioning of convex
piecewise linear stochastic programs depends essentially on two factors: (i) how flat is
the objective function around the optimal solution, and (ii) how much variability is inher-
ent in the problem. In theory these factors can be quantified to determine the condition
number of the problem.

On the numerical side, the introduced condition number can be used to estimate
the sample size required for the solution of the Monte Carlo SAA problem to be equal
to the solution of the original problem with a given probability. Since this estimate is
typically difficult to compute in practice, we have provided another heuristic estimate,
which is much simpler to calculate. The ideas introduced in the paper were illustrated
through four examples with different characteristics. These numerical results indicate
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that, indeed, well-conditioned problems can be solved quite accurately with relatively
little effort.

Finally, another interesting aspect of the numerical examples presented in the paper
was the use of the Latin Hypercube sampling technique to reduce the variance. It is well
known that such methods can reduce the variance of point estimates very efficiently. We
have observed this as well in our computations. However, it is still unclear what is the
effect of such techniques in terms of the rate of convergence of solutions of the Monte
Carlo SAA problems to solutions of the original problem. For example, for the DB1
problem described in section 4, the use of Latin Hypercube sampling did not improve the
rate of convergence, but greatly reduced the variance of point estimates. For the APL1P
problem, in turn, Latin Hypercube greatly sped up the rate of convergence (we did not
present those numbers here since the issue is only marginally related to conditioning).
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