
Proceedings of the 2012 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

MOVING LEAST SQUARES REGRESSION FOR HIGH DIMENSIONAL SIMULATION
METAMODELING

Peter Salemi
Barry L. Nelson
Jeremy Staum

Department of Industrial Engineering and Management Sciences
Northwestern University

2145 Sheridan Road
Evanston, IL, 60208-3119, U.S.A

Abstract
Interpolation and smoothing methods form the basis of simulation metamodeling. In high dimensional
metamodeling problems, larger numbers of design points are needed to build an accurate metamodel. This
paper introduces a procedure to implement a smoothing method called Moving Least Squares regression
in high dimensional metamodeling problems with a large number of design points. We test the procedure
with two queueing examples: a multi-product M/G/1 queue and a multi-product tandem Jackson network.

1 Introduction
A simulation metamodel is a model of a simulation experiment. Simulation metamodeling allows the exper-
imenter to obtain more benefit from a simulation because the simulation can be run when time is plentiful,
and quick predictions can be made when decision-making time is scarce or expensive. All simulation
metamodeling techniques involve running the simulation at a set of design points and using this information
to predict the value we would get from running the simulation at any point in the design space, simulated
or not. In higher dimensions, more design points are needed to get an accurate metamodel. Metamodeling
techniques that use interpolation or smoothing such as stochastic kriging (Ankenman, Nelson, and Staum
2010) experience difficulties in higher dimensions because this increase in design points causes numerical
instabilities and high computation times. The only metamodeling approach we are aware of that can deal
with large numbers of design points in high dimensional problems uses a multi-stage interpolation technique
(Haaland and Qian 2011). However, this multi-stage interpolation technique does not yet have a practical
method for implementation.

The smoothing method that we employ is Moving Least Squares (MLS) regression (Lancaster and Salka-
uskas 1981, Levin 1998). The main applications of MLS regression occur in partial differential equations
and image processing which feature low dimensional problems with a large number of design points.
For example, image processing problems have only two or three dimensions. For further reference on
MLS regression in image processing, see for example Lipman, Cohen-Or, and Levin (2007). We are
concerned with the case where there are a large number of design points in a high dimensional setting. The

Salemi, Nelson, and Staum

approximation error for MLS regression is usually a function of the maximum distance from a design point
to its nearest neighbor, which can be made arbitrarily small by adding in more design points. Thus, we
expect MLS regression to work well for simulation metamodeling in high dimensions when the simulation
can be run for a long time so we can have a very large number of design points. This paper introduces a
procedure to apply MLS regression for this case.

2 Experiment Design
We are interested in predicting a certain system performance measure, for example the expected waiting
time in a queue. Denote the system performance measure at a vector of design variables, x, by y(x). In
the case of a queue, x could include arrival rates, service rates, etc. Denote the design space, the set of
all possible values of the design variables, by X. Furthermore, let {{Xn,Rn} ;n≥ 0} denote a sequence
of experiment designs, where Xn = (xn

1,x
n
2, . . . ,x

n
n) is the set containing the first n generated design points,

and Rn = (Rn
1,R

n
2, . . . ,R

n
n) is the set containing the number of replications we allocate to each design point

in Xn. In other words, for the nth sequential design we allocate Rn
i replications to xn

i . We assume that

lim
n→∞

1
n

n

∑
i=1

I{xn
i ∈ A}=

∫
A

g(z)dx, (1)

for all rectangles A⊆X, where g(z) is the limiting density of design points at z ∈X. We also assume that

lim
n→∞

1
Cn

n

∑
i=1

I{xn
i ∈ A}Rn

i =
∫
A

g̃(z)dx, (2)

for all rectangles A⊆X, where Cn = ∑
n
i=1 Rn

i is the total number of replications allocated in the nth design,
and g̃(z) is the limiting density of effort spent at z ∈ X. In our procedure, we assume that g and g̃ are
uniform densities on the unit hypercube [0,1]d , i.e. g(·) = 1, g̃(·) = 1 and X= [0,1]d .

For the nth sequential design, we run the simulation at Xn = (xn
1,x

n
2, . . . ,x

n
n). At design point xn

i we run Rn
i

replications of the simulation, and we denote the system performance measure for the jth replication by
Yn

j(x
n
i). The estimate that we obtain at design point xn

i is the sample average Ȳn
(xn

i ;Rn
i)= (1/Rn

i)∑
Rn

i
j=1 Yn

j(x
n
i).

We will also need an estimate of the variance σ2(xn
i) of a replication at xn

i which we estimate by the sample
variance S2(xn

i ;Rn
i) = (1/(Rn

i −1))∑
Rn

i
j=1(Y

n
j(x

n
i)− Ȳn

(xn
i ;Rn

i))
2.

For ease of notation, we drop the superscript notation for the nth sequential design and let x1,x2, . . . ,xn
denote the design points in the nth sequential design, and R1,R2, . . . ,Rn denote the replications allocated
to each design point in Xn

3 Two Local Smoothing Approaches
In this section we present two smoothing methodologies, the first of which is MLS regression. Although
this is the approach that we will use to predict the system performance measure, we will also introduce
another methodology called Multivariate Locally Weighted Least Squares Linear Regression (Ruppert and
Wand 1994), which we only use to gain insight into how to implement MLS regression.

Both approaches require a weight function of the form KH(u) = |H|−1/2K(H−1/2u), where K is a compactly
supported d-variate kernel such that

∫
K(u)du = 1, and H is a d× d symmetric positive definite matrix

depending on n. The matrix H is called the bandwidth matrix and its entries are called the bandwidth
parameters. The bandwidth matrix determines the shape of the contours of the weight function KH . The
number of non-zero entries in the bandwidth matrix represents the number of bandwidth parameters that

Salemi, Nelson, and Staum

(a) (b)

Figure 1: (a) In two dimensions, the compact support of the kernel K(·) is the unit hypercube. (b) An
example of the compact support of the weight function KH(·) in two dimensions, with h1 > h2.

must be chosen before one can apply either of the two smoothing methodologies. In high dimensional
problems, allowing the bandwidth matrix to have non-zero values off the diagonal would result in too
many bandwidth parameters that need to be chosen. Therefore we will only consider diagonal bandwidth
matrices in our procedure. A diagonal bandwidth matrix will cause the contours of the kernel to be parallel
to the main coordinate axes, whereas a full bandwidth matrix would allow the contours of the kernel to
be arbitrarily rotated. We do not dwell on this restriction because it has been shown that the improvement
gained by allowing off-diagonal entries to be non-zero is not nearly as great as the benefit from allowing the
diagonal entries to vary from one another (Wand and Jones 1993). Furthermore, the choice of kernel is not
as important as the choice of bandwidth matrix, H (Wand and Jones 1993). We introduce a kernel which
is a function of the maximum norm, given by ||u||∞ = max(|u1|, |u2|, . . . , |ud |) for u ∈ Rd . This kernel is

K(u) = [1−max(|u1|, |u2|, . . . , |ud |)]I{max(|u1|, |u2|, . . . , |ud |)≤ 1} ,

and its support is shown in Figure 1(a). This kernel has a compact rectangular support region with the
bandwidth parameters lying on the diagonal of the bandwidth matrix determining the half-length of each
edge of the rectangle. This kernel satisfies assumptions (A1) and (A3) of the kernels used in Ruppert and
Wand (1994), so it is indeed a bona-fide kernel. The diagonal bandwidth matrix H = diag(h2

1, . . . ,h
2
d) will

yield the weight function

KH(u) =
1

h1 · · ·hd

[
1−max

(∣∣∣∣u1

h1

∣∣∣∣ , . . . , ∣∣∣∣ud

hd

∣∣∣∣)]I{max
(∣∣∣∣u1

h1

∣∣∣∣ , . . . , ∣∣∣∣ud

hd

∣∣∣∣))≤ 1
}
, (3)

whose support is shown in Figure 1(b), in relation to the support of the kernel in Figure 1(a).

3.1 Moving Least Squares Regression
MLS regression reinterprets the metamodeling problem as predicting y(x) for any specific x ∈X instead of
building a metamodel to approximate the entire function y. Each design point is assigned a weight, which
is similar to weighted least squares regression except that the weight given to a design point depends on
the particular prediction point, with the weight being determined by the weight function, KH(·). Therefore,
every time we predict the function value at a prediction point we solve a different weighted least squares
problem. In the following, let Πd

k denote the space of d-variate polynomials of degree k, and let p1, p2, . . . , pm

denote the basis functions of Πd
k . In this paper, we take the basis functions of Πd

k to be the standard basis

Salemi, Nelson, and Staum

of Πd
k which is the set of

(d+k
k

)
monomials. The polynomial, ŷMLS

x0
, used for approximating the function

value y(x0) at the prediction point x0 is

ŷMLS
x0

= arg min
p∈Πd

k

{
n

∑
i=1

(Ȳ(xi;Ri)− p(xi))
2KH(xi− x0)

}
. (4)

This is the standard approach to MLS regression (Bos and Salkauskas 1989). The optimal solution to this
problem is obtained from the weighted least squares solution: ŷMLS

x0
(x) = P(x)>

(
P>W(x0)P

)−1 P>W(x0)Y,
where P(x) = [p1(x), p2(x), . . . , pm(x)]>, W(x0) = diag{KH(x1− x0),KH(x2− x0) . . . ,KH(xn− x0)}, P is the
n×m matrix whose ith row is [p1(xi), p2(xi), · · · pm(xi)], and Y =

(
Ȳ(x1;R1), Ȳ(x2;R2), . . . , Ȳ(xn;Rn)

)>.
For each prediction point, x0 ∈ X, we get a different approximating polynomial, ŷMLS

x0
.

The minimization in Problem (4) is done over the polynomial space Πd
k , which gives MLS regression an

important property called the polynomial reproduction property. Since d is the dimension of the design
space, the only factor that we are able to choose is k. The dimension of Πd

k is
(d+k

k

)
, so for large d we

must be careful to not pick k too large. Otherwise, we must solve
(d+k

k

)
equations in n unknowns, which is

infeasible when d and k are large. We will use the space of linear polynomials, Πd
1 . It is clear that design

points closer to the prediction point will have more influence on the polynomial used for prediction.

3.2 Locally Weighted Least Squares Linear Regression
The weight function depends on bandwidth parameters that determine the shape and size of its contours.
The main problem in MLS regression is obtaining these bandwidth parameters so that they are optimal with
respect to some criterion. Locally Weighed Least Squares Linear Regression is a smoothing methodology
that is similar to MLS regression when we use the space Πd

1 in the MLS formulation. This methodology uses
a first-order Taylor expansion to approximate the function value at the prediction point, so both the Locally
Weighted Least Squares Linear Regression and the MLS regression methodology can reproduce linear poly-
nomials. However, using Locally Weighted Least Squares Linear Regression we can get an approximation
to the Asymptotic Mean Squared Error (AMSE) at a prediction point in terms of the weight function, the
second derivatives of y at the prediction point, the density of the design points at the prediction point, and
the variance in the function observations at the prediction point. We can use this approximation to the
AMSE to choose the weight function parameters optimally and then use the obtained weight function in MLS.

We assume that the estimates obtained from the simulation are of the form Ȳ(xi;Ri) = y(xi)+
σ(xi)√

Ri
εi,

where σ(xi) is the standard deviation of a replication at xi and the εi are mutually independent and iden-
tically distributed random variables with zero mean and unit variance. We assume that the function y is
twice differentiable at the prediction point. The prediction at x0 is ŷLOC(x0) := β̂0, where β̂0 is from the
solution to the following problem:

min
β0,β1

n

∑
i=1

{
Ȳ(xi;Ri)−β0−β

>
1 (xi− x0)

}2
KH(xi− x0). (5)

For the diagonal bandwidth matrix, H = diag(h2
1, . . . ,h

2
d), the AMSE of the estimator β̂0 of the function

value at x0 for large n is approximately

AMSE ≈ 1
4

µ2(K)2tr(H∇
2
y(x0))

2 +
R(K)σ2(x0)

Cn|H|1/2g̃(x0)

=
1
4

µ2(K)2
(

h2
1

∂ 2y(x0)

∂x2
1

+ · · ·+h2
d

∂ 2y(x0)

∂x2
d

)2

+
R(K)σ2(x0)

Cng̃(x0)h1 · · ·hd
, (6)

Salemi, Nelson, and Staum

where µ2(K) =
∫
R xiK(x)dx, R(K) =

∫
R K(x)2 dx and σ2(x0) is the variance of a replication at the prediction

point. We do not assume anything about the smoothness of σ2(·), and estimate it using the sample variances
at the design points using the method discussed in Section 5.2.

Equation (6) shows the bias-variance trade-off with respect to the bandwidth parameters, h1, . . . ,hd .
When the bandwidth parameters are small, the bias of the estimator β̂0 is small, but fewer design points
are used in the prediction, making the variance of the estimator high. For large bandwidth parameters, the
opposite happens. Thus, we can see how the bias-variance trade-off would affect the bandwidth parameters
if we were to choose them by minimizing the AMSE equation. In the bias term, given by the first part
of Equation (6), directions corresponding to larger changes in the underlying function (i.e., larger second
partial derivatives) result in smaller bandwidth parameters corresponding to those directions. This regulates
the bias because weight decays more rapidly in directions where there are larger changes in the underlying
function. In the variance term, given by the second part of Equation (6), a higher variance at the prediction
point, σ2(x0), with all other parameters fixed, will increase the bandwidth parameters, incorporating more
design points in the approximation and therefore filtering out the larger noise. The limiting density of
effort spent at the prediction point, g̃(x0), with all other parameters fixed, will give smaller bandwidth
parameters to prediction points in regions of higher density. Intuitively, this is because in regions where
we have spent the most simulation effort, we would like the prediction to be based on design points closer
to the prediction point, making the bandwidth parameters smaller, and hence decreasing the bias.

4 Moving Least Squares Procedure for High Dimensional Problems
We are now ready to discuss the procedure for implementing MLS regression in high dimensional problems.
For our procedure we will use the weight function K̂H(·), which is a slight modification of the weight
function KH(·), given by

K̂H(u) =
1

h1 · · ·hd

[
1−max

(∣∣∣∣u1

h1

∣∣∣∣ , . . . , ∣∣∣∣ud

hd

∣∣∣∣)]I{max
(∣∣∣∣u1

ĥ1

∣∣∣∣ , . . . , ∣∣∣∣ud

ĥd

∣∣∣∣))≤ 1
}
, (7)

where we distinguish between the two different vectors of parameters. The entries of the parameter
vector h = (h1,h2, . . . ,hd)

> are called the bandwidth parameters, and the entries of the parameter vec-
tor ĥ = (ĥ1, ĥ2, . . . , ĥd)

> are called the window parameters. The bandwidth parameters determine the
bandwidth in the corresponding coordinate direction. For example, h1 determines how fast the weight
decays in the direction along the first basis vector of Rd . The window parameters determine the compact
support of the kernel K̂H(·). The compact support of the kernel K̂H(·) is called the prediction window
since the design points that lie in the compact support of the kernel will be the design points used for
prediction. We denote the prediction window by Ω̂ :=

{
x ∈ X : |x1− x0| ≤ ĥ1, . . . , |xd− x0| ≤ ĥd

}
. The set

Ω := {x ∈ X : |x1− x0| ≤ h1, . . . , |xd− x0| ≤ hd} would be the prediction window if we used the original
weight function KH defined in Equation (3).

To find the optimal bandwidth parameters in h we solve Problem (8), whose objective function is a
slight modification of the AMSE equation. Estimation of σ2(x0), and ∂ 2y(x0)

∂x2
1

, . . . , ∂ 2y(x0)

∂x2
d

is discussed in
Section 5.

min
{h1,...,hd}

1
4

µ2(K)2
(

h2
1

∣∣∣∣∂ 2y(x0)

∂x2
1

∣∣∣∣+ · · ·+h2
d

∣∣∣∣∂ 2y(x0)

∂x2
d

∣∣∣∣)2

+
R(K)σ2(x0)

Cng̃(x0)h1h2 · · ·hd
(8)

s.t. dim(Πd
1)+δ ≤ ng(x0)2dh1 · · ·hd ≤MassUB (8.a)

0≤ hi ≤
1
2
, ∀i = 1,2, . . . ,d. (8.b)

Salemi, Nelson, and Staum

(a) (b)

Figure 2: When a prediction point is near the boundary of the unit hypercube, part of the prediction
window may lie outside of the unit hypercube, as shown in (a). The result of the Window Procedure is
the prediction window shown in (b). The shifted prediction window now falls within the unit hypercube.

The motivation for constraint (8.a) is the following. Without an upper bound on the amount of design
points that is included in the prediction window, the optimal prediction window might contain too many
points for the computing time to be acceptable. The upper bound is denoted by MassUB, and we use
MassUB = 1000 in this paper (of course, this could be much higher depending on computing power). We
also want to ensure that the number of design points is at least the dimension of Πd

1 and to protect against
having linearly dependent columns in the matrix P of the solution to Problem (4), which we do by adding
the constant δ to the dimension of Πd

k in the lower bound. We use δ = d. An approximation to the number
of design points that lie within the prediction window is ng(x0)2d ĥ1ĥ2 · · · ĥd . This can be interpreted as
the density of design points at the prediction point ng(x0) times the volume of the prediction window
which gives us the total amount of design points included in the prediction window. From the way that we
transform the optimal bandwidth parameters to get the window parameters, the volume of the prediction
window 2d ĥ1ĥ2 · · · ĥd is equal to 2dh1h2 · · ·hd , so ng(x0)2d ĥ1ĥ2 · · · ĥd = ng(x0)2dh1h2 · · ·hd . The limiting
density of design points that makes ng(x0)2dh1h2 · · ·hd the best approximation is the uniform density, which
is the density we use in this procedure.

The second derivatives in the AMSE equations have been replaced by the absolute values of the sec-
ond derivatives to ensure that the bandwidth parameters behave well when some second derivatives are
positive and some are negative. To see the motivation for this change, consider the case where f has both
positive and negative second partial derivatives. By setting the bandwidth parameters in the proper proportion
to each other, we can kill the asymptotic bias. Then we can reduce the variance by increasing the size of the
window. However this increase in window size reduces the validity of the bias approximation, so for a fixed
value of n Equation (6) may cease to be a good approximation to the AMSE when a large window is used.
Thus, we take a conservative approach to the window size and use an upper bound on the approximate AMSE.

Problem (8) can be solved using the Bandwidth Procedure in the appendix. Denote the optimal so-
lution by h∗ = {h∗1, . . . ,h∗d}.

The window parameters in ĥ are obtained from a transformation of the optimal values of the band-
width parameters in h using the Window Procedure in the appendix. To see why this transformation
is necessary, and hence why we need two different sets of parameters for our modified weight function,
consider the following. Based on the original weight function KH defined in Equation (3), the bandwidth

Salemi, Nelson, and Staum

parameters would also determine the prediction window, Ω. For prediction points near the boundary of
the unit hypercube, this may cause part of the prediction window to lie outside of the unit hypercube.
Since the limiting density of effort is the uniform density and the design space is X = [0,1]d , we need
2dh1h2 · · ·hd to be the volume of the intersection of the prediction window and the unit hypercube. The
transformation will transform the prediction window, Ω, for the original weight function into the prediction
window, Ω̂⊆ [0,1]d , for the modified weight function keeping the volume of the two windows the same, in
the manner presented in Figure 2. The modified weight function, K̂H(·), converges to the original weight
function, KH(·), as n→ ∞ because this increase in design points makes the variance term in Equation (6)
negligible and hence shrinks the prediction window, making the transformation unnecessary. Thus, the use
of our modified weight function is justified asymptotically.

Let ĥ∗ denote the values of the window parameters obtained from the Window Procedure. Once we
have the optimal values for the bandwidth parameters h∗ and the values for the window parameters ĥ∗, we
obtain the weight function used for prediction

KH∗(u) =
1

h∗1 · · ·h∗d

[
1−max

(∣∣∣∣u1

h∗1

∣∣∣∣ , . . . , ∣∣∣∣ud

h∗d

∣∣∣∣)]I
{

max

(∣∣∣∣∣u1

ĥ∗1

∣∣∣∣∣ , . . . ,
∣∣∣∣∣ud

ĥ∗d

∣∣∣∣∣)
)
≤ 1

}
.

5 Parameter Estimation
As mentioned in Section 4, estimation of σ2(x0), and ∂ 2y(x0)

∂x2
1

, . . . , ∂ 2y(x0)

∂x2
d

is required to solve Problem (8). As

is often done in Locally Weighted Least Squares Linear Regression, we use plug-in estimators for σ2(x0)

and ∂ 2y(x0)

∂x2
1

, . . . , ∂ 2y(x0)

∂x2
d

(see, for example, Ruppert, Sheather, and Wand (1995)).

5.1 Variance Estimation
Having access to replications from the simulation makes it easier for us to get an estimate of the variance
at each design point. We are interested in an estimate of the variance as it pertains to determining the size
of the prediction window. We use a k-nearest neighbor estimate to get an estimate of the variance of a
replication at x0 from the neighboring design points. The estimate of σ2(x0) is

S2(x0) :=
1
k ∑

xi∈Ik(x0)

S2(xi;Ri).

where Ik(x0) is the set of the k nearest neighbors to x0. The choice of k is not critical and we use k = 50.

5.2 Second Derivative Estimation
To estimate the second partial derivatives we fit a third-order polynomial in a neighborhood of the prediction
point and use the coefficients of the second-order terms as estimates of the second partial derivatives. In
general, Ruppert and Wand (1994) suggest using an r-order polynomial to estimate partial derivatives of
order m, where r−m is an odd integer, with the most popular choice for r being r = (m+1). A third-order
polynomial with all interaction terms has

(d
3

)
+1 terms, which makes the regression problem infeasible in

high dimensions. Thus, we do not include any interaction terms in the third-order polynomial and solve

min
β0,β1,β2,β3

∑
xi∈B(x0,k∗)

[
Ȳ(xi;Ri)−β0−β1

>(xi− x0)−β2
>(xi− x0)

2−β3
>(xi− x0)

3
]2
. (9)

We use β̂2 from the solution of (9) as our estimate of the second partial derivatives. Specifically, β̂2,i is
our estimate of

(
∂ 2y(x0)/∂x2

i
)
. To find k∗, the optimal number of neighbors to be used in the estimation

Salemi, Nelson, and Staum

of the second partial derivatives, we use the Nearest−Neighbor Procedure in the appendix based on a
signal-to-noise ratio criterion. This procedure searches for the optimal number of neighbors to use to fit the
cubic polynomial by maximizing the ratio of ∑

d
i=1 β̂ k

2,i to its corresponding estimated standard deviation.
This procedure is a variation of the procedure used in Ruppert, Sheather, and Wand (1995), which divides
the design space into blocks and finds the number of blocks that gives the best polynomial fit. In high
dimensions, dividing the design space into blocks is infeasible, which is why we search over the number
of nearest neighbors instead. Intuitively, we are searching for the number of neighbors that gives the
second-order with the least standard deviation relative to their magnitude.

6 Experiments
We are mainly concerned with how the differentiability of the function, number of design points, variance
of the function observations, and dimension affect the procedure. We use two queueing simulations, a
multi-product M/G/1 queue and a multi-product Jackson network, both of which have closed form solutions
for the system performance measures. The response surface for the multi-product M/G/1 queue is differ-
entiable everywhere, while the response surface for the multi-product Jackson network is non-differentiable.

The n design points we use in each experiment are the first n points from the Sobol Sequence (Sobol
1967). We fix the number of replications at each design point to 64 replications. For each replication,
the simulation run-length is chosen to obtain constant relative Monte Carlo standard deviation over the
design space using a heavy-traffic approximation to the asymptotic variance presented in Whitt (1989).
The relative Monte Carlo standard deviation we use here is

(
σ(xi)/

√
Ni
)
/y(xi), so, for example, a relative

Monte Carlo standard deviation of 0.25 means σ(xi)/y(xi) = 2 = 0.25
√

64. Designs generated by the Sobol
sequence and fixing the number of replications at each design point satisfies our assumption of a uniform
limiting density of design points and simulation effort.

The prediction points t1, t2, . . . , t150 are the first 150 Halton points (Halton 1964) rescaled to fit inside
the hypercube [0.1,0.9]d . At each prediction point, we repeat the experiment 50 times to get 50 predictions.
We evaluate the predictions using Root Average Relative Mean Squared Error

RARMSE =

√√√√ 1
7500

150

∑
i=1

50

∑
j=1

(
ŷ j(ti)
y(ti)

−1
)2

,

where ŷ j(ti) is the estimated value of y(ti) on the jth experiment at the ith prediction point.

6.1 Multi-Product M/G/1 Queue
In the multi-product M/G/1 queue, d− 1 types of products arrive to a queue according to a Poisson
Process. Let the service rate of product i be µi. The vector of design variables is x = (x1,x2, . . . ,xd−1,ρ),
where ρ is the traffic intensity and the xi determine the arrival rates for the d−1 types of products. For
x = (x1,x2, . . . ,xd−1,ρ) the arrival rate for product i is λi = cxi where c = ρ/∑

d−1
i=1

xi
µi

. The design space
is [5,10]d−1× [0.8,0.95], which after rescaling we can assume the design space is [0,1]d . The system
performance measure that we estimate with the simulation is the steady-state expected waiting time in
the queue. The closed form solution for the steady-state expected waiting time used for evaluating the
predictions is

E[WQ] =
ρ ∑

d−1
i=1

λi
µ2

i

(1−ρ)∑
d−1
i=1

λi
µi

.

Salemi, Nelson, and Staum

To obtain the heavy-traffic approximation to the asymptotic variance of the steady-state expected cycle
time for the M/G/1 queue, see Section 3 of Whitt (1989).

6.2 Multi-Product Jackson Network
In the multi-product Jackson Network, d− 1 products arrive to the first station of a tandem system of
3 single-server stations according to a Poisson Process. The service rate at station j is µ j, which is
independent of the product type. The vector of design variables is x = (x1,x2, . . . ,xd−1,ρ), where ρ is the
traffic intensity and the xi determine the arrival rates for the d− 1 types of products to the first station.
For x = (x1,x2, . . . ,xd−1,ρ) the arrival rate for product i is λi = cxi where c = max j ρ/∑

d−1
i=1

xi
µ j

. The design

space is [5,10]d−1× [0.8,0.95], which after rescaling we can assume the design space is [0,1]d . We denote
the expected number of visits to station j by product i by δi j. The system performance measure that we
estimate with the simulation is the expected cycle time of product 1, which has the closed form solution
(Yang, Liu, Tongarlak, Ankenman, and Nelson 2007),

E[CT1] =
3

∑
j=1

δ1 j

µ j−∑
d−1
k=1 λkδk j

.

To obtain the heavy-traffic approximation to the asymptotic variance of the steady-state expected cycle
time for the Jackson Network, see Section 5.5 of Whitt (1989).

6.3 Experiment Results
The tables in Figure 3 give the relative difference of RARMSE and relative Monte Carlo standard deviation.
These values are calculated by subtracting the relative Monte Carlo standard deviation used to choose
the run length in the experiment from the RARMSE and standardizing by dividing the difference with
the relative Monte Carlo standard deviation. For example, if we used a relative Monte Carlo standard
deviation of 0.25, and obtained an RARMSE of 0.1 for that experiment, the value in the table would be
100%× (0.1−0.25)/0.25 =−60%.

From these tables, it is clear that our procedure is successful in filtering out the noise obtained from
using noisy observations at the design points. Although the procedure can handle many more design points
than the amount used to calculate the values in the tables, there was not a significant decrease in the
RARMSE when more design points were used. This is discussed in more detail in the next subsection.

The experiments were run in R using a 64-bit, quad-core processor with Windows 7. The average
time to get a prediction was 2.6 seconds, 14.9 seconds, and 1.06 minutes for 5, 20, and 75 dimensions,
respectively. The majority of the time was spent on estimation of the second partial derivatives and sorting
the data matrix in high dimensions.

(a) (b)

Figure 3: Relative difference of RARMSE and relative Monte Carlo standard deviation.

Salemi, Nelson, and Staum

6.3.1 Procedure using Actual Second Derivative Values

In each experiment, the estimated second partial derivatives were compared with the actual values. The
estimates we obtained using the method in Section 5.2 were larger, giving an explanation for the limited
improvement in RARMSE as the number of design points increases. These larger estimates make our pro-
cedure choose smaller prediction windows than is actually optimal, hence limiting the smoothing capability
of the procedure.

The tables in Figure 4 show the decrease in RARMSE when we switch from using the method in
Section 5.2 to estimate the second derivatives, to using the actual values of the second derivatives. From
these tables, we can see that our procedure works substantially better if we have more accurate estimates
of the second partial derivatives. When the number of design points becomes large enough, the AMSE
approximation becomes more valid, hence the larger decreases in the RARMSE in the tables. When the
number of design points is too small, our procedure might not choose the optimal parameters for the
weight function which explains the increase in RARMSE for less design points. The steep slopes of
approximately −1/2 in Figure 5 exhibit the benefit obtained from adding more design points, and verify
that the procedure is taking advantage of the large amounts of design points. Since the performance of

(a) (b)

Figure 4: The tables in (a) and (b) show the relative change in the RARMSE when the actual second
derivative values are used in the procedure for predicting the expected steady-state waiting time in the
M/G/1 queue.

(a) (b)

Figure 5: In each plot, the triangle, diamond, and square marked lines correspond to experiments where
the simulation run-length was chosen to achieve relative Monte Carlo standard deviations of 0.05, 0.1, and
0.25, respectively, and actual second derivative values were used.

our procedure is increased significantly when we have better estimates of the second partial derivatives,
future research needs to be done in this area. There are several other methods for estimating the second
derivatives in Locally Weighted Least Squares Linear Regression for the one dimensional case, such as

Salemi, Nelson, and Staum

estimating the bias empirically, or using Principal Component Analysis. However, these methods would
have to be adapted to the higher dimensional cases we examine here.

APPENDIX
Bandwidth Procedure (Input: δ ,MassUB,σ

2(x0),g(x0), g̃(x0),
∂ 2y(x0)

∂x2
1

, . . . , ∂ 2y(x0)

∂x2
d

. Output: h∗1, . . . ,h
∗
d)

Step 1: Perform a line search over the interval [dim(Πd
1)+δ ,MassUB], using the Golden Search Method

(Bazaraa, Sherali, and Shetty 2006). For each i ∈ [dim(Πd
1)+δ ,MassUB], the value q(i) used in the line

search is the optimal value of the optimization problem,

q(i) := min
{h1,...,hd}

1
4

µ2(K)2
(

h2
1

∣∣∣∣∂ 2y(x0)

∂x2
1

∣∣∣∣+ · · ·+h2
d

∣∣∣∣∂ 2y(x0)

∂x2
d

∣∣∣∣)2

+
R(K)σ2(x0)

Cng̃(x0)h1 · · ·hd
(10)

s.t. ng(x0)2dh1 · · ·hd = i (10.a)

0≤ hi ≤
1
2
, ∀i = 1,2, . . . ,d. (10.b)

Optimization problem (10) can be solved using the Inner Procedure below, with Φ = i. This procedure
is based on a variation of the variable pegging procedure presented in Bitran and Hax (1981).
Denote the optimal solution to the line search by i∗ and let the corresponding optimal solution to the
associated optimization problem be denoted by h∗1,h

∗
2, . . . ,h

∗
d . The solution h∗1,h

∗
2, . . . ,h

∗
d is optimal for

optimization problem (8).

Inner Procedure (Input: Φ. Output: h∗1, . . . ,h
∗
d)

Step 0: Initialize J1 = {1, . . . ,d}, P1 = ln
(

Φ

ng(x0)2d

)
, and Iteration β = 1.

Step 1: For all j ∈ Jβ , set hβ

j =
1
|Jβ |P

β − 1
2 ln
(∣∣∣∣ ∂ 2y(x0)

∂x2
j

∣∣∣∣)+ 1
2|Jβ | ∑k∈Jβ ln

(∣∣∣ ∂ 2y(x0)

∂x2
k

∣∣∣).

If hβ

j ≤ ln
(1

2

)
for all j ∈ Jβ , set h∗j = hβ

j and go to Step 3. Otherwise go to step 2.

Step 2: Let Jβ

+ =
{

j ∈ Jβ : hβ

j ≥ ln
(1

2

)}
Define h∗j = ln

(1
2

)
,∀ j ∈ Jβ

+ and let Jβ+1 = Jβ \Jβ

+, Pβ+1 = Pβ −|Jβ

+| ln
(1

2

)
If Jβ+1 =∅ go to Step 3. Else, β ← β +1 and go to Step 1.

Step 3: Set h∗j ← eh∗j . The solution h∗j ,∀ j ∈ {1, . . . ,d} is optimal. Return h∗1, . . . ,h
∗
d

Window Procedure (Input: h∗1, . . . ,h
∗
d . Output: ĥ∗1, . . . , ĥ

∗
d)

Step0: For each i∈ {1, . . . ,d}, if h∗i ≤min(x0,i,1−x0,i), set ĥ∗i = h∗i . Else, set ĥ∗i = (2h∗i −min(x0,i,1−x0,i)).

Nearest−Neighbor Procedure
Step 1 Search over the grid

[
5d,6d, . . . ,min

{
250d,

⌊ n
d

⌋}]
. For each k ∈

[
5d,6d, . . . ,min

{
250d,

⌊ n
d

⌋}]
, the

value v(k) used in the search is

v(k) =
∑

d
i=1 β̂ k

2,i

̂var(∑d
i=1 β̂ k

2,i)
=

∑
d
i=1 β̂ k

2,i

∑
d
i=1

̂var(β̂ k
2,i)+2∑i< j

̂cov(β̂ k
2,i, β̂

k
2, j)

,

where β̂ k
2 is from the solution of Problem (9) using the k nearest neighbors, and each of the ̂var(β̂ k

2,i) and
̂cov(β̂ k

2,i, β̂
k
2, j) are estimated using the standard estimates of these values from the regression. Choose the

k that maximizes v(k).

Salemi, Nelson, and Staum

REFERENCES
Ankenman, B., B. L. Nelson, and J. Staum. 2010, March. “Stochastic Kriging for Simulation Metamodeling”.

Operations Research 58 (2): 371–382.
Bazaraa, M., H. Sherali, and C. Shetty. 2006. Nonlinear Programming: Theory and Algorithms. Wiley

Interscience.
Bitran, G. R., and A. C. Hax. 1981, April. “Disaggregation and Resource Allocation Using Convex Knapsack

Problems with Bounded Variables”. Management Science 27 (4): 431–441.
Bos, L., and K. Salkauskas. 1989. “Moving Least-Squares are Backus-Gilbert Optimal”. Journal of Ap-

proximation Theory 59:267–275.
Haaland, B., and P. Z. G. Qian. 2011. “Accurate Emulators for Large-Scale Computer Experiments”. Preprint

submitted to the Annals of Statistics. Revised May 23, 2011.
Halton, J. 1964. “Algorithm 247: Radical-inverse Quasi-random Point Sequence”. Communications of the

Association for Computing Machinery.
Lancaster, P., and K. Salkauskas. 1981, July. “Surfaces Generated by Moving Least Squares Methods”.

Mathematics of Computation 37 (155).
Levin, D. 1998, October. “The Approximation Power of Moving Least Squares”. Mathematics of Compu-

tation 67 (224): 1517–1531.
Lipman, Y., D. Cohen-Or, and D. Levin. 2007. “Data-Dependent MLS for Faithful Surface Approximation”.

Eurographics Symposium on Geometry Processing.
Ruppert, D., S. Sheather, and M. Wand. 1995, December. “An Effective Bandwidth Selector for Local

Least Squares Regression”. Journal of the American Statistical Association 90 (432): 1257–1270.
Ruppert, D., and M. Wand. 1994, September. “Multivariate Locally Weighted Least Squares Regression”.

The Annals of Statistics 22 (3): 1346–1370.
Sobol, I. 1967. “The Distribution of Points in a Cube and the Accurate Evaluation of Integrals”. USSR

Computational Mathematics and Mathematical Physics 7:784–802.
Wand, M., and M. Jones. 1993. “Comparison of Smoothing Parameterizations in Bivariate Kernel Density

Estimation”. Journal of the American Statistical Association 88:520–528.
Whitt, W. 1989. “Planning Queueing Simulations”. Management Science 35 (11).
Yang, F., J. Liu, M. Tongarlak, B. E. Ankenman, and B. L. Nelson. 2007. “Metamodeling for Cycle

Time-throughput-product Mix Surfaces using Progressive Model Fitting”. In Proceedings of the 2007
Winter Simulation Conference.

AUTHOR BIOGRAPHIES
PETER SALEMI is a Ph.D. candidate in the Department of Industrial Engineering and Management Sci-
ences at Northwestern University. His research interests are in simulation metamodeling and simulation
for financial engineering. His email address is 〈petersalemi2014@u.northwestern.edu〉.

BARRY L. NELSON is the Walter P. Murphy Professor and Chair of the Department of Industrial Engi-
neering and Management Sciences at Northwestern University, and a Fellow of INFORMS. His research
centers on the design and analysis of computer simulation experiments on models of stochastic systems. His
email and web addresses are 〈nelsonb@northwestern.edu〉 and 〈www.iems.northwestern.edu/∼ nelsonb/〉.

JEREMY STAUM is an Associate Professor of Industrial Engineering and Management Sciences at
Northwestern University. He coordinated the Risk Analysis track of the 2007 and 2011 Winter Simulation
Conferences and serves as department editor for financial engineering at IIE Transactions and as an associate
editor at Management Science. His website is 〈users.iems.northwestern.edu/∼ staum〉.

	Introduction
	Experiment Design
	Two Local Smoothing Approaches
	Moving Least Squares Regression
	Locally Weighted Least Squares Linear Regression

	Moving Least Squares Procedure for High Dimensional Problems
	Parameter Estimation
	Variance Estimation
	Second Derivative Estimation

	Experiments
	Multi-Product M/G/1 Queue
	Multi-Product Jackson Network
	Experiment Results
	 Procedure using Actual Second Derivative Values

