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What have we learned about SG?

Assumption 〈L/c〉

The objective function F : Rd → R is

I c-strongly convex (⇒ unique minimizer) and

I L-smooth (i.e., ∇F is Lipschitz continuous with constant L).

Theorem SG (sublinear convergence)

Under Assumption 〈L/c〉 and Eξk [‖g(wk, ξk)‖22] ≤M +O(‖∇F (wk)‖22),

wk+1 ← wk − αkg(wk, ξk)

yields

αk =
1

L
=⇒ E[F (wk)− F∗]→

M

2c
;

αk = O
(

1

k

)
=⇒ E[F (wk)− F∗] = O

(
(L/c)(M/c)

k

)
.

(*Let’s assume unbiased gradient estimates; see paper for more generality.)
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Illustration

Figure: SG run with a fixed stepsize (left) vs. diminishing stepsizes (right)
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What can be improved?
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Two-dimensional schematic of methods
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Nonconvex objectives

Despite loss of convergence rate, motivation for nonconvex problems as well:

I Convex results describe behavior near strong local minimizer

I Batch gradient methods are unlikely to get trapped near saddle points
I Second-order information can

I avoid negative effects of nonlinearity and ill-conditioning
I require mini-batching (noise reduction) to be efficient

Conclusion: explore entire plane, not just one axis
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2D schematic: Noise reduction methods
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Ideal: Linear convergence of a batch gradient method

wk w

F (wk)

F (wk) +∇F (wk)T (w − wk) + 1
2
L‖w − wk‖

2
2

F (wk) +∇F (wk)T (w − wk) + 1
2
c‖w − wk‖

2
2

F (w)? F (w)?

Choosing α = 1/L to minimize upper bound yields

(F (wk+1)− F∗) ≤ (F (wk)− F∗)− 1
2L
‖∇F (wk)‖22

while lower bound yields

1
2
‖∇F (wk)‖22 ≥ c(F (wk)− F∗),
which together imply that

(F (wk+1)− F∗) ≤ (1− c
L

)(F (wk)− F∗).
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Illustration

Figure: SG run with a fixed stepsize (left) vs. batch gradient with fixed stepsize (right)

Beyond SG: Noise Reduction and Second-Order Methods 12 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Idea #1: Dynamic sampling

We have seen

I fast initial improvement by SG

I long-term linear rate achieved by batch gradient

=⇒ accumulate increasingly accurate gradient information during optimization.

But at what rate?

I too slow: won’t achieve linear convergence

I too fast: loss of optimal work complexity

Beyond SG: Noise Reduction and Second-Order Methods 13 of 38
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Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose Assumption 〈L/c〉 holds and that

Vξk [g(wk, ξk)] ≤Mζk−1 for some M ≥ 0 and ζ ∈ (0, 1).

Then, the SG method with a fixed stepsize α = 1/L yields

E[F (wk)− F∗] ≤ ωρk−1,

where

ω := max

{
M

c
,F (w1)− F∗

}
and ρ := max

{
1−

c

2L
, ζ
}
< 1.

Effectively ties rate of noise reduction with convergence rate of optimization.
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Geometric decrease

Proof.

The now familiar inequality

Eξk [F (wk+1)]− F (wk) ≤ −α‖∇F (wk)‖22 + 1
2
α2LEξk [‖g(wk, ξk)‖22],

strong convexity, and the stepsize choice lead to

E[F (wk+1)− F∗] ≤
(

1−
c

L

)
E[F (wk)− F∗] +

M

2L
ζk−1.

I Exactly as for batch gradient (in expectation) except for the last term.

I An inductive argument completes the proof.
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Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

gk :=
1

|Sk|
∑
i∈Sk

∇f(wk; ξk,i) with |Sk| = dτk−1e for τ > 1,

since, for all i ∈ Sk,

Vξk [gk] ≤
Vξk [∇f(wk; ξk,i)]

|Sk|
≤M(dτe)k−1.

But is it too fast? What about work complexity?

same as SG as long as τ ∈
(

1, (1−
c

2L
)−1
]
.
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Illustration

Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)
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Additional considerations

In practice, choosing τ is a challenge.

I What about an adaptive technique?

I Guarantee descent in expectation

I Methods exist, but need geometric sample size increase as backup

Beyond SG: Noise Reduction and Second-Order Methods 18 of 38
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Idea #2: Gradient aggregation

“I’m minimizing a finite sum and am willing to store previous gradient(s).”

F (w) = Rn(w) =
1

n

n∑
i=1

fi(w).

Idea: reuse and/or revise previous gradient information in storage.

I SVRG: store full gradient, correct sequence of steps based on perceived bias

I SAGA: store elements of full gradient, revise as optimization proceeds

Beyond SG: Noise Reduction and Second-Order Methods 19 of 38
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Stochastic variance reduced gradient (SVRG) method

At wk =: wk,1, compute a batch gradient:

∇f1(wk) ∇f2(wk) ∇f3(wk) ∇f4(wk) ∇f5(wk)

︸ ︷︷ ︸
gk,1 ← ∇F (wk)

then step
wk,2 ← wk,1 − αgk,1

Beyond SG: Noise Reduction and Second-Order Methods 20 of 38
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

∇f1(wk) ∇f2(wk) ∇f3(wk) ∇f4(wk,2) ∇f5(wk)

︸ ︷︷ ︸
gk,2 ← ∇F (wk)−∇f4(wk) +∇f4(wk,2)

then step
wk,3 ← wk,2 − αgk,2

Beyond SG: Noise Reduction and Second-Order Methods 20 of 38
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

∇f1(wk) ∇f2(wk,3) ∇f3(wk) ∇f4(wk) ∇f5(wk)

︸ ︷︷ ︸
gk,3 ← ∇F (wk)−∇f2(wk) +∇f2(wk,3)

then step
wk,4 ← wk,3 − αgk,3

Beyond SG: Noise Reduction and Second-Order Methods 20 of 38
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Stochastic variance reduced gradient (SVRG) method

Each gk,j is an unbiased estimate of ∇F (wk,j)!

Algorithm SVRG

1: Choose an initial iterate w1 ∈ Rd, stepsize α > 0, and positive integer m.
2: for k = 1, 2, . . . do
3: Compute the batch gradient ∇F (wk).
4: Initialize wk,1 ← wk.
5: for j = 1, . . . ,m do
6: Chose i uniformly from {1, . . . , n}.
7: Set gk,j ← ∇fi(wk,j)− (∇fi(wk)−∇F (wk)).
8: Set wk,j+1 ← wk,j − αgk,j .
9: end for

10: Option (a): Set wk+1 = w̃m+1

11: Option (b): Set wk+1 = 1
m

∑m
j=1 w̃j+1

12: Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.
13: end for

Under Assumption 〈L/c〉, options (b) and (c) linearly convergent for certain (α,m)

Beyond SG: Noise Reduction and Second-Order Methods 21 of 38
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Stochastic average gradient (SAGA) method

At w1, compute a batch gradient:

∇f1(w1) ∇f2(w1) ∇f3(w1) ∇f4(w1) ∇f5(w1)

︸ ︷︷ ︸
g1 ← ∇F (w1)

then step
w2 ← w1 − αg1

Beyond SG: Noise Reduction and Second-Order Methods 22 of 38
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

∇f1(w1) ∇f2(w1) ∇f3(w1) ∇f4(w2) ∇f5(w1)

︸ ︷︷ ︸
g2 ← new entry− old entry + average of entries (before replacement)

then step
w3 ← w2 − αg2

Beyond SG: Noise Reduction and Second-Order Methods 22 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

∇f1(w1) ∇f2(w3) ∇f3(w1) ∇f4(w2) ∇f5(w1)

︸ ︷︷ ︸
g3 ← new entry− old entry + average of entries (before replacement)

then step
w4 ← w3 − αg3

Beyond SG: Noise Reduction and Second-Order Methods 22 of 38
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Stochastic average gradient (SAGA) method

Each gk is an unbiased estimate of ∇F (wk)!

Algorithm SAGA

1: Choose an initial iterate w1 ∈ Rd and stepsize α > 0.
2: for i = 1, . . . , n do
3: Compute ∇fi(w1).
4: Store ∇fi(w[i])← ∇fi(w1).
5: end for
6: for k = 1, 2, . . . do
7: Choose j uniformly in {1, . . . , n}.
8: Compute ∇fj(wk).

9: Set gk ← ∇fj(wk)−∇fj(w[j]) + 1
n

∑n
i=1∇fi(w[i]).

10: Store ∇fj(w[j])← ∇fj(wk).
11: Set wk+1 ← wk − αgk.
12: end for

Under Assumption 〈L/c〉, linearly convergent for certain α

I storage of gradient vectors reasonable in some applications

I with access to feature vectors, need only store n scalars

Beyond SG: Noise Reduction and Second-Order Methods 23 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

wk+1 ← wk − αkg(wk, ξk)

w̃k+1 ←
1

k + 1

k+1∑
j=1

wj (in practice: running average)

Unfortunately, no better theoretically when αk = O(1/k), but

I long steps (say, αk = O(1/
√
k)) and averaging

I lead to a better sublinear rate (like a second-order method?)

See also

I mirror descent

I primal-dual averaging

Beyond SG: Noise Reduction and Second-Order Methods 24 of 38
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Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

wk+1 ← wk − αkg(wk, ξk)

w̃k+1 ←
1

k + 1

k+1∑
j=1

wj (in practice: running average)

Figure: SG run with O(1/
√
k) stepsizes (left) vs. sequence of averages (right)
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Two-dimensional schematic of methods
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2D schematic: Second-order methods

stochastic
gradient

batch
gradient

stochastic
Newton

se
co
nd
-o
rd
er

diagonal scaling

natural gradient

Gauss-Newton

quasi-Newton

Hessian-free Newton

Beyond SG: Noise Reduction and Second-Order Methods 27 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

min
w∈Rd

F (w) =⇒ wk+1 ← wk − αk∇F (wk)

min
w̃∈Rd

F (Bw̃) =⇒ w̃k+1 ← w̃k − αkB∇F (Bw̃k) (for given B � 0)

Scaling latter by B and defining {wk} = {Bw̃k} yields

wk+1 ← wk − αkB2∇F (wk)

I Algorithm is clearly affected by choice of B

I Surely, some choices may be better than others (in general?)

Beyond SG: Noise Reduction and Second-Order Methods 28 of 38
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Newton scaling

Consider the function below and suppose that wk = (0, 3):

wk+1 ← wk + αksk where ∇2F (wk)sk = −∇F (wk)

Beyond SG: Noise Reduction and Second-Order Methods 29 of 38
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Newton scaling

Batch gradient step −αk∇F (wk) ignores curvature of the function:

wk+1 ← wk + αksk where ∇2F (wk)sk = −∇F (wk)

Beyond SG: Noise Reduction and Second-Order Methods 29 of 38
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Newton scaling

Newton scaling (B = (∇F (wk))−1/2): gradient step moves to the minimizer:

wk+1 ← wk + αksk where ∇2F (wk)sk = −∇F (wk)

Beyond SG: Noise Reduction and Second-Order Methods 29 of 38
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Newton scaling

. . . corresponds to minimizing a quadratic model of F in the original space:

wk+1 ← wk + αksk where ∇2F (wk)sk = −∇F (wk)

Beyond SG: Noise Reduction and Second-Order Methods 29 of 38
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Deterministic case

What is known about Newton’s method for deterministic optimization?

I local rescaling based on inverse Hessian information

I locally quadratically convergent near a strong minimizer

I global convergence rate better than gradient method (when regularized)

However, it is way too expensive in our case.

I But all is not lost: scaling is viable.

I Wide variety of scaling techniques improve performance.

I Our convergence theory for SG still holds with B-scaling.

I . . . could hope to remove condition number (L/c) from convergence rate!

I Added costs can be minimial when coupled with noise reduction.
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Deterministic case to stochastic case

What is known about Newton’s method for deterministic optimization?

I local rescaling based on inverse Hessian information

I locally quadratically convergent near a strong minimizer

I global convergence rate better than gradient method (when regularized)

However, it is way too expensive in our case.

I But all is not lost: scaling is viable.

I Wide variety of scaling techniques improve performance.

I Our convergence theory for SG still holds with B-scaling.

I . . . could hope to remove condition number (L/c) from convergence rate!

I Added costs can be minimial when coupled with noise reduction.
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Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

∇2fSH
k

(wk)sk = −∇fSg
k

(wk)

I mini-batch size for Hessian =: |SHk | < |S
g
k | := mini-batch size for gradient

I cost for mini-batch gradient: gcost

I use CG and terminate early: maxcg iterations

I in CG, cost for each Hessian-vector product: factor × gcost
I choose maxcg × factor ≈ small constant so total per-iteration cost:

maxcg × factor × gcost = O(gcost)

I convergence guarantees for |SHk | = |S
g
k | = n are well-known
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Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

f(w; ξ) = 1
2
‖h(xξ;w)− yξ‖22

≈ 1
2
‖h(xξ;wk) + Jh(wk; ξ)(w − wk)− yξ‖22

Leads to Gauss-Newton approximation for second-order terms:

GSH
k

(wk; ξHk ) =
1

|SHk |
Jh(wk; ξk,i)

T Jh(wk; ξk,i)

Can be generalized for other (convex) losses:

G̃SH
k

(wk; ξHk ) =
1

|SHk |
Jh(wk; ξk,i)

T H`(wk; ξk,i)︸ ︷︷ ︸
=
∂2`

∂h2

Jh(wk; ξk,i)

I costs similar as for inexact Newton

I . . . but scaling matrices are always positive (semi)definite

I see also natural gradient, invariant to more than just linear transformations

Beyond SG: Noise Reduction and Second-Order Methods 32 of 38
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Idea #3: (Limited memory) quasi-Newton

Only approximate second-order information with gradient displacements:

w

wkwk+1

Secant equation Hkvk = sk to match gradient of F at wk, where

sk := wk+1 − wk and vk := ∇F (wk+1)−∇F (wk)
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Deterministic case

Standard update for inverse Hessian (wk+1 ← wk − αkHkgk) is BFGS:

Hk+1 ←
(
I −

vks
T
k

sTk vk

)T
Hk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk

What is known about quasi-Newton methods for deterministic optimization?

I local rescaling based on iterate/gradient displacements

I strongly convex function =⇒ positive definite (p.d.) matrices

I only first-order derivatives, no linear system solves

I locally superlinearly convergent near a strong minimizer

Extended to stochastic case? How?

I Noisy gradient estimates =⇒ challenge to maintain p.d.

I Correlation between gradient and Hessian estimates

I Overwriting updates =⇒ poor scaling that plagues!
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Deterministic case to stochastic case

Standard update for inverse Hessian (wk+1 ← wk − αkHkgk) is BFGS:
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I strongly convex function =⇒ positive definite (p.d.) matrices

I only first-order derivatives, no linear system solves

I locally superlinearly convergent near a strong minimizer

Extended to stochastic case? How?
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I Correlation between gradient and Hessian estimates

I Overwriting updates =⇒ poor scaling that plagues!
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Proposed methods

I gradient displacements using same sample:

vk := ∇fSk (wk+1)−∇fSk (wk)

(requires two stochastic gradients per iteration)

I gradient displacement replaced by action on subsampled Hessian:

vk := ∇2fSH
k

(wk)(wk+1 − wk)

I decouple iteration and Hessian update to amortize added cost

I limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md

Beyond SG: Noise Reduction and Second-Order Methods 35 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:

wk+1 ← wk − αkDkgk

Ideas:

I D−1
k ≈ diag(Hessian (approximation))

I D−1
k ≈ diag(Gauss-Newton approximation)

I D−1
k ≈ running average/sum of gradient components

Last approach can be motivated by minimizing regret.
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Plenty of ideas not covered here!

I gradient methods with momentum

I gradient methods with acceleration

I coordinate descent/ascent in the primal/dual

I proximal gradient/Newton for regularized problems

I alternating direction methods

I expectation-maximization

I . . .
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