# Beyond SG: Noise Reduction and Second-Order Methods https://arxiv.org/abs/1606.04838

Frank E. Curtis, Lehigh University

joint work with

#### Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University

### International Conference on Machine Learning (ICML) New York, NY, USA

 $19 \ {\rm June} \ 2016$ 

## Outline

#### $\mathbf{SG}$

Noise Reduction Methods

Second-Order Methods

Other Methods

#### What have we learned about SG?

Assumption  $\langle L/c \rangle$ 

The objective function  $F : \mathbb{R}^d \to \mathbb{R}$  is

- c-strongly convex ( $\Rightarrow$  unique minimizer) and
- L-smooth (i.e.,  $\nabla F$  is Lipschitz continuous with constant L).

Theorem SG (sublinear convergence)

Under Assumption  $\langle L/c \rangle$  and  $\mathbb{E}_{\xi_k}[\|g(w_k,\xi_k)\|_2^2] \leq M + \mathcal{O}(\|\nabla F(w_k)\|_2^2),$ 

$$w_{k+1} \leftarrow w_k - \alpha_k g(w_k, \xi_k)$$

yields

$$\begin{aligned} \alpha_k &= \frac{1}{L} & \implies \mathbb{E}[F(w_k) - F_*] \to \frac{M}{2c}; \\ \alpha_k &= \mathcal{O}\left(\frac{1}{k}\right) & \implies \mathbb{E}[F(w_k) - F_*] = \mathcal{O}\left(\frac{(L/c)(M/c)}{k}\right) \end{aligned}$$

(\*Let's assume unbiased gradient estimates; see paper for more generality.)

## Illustration



Figure: SG run with a fixed stepsize (left) vs. diminishing stepsizes (right)

## What can be improved?



# What can be improved?



## Two-dimensional schematic of methods



### Nonconvex objectives

Despite loss of convergence rate, motivation for nonconvex problems as well:

- ▶ Convex results describe behavior near strong local minimizer
- ▶ Batch gradient methods are unlikely to get trapped near saddle points
- Second-order information can
  - avoid negative effects of nonlinearity and ill-conditioning
  - require mini-batching (noise reduction) to be efficient

Conclusion: explore entire plane, not just one axis

## Outline

 $\mathbf{SG}$ 

#### Noise Reduction Methods

Second-Order Methods

Other Methods

## Two-dimensional schematic of methods



## 2D schematic: Noise reduction methods







w



$$F(w_{k}) = F(w_{k}) + \nabla F(w_{k})^{T}(w - w_{k}) + \frac{1}{2}L||w - w_{k}||_{2}^{2}$$



w





## Illustration



Figure: SG run with a fixed stepsize (left) vs. batch gradient with fixed stepsize (right)

# Idea #1: Dynamic sampling

We have seen

- ▶ fast initial improvement by SG
- long-term linear rate achieved by batch gradient
- $\implies$  accumulate increasingly accurate gradient information during optimization.

# Idea #1: Dynamic sampling

We have seen

- ▶ fast initial improvement by SG
- long-term linear rate achieved by batch gradient
- $\implies$  accumulate increasingly accurate gradient information during optimization.

But at what rate?

- ▶ too slow: won't achieve linear convergence
- ▶ too fast: loss of optimal work complexity

#### Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose Assumption  $\langle L/c \rangle$  holds and that

 $\mathbb{V}_{\xi_k}[g(w_k,\xi_k)] \leq M \zeta^{k-1} \ \ \text{for some} \ \ M \geq 0 \ \ \text{and} \ \ \zeta \in (0,1).$ 

Then, the SG method with a fixed stepsize  $\alpha = 1/L$  yields

$$\mathbb{E}[F(w_k) - F_*] \le \omega \rho^{k-1},$$

where

$$\begin{split} \omega &:= \max\left\{\frac{M}{c}, F(w_1) - F_*\right\}\\ and \quad \rho &:= \max\left\{1 - \frac{c}{2L}, \zeta\right\} < 1. \end{split}$$

Effectively ties rate of noise reduction with convergence rate of optimization.

### Geometric decrease

#### Proof.

The now familiar inequality

$$\mathbb{E}_{\xi_k}[F(w_{k+1})] - F(w_k) \le -\alpha \|\nabla F(w_k)\|_2^2 + \frac{1}{2}\alpha^2 L \mathbb{E}_{\xi_k}[\|g(w_k, \xi_k)\|_2^2]$$

strong convexity, and the stepsize choice lead to

$$\mathbb{E}[F(w_{k+1}) - F_*] \le \left(1 - \frac{c}{L}\right) \mathbb{E}[F(w_k) - F_*] + \frac{M}{2L} \zeta^{k-1}.$$

▶ Exactly as for batch gradient (in expectation) except for the last term.

▶ An inductive argument completes the proof.

## Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

$$g_k := \frac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \nabla f(w_k; \xi_{k,i}) \text{ with } |\mathcal{S}_k| = \lceil \tau^{k-1} \rceil \text{ for } \tau > 1,$$

since, for all  $i \in \mathcal{S}_k$ ,

$$\mathbb{V}_{\xi_k}[g_k] \le \frac{\mathbb{V}_{\xi_k}[\nabla f(w_k;\xi_{k,i})]}{|\mathcal{S}_k|} \le M(\lceil \tau \rceil)^{k-1}.$$

### Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

$$g_k := \frac{1}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \nabla f(w_k; \xi_{k,i}) \text{ with } |\mathcal{S}_k| = \lceil \tau^{k-1} \rceil \text{ for } \tau > 1,$$

since, for all  $i \in \mathcal{S}_k$ ,

$$\mathbb{V}_{\xi_k}[g_k] \le \frac{\mathbb{V}_{\xi_k}[\nabla f(w_k;\xi_{k,i})]}{|\mathcal{S}_k|} \le M(\lceil \tau \rceil)^{k-1}.$$

But is it too fast? What about work complexity?

same as SG as long as 
$$\tau \in \left(1, \left(1 - \frac{c}{2L}\right)^{-1}\right]$$
.

## Illustration



Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)

## Additional considerations

In practice, choosing  $\tau$  is a challenge.

- ▶ What about an adaptive technique?
- Guarantee descent in expectation
- ▶ Methods exist, but need geometric sample size increase as backup

### Idea #2: Gradient aggregation

"I'm minimizing a finite sum and am willing to store previous gradient(s)."

$$F(w) = R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w).$$

Idea: reuse and/or revise previous gradient information in storage.

- ▶ SVRG: store full gradient, correct sequence of steps based on perceived bias
- ▶ SAGA: store *elements* of full gradient, revise as optimization proceeds

At  $w_k =: w_{k,1}$ , compute a batch gradient:

| $\nabla f_1(w_k)$                  | $ abla f_2(w_k)$ | $ abla f_3(w_k)$ | $ abla f_4(w_k)$ | $\nabla f_5(w_k)$ |  |
|------------------------------------|------------------|------------------|------------------|-------------------|--|
| $g_{k,1} \leftarrow \nabla F(w_k)$ |                  |                  |                  |                   |  |

then step

 $w_{k,2} \leftarrow w_{k,1} - \alpha g_{k,1}$ 

Now, iteratively, choose an index randomly and correct bias:

| $ abla f_1(w_k)$ | $\nabla f_2(w_k)$ | $ abla f_3(w_k)$ | $ abla f_4(w_{k,2})$ | $ abla f_5(w_k)$ |
|------------------|-------------------|------------------|----------------------|------------------|
|                  |                   |                  |                      |                  |

 $g_{k,2} \leftarrow \nabla F(w_k) - \nabla f_4(w_k) + \nabla f_4(w_{k,2})$ 

then step

 $w_{k,3} \leftarrow w_{k,2} - \alpha g_{k,2}$ 

Now, iteratively, choose an index randomly and correct bias:

| $\nabla f_1(w_k)  \nabla f_2(w_{k,3})  \nabla f_3(w_k)  \nabla f_4(w_k)  \nabla f_5(w_k)$ |
|-------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------|

 $g_{k,3} \leftarrow \nabla F(w_k) - \nabla f_2(w_k) + \nabla f_2(w_{k,3})$ 

then step

 $w_{k,4} \leftarrow w_{k,3} - \alpha g_{k,3}$ 

Each  $g_{k,j}$  is an unbiased estimate of  $\nabla F(w_{k,j})$ !

#### Algorithm SVRG

1: Choose an initial iterate  $w_1 \in \mathbb{R}^d$ , stepsize  $\alpha > 0$ , and positive integer m. for k = 1, 2, ... do 2: Compute the batch gradient  $\nabla F(w_k)$ . 3: Initialize  $w_{k,1} \leftarrow w_k$ . 4: for j = 1, ..., m do 5:Chose *i* uniformly from  $\{1, \ldots, n\}$ . 6. Set  $g_{k,i} \leftarrow \nabla f_i(w_{k,i}) - (\nabla f_i(w_k) - \nabla F(w_k)).$ 7: Set  $w_{k,i+1} \leftarrow w_{k,i} - \alpha g_{k,i}$ . 8: end for 9: Option (a): Set  $w_{k+1} = \tilde{w}_{m+1}$ 10: Option (b): Set  $w_{k+1} = \frac{1}{m} \sum_{i=1}^{m} \tilde{w}_{i+1}$ 11: Option (c): Choose j uniformly from  $\{1, \ldots, m\}$  and set  $w_{k+1} = \tilde{w}_{j+1}$ . 12:13: end for

Under Assumption (L/c), options (b) and (c) linearly convergent for certain  $(\alpha, m)$ 

At  $w_1$ , compute a batch gradient:

|                                | $ abla f_1(w_1)$ | $ abla f_2(w_1)$ | $ abla f_3(w_1)$ | $ abla f_4(w_1)$ | $ abla f_5(w_1)$ |
|--------------------------------|------------------|------------------|------------------|------------------|------------------|
| $g_1 \leftarrow \nabla F(w_1)$ |                  |                  |                  |                  |                  |
| the                            | n step           |                  |                  |                  |                  |

 $w_2 \leftarrow w_1 - \alpha g_1$ 

Now, iteratively, choose an index *randomly* and revise table entry:

| $ abla f_1(w_1)$ | $ abla f_2(w_1)$ | $ abla f_3(w_1)$ | $ abla f_4(w_2)$ | $\nabla f_5(w_1)$ |
|------------------|------------------|------------------|------------------|-------------------|
|                  |                  |                  |                  |                   |

 $g_2 \leftarrow \text{new entry} - \text{old entry} + \text{average of entries (before replacement)}$ 

then step

 $w_3 \leftarrow w_2 - \alpha g_2$ 

Now, iteratively, choose an index *randomly* and revise table entry:

| $\nabla f_1(w_1)$ $\nabla f_2(w_3)$ $\nabla f_3(w_1)$ $\nabla f_4(w_2)$ $\nabla f_5(w_1)$ |
|-------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------|

 $g_3 \leftarrow \text{new entry} - \text{old entry} + \text{average of entries (before replacement)}$ 

then step

 $w_4 \leftarrow w_3 - \alpha g_3$ 

Each  $g_k$  is an unbiased estimate of  $\nabla F(w_k)$ !

#### Algorithm SAGA

1: Choose an initial iterate  $w_1 \in \mathbb{R}^d$  and stepsize  $\alpha > 0$ . 2: for i = 1, ..., n do Compute  $\nabla f_i(w_1)$ . 3: Store  $\nabla f_i(w_{[i]}) \leftarrow \nabla f_i(w_1)$ . 4: 5 end for 6: for k = 1, 2, ... do Choose j uniformly in  $\{1, \ldots, n\}$ . 7: Compute  $\nabla f_i(w_k)$ . 8: Set  $g_k \leftarrow \nabla f_i(w_k) - \nabla f_i(w_{[i]}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_{[i]}).$ 9: Store  $\nabla f_i(w_{[i]}) \leftarrow \nabla f_i(w_k)$ . 10: Set  $w_{k+1} \leftarrow w_k - \alpha q_k$ . 11: 12: end for

Under Assumption  $\langle L/c \rangle$ , linearly convergent for certain  $\alpha$ 

- storage of gradient vectors reasonable in some applications
- $\blacktriangleright$  with access to feature vectors, need only store n scalars

## Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

$$w_{k+1} \leftarrow w_k - \alpha_k g(w_k, \xi_k)$$
  
 $\tilde{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j$  (in practice: running average)

Unfortunately, no better theoretically when  $\alpha_k = \mathcal{O}(1/k)$ , but

- ▶ long steps (say,  $\alpha_k = O(1/\sqrt{k})$ ) and averaging
- ▶ lead to a better sublinear rate (like a second-order method?) See also
  - mirror descent
  - primal-dual averaging

## Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

$$w_{k+1} \leftarrow w_k - \alpha_k g(w_k, \xi_k)$$
  
 $\tilde{w}_{k+1} \leftarrow \frac{1}{k+1} \sum_{j=1}^{k+1} w_j$  (in practice: running average)



Figure: SG run with  $\mathcal{O}(1/\sqrt{k})$  stepsizes (left) vs. sequence of averages (right)

## Outline

 $\mathbf{SG}$ 

Noise Reduction Methods

Second-Order Methods

Other Methods

Beyond SG: Noise Reduction and Second-Order Methods

## Two-dimensional schematic of methods



### 2D schematic: Second-order methods



#### Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

 $\min_{w \in \mathbb{R}^d} F(w) \qquad \Longrightarrow \quad w_{k+1} \leftarrow w_k - \alpha_k \nabla F(w_k) \\ \min_{\tilde{w} \in \mathbb{R}^d} F(B\tilde{w}) \qquad \Longrightarrow \quad \tilde{w}_{k+1} \leftarrow \tilde{w}_k - \alpha_k B \nabla F(B\tilde{w}_k) \quad \text{(for given } B \succ 0)$ 

#### Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

 $\min_{w \in \mathbb{R}^d} F(w) \qquad \Longrightarrow \qquad w_{k+1} \leftarrow w_k - \alpha_k \nabla F(w_k)$  $\min_{\tilde{w} \in \mathbb{R}^d} F(B\tilde{w}) \qquad \Longrightarrow \qquad \tilde{w}_{k+1} \leftarrow \tilde{w}_k - \alpha_k B \nabla F(B\tilde{w}_k) \quad \text{(for given } B \succ 0)$ 

Scaling latter by B and defining  $\{w_k\} = \{B\tilde{w}_k\}$  yields

 $w_{k+1} \leftarrow w_k - \alpha_k B^2 \nabla F(w_k)$ 

- $\blacktriangleright$  Algorithm is clearly affected by choice of B
- Surely, some choices may be better than others (in general?)

Consider the function below and suppose that  $w_k = (0,3)$ :



| ът . | 1. |  |
|------|----|--|

Batch gradient step  $-\alpha_k \nabla F(w_k)$  ignores curvature of the function:



Newton scaling  $(B = (\nabla F(w_k))^{-1/2})$ : gradient step moves to the minimizer:



 $\ldots$  corresponds to minimizing a quadratic model of F in the original space:



#### Deterministic case

What is known about Newton's method for deterministic optimization?

- ▶ local rescaling based on inverse Hessian information
- ▶ locally quadratically convergent near a strong minimizer
- ▶ global convergence rate better than gradient method (*when regularized*)

#### Deterministic case to stochastic case

What is known about Newton's method for deterministic optimization?

- local rescaling based on inverse Hessian information
- locally quadratically convergent near a strong minimizer
- ▶ global convergence rate better than gradient method (*when regularized*)

However, it is way too expensive in our case.

- ▶ But all is not lost: scaling is viable.
- ▶ Wide variety of scaling techniques improve performance.
- $\blacktriangleright$  Our convergence theory for SG still holds with B-scaling.
- ... could hope to remove condition number (L/c) from convergence rate!
- ▶ Added costs can be minimial when coupled with noise reduction.

#### Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

$$\nabla^2 f_{\mathcal{S}_k^H}(w_k) s_k = -\nabla f_{\mathcal{S}_k^g}(w_k)$$

- mini-batch size for Hessian  $=: |\mathcal{S}_k^H| < |\mathcal{S}_k^g| :=$  mini-batch size for gradient
- cost for mini-batch gradient: gcost
- use CG and terminate early:  $max_{cg}$  iterations
- ▶ in CG, cost for each Hessian-vector product:  $factor \times g_{cost}$
- choose  $max_{cg} \times factor \approx$  small constant so total per-iteration cost:

$$max_{cg} \times factor \times g_{cost} = \mathcal{O}(g_{cost})$$

▶ convergence guarantees for  $|S_k^H| = |S_k^g| = n$  are well-known

# Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

$$f(w;\xi) = \frac{1}{2} \|h(x_{\xi};w) - y_{\xi}\|_{2}^{2}$$
  
$$\approx \frac{1}{2} \|h(x_{\xi};w_{k}) + J_{h}(w_{k};\xi)(w - w_{k}) - y_{\xi}\|_{2}^{2}$$

Leads to Gauss-Newton approximation for second-order terms:

$$G_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} J_{h}(w_{k};\xi_{k,i})^{T} J_{h}(w_{k};\xi_{k,i})$$

## Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

$$f(w;\xi) = \frac{1}{2} \|h(x_{\xi};w) - y_{\xi}\|_{2}^{2}$$
  
$$\approx \frac{1}{2} \|h(x_{\xi};w_{k}) + J_{h}(w_{k};\xi)(w - w_{k}) - y_{\xi}\|_{2}^{2}$$

Leads to Gauss-Newton approximation for second-order terms:

$$G_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} J_{h}(w_{k};\xi_{k,i})^{T} J_{h}(w_{k};\xi_{k,i})$$

Can be generalized for other (convex) losses:

$$\widetilde{G}_{\mathcal{S}_{k}^{H}}(w_{k};\xi_{k}^{H}) = \frac{1}{|\mathcal{S}_{k}^{H}|} J_{h}(w_{k};\xi_{k,i})^{T} \underbrace{\frac{\mathcal{H}_{\ell}(w_{k};\xi_{k,i})}{=\frac{\partial^{2}\ell}{\partial h^{2}}} J_{h}(w_{k};\xi_{k,i})$$

- costs similar as for inexact Newton
- ▶ ... but scaling matrices are always positive (semi)definite
- ▶ see also *natural gradient*, invariant to more than just linear transformations

# Idea #3: (Limited memory) quasi-Newton

Only approximate second-order information with gradient displacements:



Secant equation  $H_k v_k = s_k$  to match gradient of F at  $w_k$ , where

$$s_k := w_{k+1} - w_k$$
 and  $v_k := \nabla F(w_{k+1}) - \nabla F(w_k)$ 

Deterministic case

Standard update for inverse Hessian  $(w_{k+1} \leftarrow w_k - \alpha_k H_k g_k)$  is BFGS:

$$H_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T H_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

What is known about quasi-Newton methods for deterministic optimization?

- local rescaling based on iterate/gradient displacements
- $\blacktriangleright$  strongly convex function  $\implies$  positive definite (p.d.) matrices
- only first-order derivatives, no linear system solves
- ▶ locally superlinearly convergent near a strong minimizer

#### Deterministic case to stochastic case

Standard update for inverse Hessian  $(w_{k+1} \leftarrow w_k - \alpha_k H_k g_k)$  is BFGS:

$$H_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T H_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

What is known about quasi-Newton methods for deterministic optimization?

- local rescaling based on iterate/gradient displacements
- $\blacktriangleright$  strongly convex function  $\implies$  positive definite (p.d.) matrices
- only first-order derivatives, no linear system solves
- locally superlinearly convergent near a strong minimizer

Extended to stochastic case? How?

- ▶ Noisy gradient estimates  $\implies$  challenge to maintain p.d.
- Correlation between gradient and Hessian estimates
- Overwriting updates  $\implies$  poor scaling that plagues!

#### Proposed methods

gradient displacements using same sample:

$$v_k := \nabla f_{\mathcal{S}_k}(w_{k+1}) - \nabla f_{\mathcal{S}_k}(w_k)$$

(requires two stochastic gradients per iteration)

▶ gradient displacement replaced by action on subsampled Hessian:

$$v_k := \nabla^2 f_{\mathcal{S}_k^H}(w_k)(w_{k+1} - w_k)$$

- decouple iteration and Hessian update to amortize added cost
- $\blacktriangleright$  limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md

## Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:

$$w_{k+1} \leftarrow w_k - \alpha_k D_k g_k$$

Ideas:

- $D_k^{-1} \approx \text{diag}(\text{Hessian (approximation)})$
- $D_k^{-1} \approx \text{diag}(\text{Gauss-Newton approximation})$
- ►  $D_k^{-1} \approx$  running average/sum of gradient components

Last approach can be motivated by minimizing regret.

## Outline

 $\mathbf{SG}$ 

Noise Reduction Methods

Second-Order Methods

Other Methods

Beyond SG: Noise Reduction and Second-Order Methods

### Plenty of ideas not covered here!

- gradient methods with momentum
- gradient methods with acceleration
- coordinate descent/ascent in the primal/dual
- proximal gradient/Newton for regularized problems
- alternating direction methods
- expectation-maximization

▶ ...