NORTHWESTERN UNIVERSITY
Department of Electrical Engineering
and Computer Science

LARGE SCALE UNCONSTRAINED OPTIMIZATION
by

Jorge Nocedal*
June 23, 1996

ABSTRACT

This paper reviews advances in Newton, quasi-Newton and conjugate gradi-
ent methods for large scale optimization. It also describes several packages
developed during the last ten years, and illustrates their performance on some
practical problems. Much attention is given to the concept of partial separa-
bility which is gaining importance with the arrival of automatic differentiation
tools and of optimization software that fully exploits its properties.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization —
gradient methods; G.4 [Mathematics of Computing]: Mathematical Software.

General Terms: Algorithms

Additional Key Words and Phrases: variable metric method, Newton’s method, large
scale optimization, nonlinear optimization, limited memory methods, quasi-Newton
methods, nonlinear conjugate gradient methods.

I Department of Electrical and Computer Engineering, Northwestern University, Evanston Tl
60208. This work was supported by National Science Foundation Grant CCR-9400881, and by
Department of Energy Grant DE-FG02-87ER25047.

1 Introduction.

This survey focuses on recent developments in large scale unconstrained optimiza-

tion. I will not discuss advances in methods for small and medium scale problems

because fairly comprehensive reviews of this work are given in [53] and [24]. I should

stress, however, that small scale optimization remains an active area of research, and

that advances in this field often translate into new algorithms for large problems.
The problem under consideration is

min f(x), (1.1)

where f is a smooth function of n variables. We assume that n is large, say n > 500,
and we denote the gradient of f by g.

An important recent development has been the appearance of effective tools
for automatically computing derivatives and for detecting partially separable struc-
tures. These programs are already having a significant impact in the practice of
optimization and in the design of algorithms, and their influence is certain to grow
with time. Automatic differentiation provides an excellent alternative for finite dif-
ferences, which can be unreliable, and for hand-coded derivatives, which are error
prone and labor intensive. The automatic detection of partially separable structure
has only recently become available and its full impact is yet to be seen. It has the
potential of making automatic differentiation practical for many large problems, and
it may also popularize partially separable quasi-Newton methods.

This paper is organized around the three main classes of algorithms for uncon-
strained optimization: Newton, quasi-Newton and conjugate gradients. To set the
stage for the description and analysis of algorithms, we begin with a discussion of
some problem structures that arise in many important areas of application. We
devote much attention to this topic because understanding the characteristics of the
objective function is crucial in large scale optimization.

2 Problem Structure.

A well-known type of structure is that of sparsity in the Hessian matrix V2 f. Func-
tions with sparse Hessians occur often in practice, and algorithms that exploit it have
been developed since the 1970s [16], [14]. Sparse finite difference techniques [20],[15]
have played a crucial role in making these methods economical and practical.

But many problems do not possess a sparse Hessian, and it is useful to divide
these into two broad categories: problems that have some kind of structure, such as
partial separability, and problems that do not possess any useful structure. In this
section we will give a close look at partially separable problems because they are not
as well understood as they should, and because significant advances in solving them
have been made in the last ten years. We will see that partial separability leads to
economical problem representation, efficient automatic differentiation and effective
quasi-Newton updating. An interesting question is whether there are other types of
structures that are as amenable to optimization as partial separability.

2.1 Partial Separability

In many large problems the objective function can be written as a sum of much sim-
pler functions; such an objective function is called partially separable. All functions
with sparse Hessians can be shown to have this property, but so do many functions
whose Hessian is not sparse. Some other problems cannot be written as the sum of
simple functions, but still possess a structure similar to partial separability called
group partial separability [17]. The goal of this section is to explain why this kind
of structure is important in optimization.

The simplest form of partial separability arises when the objective function can
be written as

flz) = Zﬁ-(m), (2.1)

where each of the element functions f; depends only on a few variables.

An example is the minimum surface problem which is described in many calculus
textbooks. We wish to find the surface of minimum area that interpolates a given
continuous function on the boundary of the unit square. By discretizing this problem
we obtain an objective function of the form (2.1), where the element functions are
defined as

) 1

Fil@) = o (14 (g — agmen)? + (aga —)| - (22)
Thus each f;, which is formally a function of all the variables x4, ..., z,,, depends only
on 4 variables, which are called the element variables. In (2.2) m is a constant that
determines the fineness of the discretization; the number of element functions ne
and the total number of variables n are both equal to m?. (The precise relationship
between the indices ¢ and j in (2.2) is not important in the following discussion; it
suffices to say that j is determined by ¢ and m.) The gradient of f; with respect to
all the variables in the problem is

Tj — Tjtm+1
Tj+1 = Tj+m

Vi) = 5 f @) : . (23)

—Tjt1 T Tjrm
—Tj+ Tjtmt1

0

We note that, of the four non-zero components, two are negatives of each other. The
Hessian of the element function f; has the sparsity pattern

A close examination shows that some of the nonzero entries differ only in sign, and
that only three different magnitudes are represented. Moreover the 4 x 4 matrix
formed by the non-zero elements happens to be singular.

The fact that repeated information is contained in the gradient and Hessian
suggests that there is a compact representation that avoids these redundancies. The
key observation is that f; is invariant in the subspace

Ni={weR" :wj =Wjymy1 and wji1 = Wjtm}, (2.5)

which means that for any x and for any w € N; we have that f;(x + w) = fi(z).
In other words, any move along a direction in IV; does not change the value of the

function, and it is not useful to try to gather curvature information about f; along
N;. Since dimension(N;) = n — 2, we seek a compact representation of f; involving
only two variables.

To accomplish this we define the internal variables u; and uj41 by

Uj=Tj = Tjpmtl Uil = Tipl — Ljtm, (2.6)
and the internal function ¢;,

1
1 m? 2
¢i(Uj,Uj+1) = W 1+ T(U? + U?+1) . (27)

We have achieved our goal of finding a minimal representation of f; since the gradient
of ¢ has only two components and V2 f; has only 3 distinct elements.
It is useful to introduce the 2 x n matrix U;, which has zero elements except for

UL]' =]., U1’j+m+1 = —]., UQ’]'+1 =]., U2,j+m = —]..

We can now write the objective function as
ne
i=1

The gradient and Hessian of f are given by

g(x) =Y U'V¢:i(Uix) and V>f(z) = UV¢;(Usz)U;, (2.9)
i=1 =1

which clearly exhibits the structure of the objective function. In §4.1 we describe
a quasi-Newton method that updates approximations to each of the Hessians V2¢;.
Since these are 2 x 2 matrices a good approximation can often be obtained after only
a few iterations. We will also see that this representation of the gradient suggests
efficient automatic differentiation techniques.

We now generalize the minimum surface problem and give the following defini-
tion.

A function f is said to be partially separable if it is the sum of element
functions, f(z) = > 1°, fi(z), each of which has a nontrivial invariant
subspace. This means that f can also be written in the form (2.8), where
the matrices U; have dimension n; x n, with n; < n.

In many practical problems the n; are very small (say 2 or 4), and are independent
of the number of variables n which can be in the thousands or more. To take
advantage of partial separability we define the internal variables (and thus U;) so
that a change in any one of these variables causes a change in the element function
fi- It would be wasteful to define an internal variable that lies in the subspace IV;,
since we know in advance that the derivatives of f; with respect to this variable will
be zero; moreover this would be harmful to the quasi-Newton method that exploits
partial separability described in §4.1. Thus the number of internal variables equals
the dimension of N;*, or

n — dimension(N;).

Sometimes the invariant subspace N; is easy to find, as in the minimum surface
example, but this is not always the case. Software tools for automatically detecting
partially separable structures are currently under development [29].

2.1.1 Sparsity vs Partial Separability

The concept of partial separability is more general than the notion of sparsity. It is
shown in [34] that every twice continuously differentiable function f : R™ — R with
a sparse Hessian is partially separable. But the converse is not true.

Counsider the element function [17]

fil@) = (z1 + ... +2,)%, (2.10)

whose gradient and Hessian are dense. Since the invariant subspace of (2.10) is the
set
N; = {w € R"|e"w = 0}, (2.11)

where e = (1,1,...,1)7, and since the dimension of N; is n — 1, we see that f; can
be considered as a function of only one variable. Thus we can write it in the form
(2.8), where

U=[1,..,1], and ¢(u)=u’

This is an example of a function with a dense Hessian, but a very large invariant
subspace and very simple structure.

A similar, but more realistic example, is a protein folding problem that has
received much attention from the optimization community [50], [38]. The objective
is to minimize the energy of a configuration of atoms. If the positions of the atoms
are expressed in Cartesian coordinates, then the element functions depend only on
the differences of the coordinates of pairs of atoms, p; — p;, and every row of U;
contains only two nonzeros. Typical values for n; are 3, 6 or 9. This protein folding
problem is thus partially separable but one can show that its Hessian is completely
dense. The components of the Hessian that correspond to atoms that end up being
widely separated will be very small (and could be set to zero), but the locations of
these small entries is not known beforehand.

2.1.2 Group Partial Separability

Partial separability is an important concept, but it is not quite as general as we
would like. Consider a nonlinear least squares problem of the form

14

f@) =Y (fe(@) + frr1 () +)%, (2.12)

k=1

where the functions f; are partially separable and where c is a constant. The def-
inition of partial separability given above forces us to regard the whole k-th term
in the summation as the k-th element function. However there is clearly a lot of
structure inside that term — it contains two element functions, grouped together
and squared. We can extend the definition of partial separability slightly to make
better use of this type of structure.

We say that a function f : R™ — R is group partially separable if it can be written
in the form

l
F@) =" (hi(2)) (2.13)
k=1

where 7y, is twice continuously differentiable function on the range of hy(-), and
where each hy is a partially separable function from R" to R.

We can use the form of f to find compact representations of the derivatives. By
using the chain rule we have

Vive(h ()] = 73,(he(2)) Vi (2), (2.14)
Vk(he(2))] = % (he(2)) Vi (2) Vi (@) + v (i () V2 hie (). (2.15)

We already know how to represent the derivatives of the partially separable func-
tion hy (that is, VA and V2hg) in compact form. To get a compact representation
of the derivatives of v (hy(x)), we simply have to include the two scalar quantities
v, and ~;, both evaluated at hy(z).

Group partial separability is a very general concept since it applies directly to
nonlinear least squares problems and to penalty and merit functions arising in con-
strained optimization. The LANCELOT package [17] is designed to fully exploit its
structure.

2.1.3 Automatic Differentiation of Partially Separable Functions

Automatic differentiation is based on the observation that any function f that can be
evaluated by a computer program is executed as a sequence of elementary operations
(such as additions, multiplications and trigonometric functions). By systematically
applying the chain rule to the composition of these elementary functions, the gradient
Vf can be computed to machine accuracy [35]. There are two basic strategies for
applying the chain rule: the forward and reverse modes of differentiation.

In the forward mode one proceeds in the direction determined by the evaluation
of the function; as we evaluate f, we compute the derivatives of all the intermediate
quantities with respect to the variables = of the problem. In the reverse mode one
first evaluates the function; when this is completed we move backwards, computing
the derivates of f with respect to the intermediate quantities arising in the evaluation
of f, until we obtain the derivatives of f with respect to the problem variables z.

Various automatic differentiation codes have been developed (see [5] for refer-
ences), and have proved to be effective in practice. I will now discuss two recent
proposals on how to take advantage of partial separability to make automatic dif-
ferentiation more efficient.

The approach described in [5] concerns the computation of the gradient g. It
begins with the simple representation (2.1), and associates with it the vector function

fi(z)
F(z) =
fne (:L’)

Since the Jacobian F'(z) is given by F'(z)T = (Vfi(z), ..., V fne(z)) we have from
(2.1) that
9(@) = F'(@)Te, (2.16)

where e = (1,1, ...,1). Therefore the gradient of a partially separable function could
be computed via (2.16) if we had the associated Jacobian F'(z). It would seem that
the latter is expensive to compute, but since each f; depends only on a few variables,
F'(z) is sparse. By analyzing the sparsity structure of F’(x) it is possible to find
a set of structurally orthogonal columns [20], [15], i.e. columns that do not have
a nonzero entry in the same row. This information is provided to the automatic
differentiation code, which is then able to compute F'(z) in a compressed form that
economizes storage and computation [5]. The gradient g(z) is then computed by
means of (2.16).

Another recent proposal [29] we wish to discuss concerns the computation of the
Hessian matrix. It is based on the fact that Hessian-vector products can easily be
computed by automatic differentiation, without the need to calculate Hessians [35].
To compute V2 f(xy)d automatically is conceptually straightforward. We can sim-
ply apply backward automatic differentiation to compute the gradient of d” V f(z),
considering d constant.

The complete Hessian V2 f(x) can therefore be obtained column by column by
applying automatic differentiation to compute the n products V2f(x)e;. But it

is preferable to consider the representation (2.8) and compute the small internal
Hessians V2¢; explicitly. This is done, for each element function ¢;, by means of
a few products V2¢;e;. The total Hessian is obtained via (2.9), which is a sum of
outer products [29].

An automatic procedure for detecting the partially separable decomposition (2.8)
is also given in [29]. It consists of analyzing the composition of elementary functions
forming f, and finding the transformations U; and the internal functions ¢;. This
procedure finds one particular partially separable representation of f (the “finest”),
and it is too early to tell if it will be of wide applicability. If successful, it could
popularize partially separable optimization methods.

We conclude this section on partial separability by noting that sparsity plays a
major role in many existing codes for large scale optimization. Partial separability
is now being proposed as a structure of wider applicability that could supersede
sparsity, but as we have seen, the approach (2.16) based on the compressed Jacobian
matrices makes use of partial separability and sparsity. It is difficult to predict what
the relative importance of these concepts will be ten years from now.

3 Newton’s Method

This is the most powerful algorithm for solving large nonlinear optimization prob-
lems. It normally requires the fewest number of function evaluations, is very good at
handling ill-conditioning, and is capable of giving the most accurate answers. It may
not always require the least computing time — this depends on the characteristics of
the problem and the implementation of the Newton iteration — but it represents the
most reliable method for solving large problems.

As is well known, to be able to apply Newton’s method, the gradient g and
Hessian V2 f must be available. The gradient could be computed analytically or
by automatic differentiation, and there are several options for providing the Hessian
matrix: it could be supplied in analytic form, could be approximated by sparse finite
differences [20], [15], or could be computed by automatic differentiation techniques.
Future problem-solving environments will allow the user to choose from these alter-
natives.

The newest implementations of Newton’s method are simple and elegant, and
deal well with the case when the Hessian matrix is indefinite. They construct a
quadratic model of the objective function and define a trust region over which the
model is considered to be reliable. The model is approximately minimized over
the trust region by means of an ingenious adaptation of the conjugate gradient
(CG) algorithm. Careful attention is given to the issue of preconditioning which is
crucial for solving ill-conditioned problems. The routine SBMIN of the LANCELOT
package, and the code TRCG that will be part of the Minpack-2 package follow this
approach, which we now describe in some detail.

Let us denote the Hessian matrix by B, i.e. V2f(x;) = By. At the iterate z; we
formulate the trust region subproblem

. 1
min ¢(p) = gip+ 5p" Bep (3.1)
subject to IIpllz < A, (3.2)

where the trust region radius Ay is updated at every iteration. Obtaining the exact
solution of this subproblem is expensive when 7 is large — even when By, is positive
definite. It is more efficient to compute an approximate solution p that is relatively
inexpensive (at least in the early stages of the algorithm) and gives a fast rate of
convergence. This is done by first ignoring the trust region constraint and attempting

to minimize the model (3.1) by means of the CG method. Thus we apply CG to the
symmetric linear system

Bip = —gk, (3.3)

starting with the initial guess pyp = 0. The key points are how to take into account
the trust region constraint and how to avoid failure of the CG iteration when By, is
not positive definite. For this purpose three different stopping steps are used, which
we discuss later on. Once the approximate solution p has been obtained, we test
whether f(z + py) is sufficiently less than f(zy). If so, we define the new iterate as
zr +pr, and update the trust region A according to how well the model ¢ estimates
the nonlinear objective function f. On the other hand, if sufficient reduction in f
is not obtained, we reduce the trust region radius Ay and find a new approximate
solution to (3.1)-(3.2).

We now focus on the case when the Hessian matrix By, is not positive definite.
The first stopping test stipulates that the CG iteration will be terminated as soon as
negative curvature is detected. When this occurs, the direction of negative curvature
is followed to the boundary of the trust region, and the resulting step is returned as
the approximate solution. The second test monitors the length of the approximate
solutions {p;} generated by the CG iteration and terminates when one of them
exceeds the trust region radius. A third test is included to end the CG iteration if
the linear system (3.3) has been solved to the required precision.

This strategy for computing the search direction of the trust region Newton
method is summarized in Algorithm I. The iterates generated by the CG method
are denoted by {p;}, whereas the conjugate directions computed by the CG iteration
are {d;}. The differences between this algorithm and standard conjugate gradient
are the two extra stopping conditions formulated as the first two IF statements
within the LOOP. When negative curvature is encountered or when p;;; violates
the trust region constraint, a final estimate p is found by intersecting the current
search direction with the the trust region boundary.

Algorithm I Approximate computation of the Newton step by CG.
Constant € > 0 is given
Start with po = 0, 79 = gx, and dy = —r9¢
LOOP, starting with j =0
IF djTBkdj <0
THEN find 7 so that p = p; + 7d; minimizes ¢(p)
and satisfies ||p|]2 = A, and RETURN p
aj = TJTTJ' /d]TBkd]
Pj+1 = pj + a;d;
IF [pjtall2 > A
THEN find 7 > 0 so that ||p; + 7d;|]>» = A,
and RETURN p = p; + 7d;
riy1 =T + OéjBkdj
IF ||Tj+1||2 / ||T0||2 < e THEN RETURN P =DPj+1

Bit1 =riarier /7] T
djy1 = rjp1 + Bjtad;
CONTINUE, after incrementing j

The third IF statement ensures that the CG iteration is terminated when the
residual is sufficiently small compared to the initial residual — which equals the
current gradient gi of the objective function. Therefore as the Newton algorithm
approaches the solution and g converges to zero, the termination test becomes ever

more stringent, ensuring that the rate of convergence is fast [21]. Indeed, as the
iterates approach the solution, the Hessian By, will become positive definite, and one
can show [25] that the standard strategies for updating the trust region radius [22]
ensure that the trust region constraint becomes inactive. Thus, asymptotically, this
method reduces to a pure truncated Newton method with unit steplengths.

Note that first estimate p; generated by the inner CG iteration is given by

p1 = apdy = —ogr,

where « is the steplength that minimizes the quadratic model ¢ along the steepest
descent direction —g;, at the current iterate xj. This is also called the Cauchy
step, and guarantees that the trust region algorithm is globally convergent [57].
Subsequent inner CG iterations reduce ¢ and improve the quality of the search
direction. But no attempt is made to try ensure that the iterates converge only to
solution points where the Hessian is positive definite.

It is important that the first estimate in the inner CG iteration be pg = 0, for in
this case one can show [61] that each estimate is longer than the previous one. To
be more precise, we have

0=lpollz < -+ <llpjll2 < llpjsille <--- <llpll2 < A.

This property shows that it is acceptable to stop iterating as soon as the trust region
boundary is reached because all subsequent estimates will lie outside the trust region.

When the Hessian matrix B is positive definite, this approach is similar to the
dogleg method [56] because the estimates generated by the inner CG iteration sweep
out points that move on some interpolating path from the Cauchy step p; to the
Newton step py = —B,;lgk.

3.1 Preconditioning

An important question is how to precondition the CG iteration, i.e. how to find a
nonsingular matrix D such that the eigenvalues of DT B, D~! are clustered. The
LANCELOT package [17] has the excellent feature of providing a suite of built-
in preconditioners with which the user can experiment. The default is an 11-band
modified Cholesky factorization, but many other choices can easily be activated. The
choice of preconditioner has a marked effect on performance, but it is difficult to
know in advance what the best choice is for a particular problem. This is a complex
issue; for example there is a trade-off between the quality of the preconditioner and
the computational work involved.

In LANCELOT the preconditioned conjugate gradient method is applied to (3.3),
the length of the estimates ||p;|| is monitored, and the CG iteration is terminated
if ||pj|| > Ay. However, this is not totally consistent with the ideas embodied in
Algorithm I because when preconditioning is used the quantity that grows monoton-
ically is ||Dp;|| and not ||p;||. Therefore it is possible for LANCELOT to terminate
the inner CG iteration even though a subsequent iterate would fall inside the trust
region and give a lower value of the model ¢.

The routine TRCG from Minpack-2 takes a different approach, in that precon-
ditioning is seen as a scaling of the trust region. Let D be any nonsingular matrix
and consider the subproblem

1
: T T
= ~p'B 34
Jnin, ¢(p) = gpp + 50 Bip (3.4)
subject to [|Dp|l2 < Ag. (3.5)

By making the change of variables p = Dp and defining
ge=D"gr, By=D "BiD

we obtain a problem of the form (3.1)-(3.2) to which Algorithm I can be applied
directly; the answer is then transformed back into the original variables p. The
length of [|p|| = ||Dpl| is monitored, and this is the quantity that grows monotoni-
cally. Therefore, unlike the implementation in LANCELOT, once the CG iteration
generates an estimate that leaves the trust region, it will never return. It is not clear
how this difference in the handling of the trust region affects performance, and this
question deserves some investigation.

Minpack-2 uses an incomplete (and possibly modified) Cholesky factorization
as a preconditioner because computational experience in linear algebra has shown
that this type of preconditioner can be effective for a large class of matrices. The
incomplete Cholesky factorization of a positive definite matrix By, finds a lower
triangular factor L such that By = LLT — R, where L reflects the sparsity of By.
The scaling factor used in (3.5) is set to D = L. Since in Newton’s method Bj,
may not be positive definite, it may be necessary to modify it so that the Cholesky
factorization can be performed. A typical strategy for doing this is described below.
It begins by scaling the matrix B, since numerical experience indicates that this can
be beneficial.

Incomplete and Modified Cholesky Factorization.
The symmetric matrix B is given.

1. (Scale B.) Let T' = diag(||Be;||), where e; is the i-th unit vector. Define
_ 1 _
B=T"2BT"2,and 8= B

=

2. (Compute a shift to attempt to ensure positive definiteness.) If min(B; ;) > 0,
set ap = 0; otherwise set ag = (3/2.

3. Loop starting with £ = 0.

e Attempt to compute the incomplete Cholesky factorization [41] of B +
arl. If the factorization is completed successfully exit and return L;
otherwise set a1 = max(2ay, %ﬁ), and continue loop.

We should note that scaling alters the incomplete Cholesky factorization, and that
several other choices for the scaling matrix 7" can be used.

Following are some results obtained by Bouaricha and Moré [7] on two problems
from the Minpack-2 collection [4]. GL2 is a problem arising in the modeling of
superconducting materials, and MSA is a minimum surface problem.

Table 1. Performance of a Preconditioned Newton Method

Problem n iter feval time
GL2 2500 6 12 13.0
GL2 10,000 6 10 63.4
GL2 40,000 8 12 5377
MSA 2500 6 7 2.8
MSA 10,000 6 7 2.8
MSA 40,000 10 14 91.1

These are very good results in that the number of iterations stays nearly constant as
the dimension of the problem increases, and computing time grows only a little faster
than linearly. The results also compare very favorably with those obtained with
the limited memory BFGS code described in §4.2, which has considerable difficulty
solving the problems as the dimension increases. I do not know, however, if this kind
of performance is typical of the Minpack-2 code, and more computational experience
is necessary.

10

3.2 Current Research and Open Questions

The Newton method in LANCELOT takes advantage of partial separability by com-
puting the Hessians of the internal functions ¢; defined in (2.8). This can give signif-
icant savings in storage in some problems, but the computational overhead required
by this structured representation of the function can sometimes be onerous. Simi-
larly, in the Minpack-2 code the preconditioned CG iteration can sometimes be quite
expensive. Therefore, even though these Newton codes are highly successful, it is
interesting to ask if the information generated in the course of the step computation
can be used more thoroughly.

In the Iterated Subspace Minimization Method [18] a search direction is first com-
puted using Algorithm I. However, instead of accepting this step, one selects a few
of the estimates {p;} generated during the inner CG iteration, in order to define
a subspace Sy over which the nonlinear objective function f is minimized further.
Since the subspace Sy, is chosen to be of small dimension, this is a low-dimensional
nonlinear optimization problem that is solved by means of the BFGS method (using
second derivatives would require projections onto the subspace Sy which can be un-
necessarily costly). The Iterated Subspace Minimization method therefore requires
several evaluations of the objective function to produce a new iterate, and one can
expect it to be most effective when the function is not too costly to evaluate. This
approach is based on the assumption that CG determines important directions over
which it is worth exploring the nonlinear objective function, and that the benefit of
this exploration outweights the cost of additional function evaluations.

Numerical tests with the Iterated Subspace Minimization method show some
promise, but a clear improvement in performance over the standard Newton method
has not been observed. There is room, however, for further research. For exam-
ple, there are many possible choices for the subspace Sy, and this selection could
be crucial to the efficiency of the method. One could also try to develop an auto-
matic mechanism that determines when the exploration of the subspace Sy is to be
performed.

There are several open questions concerning the implementation of Algorithm I.
The first is the use of the residual in the stopping test

lIrj41ll < ellroll, (3.6)

that determines that the linear system (3.3) has been approximately solved. On ill-
conditioned problems, the residual can oscillate greatly during the course of the CG
iteration, and only drop sharply at the end. Some researchers (see e.g. [48]) propose
stopping tests based on the reduction of the model ¢, and others use an angle test
[42], but no systematic comparison of these alternatives has been undertaken in the
setting of nonlinear optimization.

Assuming that a residual-based stopping test is used, (3.6) may not be its best
implementation. It is known [39] that the test (3.6) may be too stringent when € is a
small and when the approximate solution p of (3.3) is large compared with ry. It may
be preferable to use ||ri|| < e(||Bill||lpll + ||7ol])- The effects of rounding errors can
also be important. Since ry is not computed directly, but recurred, ||rg|| can differ
from its true value by several orders of magnitude. A point in favor of a residual-
based stopping test is that it allows us to easily control the rate of convergence of
the optimization algorithm [21].

Another open question concerning the implementation of Algorithm I is the use
of the conjugate gradient method. Since By, can be indefinite, the CG iteration can
become unstable [55], and it is not clear that the direction given by Algorithm I
is always of good quality. An alternative [46] is to use the Lanczos iteration and
continue past the point where negative curvature is first detected. It is also possible
to alter the CG iteration, after encountering negative curvature, so that it can

11

continue exploring other subspaces [3]. I do not know if significant improvements
in performance can be realized with these proposals, but this question is important
and deserves careful investigation.

Perhaps more important than any of these issues is the choice of preconditioner.
The Hessian matrix By can change drastically during the course of the optimiza-
tion iteration, and to use the same preconditioning strategy throughout the run is
questionable. The idea of having a dynamic preconditioner is appealing but, to the
best of my knowledge, has not been studied in the context of large scale nonlinear
optimization.

3.3 Hessian Free Newton Method

This is a modification of Newton’s method that allows us to solve problems where
the Hessian By = V2 f(z) is not available. It is based on the observation that
the conjugate gradient iteration in Algorithm I only needs the product of V2 f(zy,)
with certain displacement vectors d;, and does not require the Hessian matrix itself.
These products can be approximated by finite differences,

V2f(1'k)d% g(l’k-l-ﬁci)—g(l’k), (37)

where € is a small differencing parameter. Since each iteration of the conjugate
gradient method performs one product V?f(zy)d;, this approach requires a new
evaluation of the gradient g of the objective function at every CG inner iteration.
A method that uses (3.7) is called a discrete Newton method and has received
considerable attention [54],[48],[47],[59].

The finite-difference (3.7) is unreliable and may deteriorate the performance of
the Hessian free Newton method. An attractive alternative is to compute the product
V2 f(zr)d by automatic differentiation [35], as discussed in §2.1.3. This has the
important advantage of being accurate (in general, as accurate as the computation
of the function).

In general, however, computing the Hessian-vector product by automatic differ-
entiation will be as expensive (or more) as finite differences in terms of computing
time. Therefore the Hessian-free Newton method can be made more reliable by
automatic differentiation, but its overall cost remains high. Its efficiency will be
highly dependent on the termination test used in the inner CG iteration. If only
one CG iteration is performed, the step computation is inexpensive but the method
reduces to steepest descent, whereas high accuracy in the CG iteration results in an
approximation to Newton’s method but a high computational cost [49]. Thus the
proper termination of the inner CG iteration is even more delicate in this context
than in the case when the Hessian is available.

An important open question is how to develop general purpose preconditioners
for Hessian free Newton methods. In some applications it is useful to compute part
of the Hessian (or a modification of it) and use it as a preconditioner. But in other
applications this is not practical or effective, and the design of simple preconditioners
that require no user intervention would greatly enhance the value of Hessian free
Newton methods.

4 Quasi-Newton Methods

There have been various attempts to extend quasi-Newton updating to the large-
scale case, and two of them have proved to be very successful in different contexts.
The first idea consists of exploiting the structure of partially separable functions
by updating approximations to the Hessians of the internal functions (2.8). This
gives rise to a powerful algorithm of wide applicability, and whose only drawback is

12

the need to fully specify a partially separable representation of the function. The
second approach is that of limited memory updating in which only a few vectors are
kept to represent the quasi-Newton approximation to the Hessian. Limited memory
methods require minimal input from the user and are best suited for problems that
do not possess a structure that can be exploited economically. They are not as
robust and as rapidly convergent as partially separable quasi-Newton methods, but
are probably much more widely used.

An approach that has not yet proved to be successful is that of designing sparse
quasi-Newton updating formulae. But some new ideas that deserve attention have
recently been proposed.

4.1 Partially Separable Quasi-Newton Methods

Suppose that we know how to break a function f down into partially separable form
(2.8), i.e. that we have identified ne, the transformations U; and ¢;. Rather than
computing the Hessians of the internal functions ¢;, we can store and update quasi-
Newton approximations B; to each individual V2¢;. We then estimate the entire
Hessian V2f(z) (see (2.9)) by

B =Y U!BU;. (4.1)

i=1

The n xn matrix B can then be used in Algorithm I, resulting in a partially separable
quasi-Newton method using trust regions.

As for any quasi-Newton method, the approximations B; are updated by requir-
ing them to satisfy the following secant equation for each element:

Bispi) = yp)- (4.2)

Here
S1) = gy — u[s) (4.3)

is the change in the internal variables corresponding to the i-th element function,
and

Y] = Vi (U[t]) = Vo(uy) (4.4)

is the corresponding change in gradients, where u™ indicates the most recent iterate
and u the previous one.

The success of this element-by-element updating technique can be understood
by returning to the minimum surface problem (2.2). In this case, the functions ¢;
depend only on two internal variables, so that each Hessian approximation is 2 x 2.
After just a few iterations, we will have sampled enough directions sj; to make B;
an accurate approximation to V2¢;. Hence (4.1) will be a very good approximation
to V2 f(x).

It is interesting to contrast this with a quasi-Newton method that ignores the
partially separable structure of the objective function. This method will attempt
to estimate the total average curvature (i.e. the sum of the individual curvatures)
by constructing an n X n matrix. When the number of variables is large, after k
iterations with k£ << n, this quasi-Newton matrix will not resemble the true Hessian
well, and will not make very rapid progress towards the solution.

The partially separable quasi-Newton updating cannot always be performed by
means of the BFGS formula because there is no guarantee that the curvature con-
dition s[Ti]y[i] > 0 will be satisfied; this condition is needed to ensure that the BFGS
approximation is well defined [22]. Even if a line search is used to guarantee that
the total step s = xp41 — x}, satisfies the curvature condition, this would not imply

13

that the changes of the individual components u; would satisfy the it. In fact one
of the element Hessians V2¢; could be concave in a region around xy.

One way to overcome this obstacle is to use SR1 [19] to update each of the
element Hessians, with simple precautions to ensure that it is always well-defined.
Or one could start with the BFGS update formula and, if at some stage the curvature
condition for a particular element is not satisfied, then switch to the SR1 formula
and use it until termination [63]. This last strategy is used in LANCELOT, which
is designed to take full advantage of partial separability. Computational experience
on the CUTE [6] test problem collection suggests that the partially separable quasi-
Newton method implemented in LANCELOT is nearly as effective as Newton’s
method.

4.2 Limited Memory Methods

Various limited memory methods have been proposed; some combine conjugate gra-
dient and quasi-Newton steps, and others are very closely related to quasi-Newton
methods. The simplest implementation, and perhaps the most efficient, is the lim-
ited memory BFGS method (L-BFGS) [52],[44],[31]. It is a line search method in
which the search direction has the form

dk = _Hkgk- (45)

The inverse Hessian approximation Hy, which is not formed explicitly, is defined by
a small number of BFGS updates. In the standard BFGS method, Hj is updated
at every iteration by means of the formula

Hyy = VkTHka + pksksz, (4.6)
where
pr = 1/yj st Vi =1 — pryrsy,, (4.7)
and
Sk = Tk+1 — Tk, Y = Gk+1 — k-

The n xn matrices Hy, are generally dense, so that storing and manipulating them
is impractical when the number of variables is large. To circumvent this problem,
the limited memory BFGS method does not form these matrices but only stores
a certain number, say m, of pairs {sy,yr} that define them implicitly through the
BFGS update formula (4.6)-(4.7). Two important features of the method, which we
now describe, are a rescaling (or resizing) strategy, and the continuous refreshing of
the curvature information.

Suppose that the current iterate is z; and that we have stored the m pairs

{si,yi}, i =k —m,...,k — 1. We first define the basic matrix HIEO) = ;11 where

T
Skp—1Yk—1

. (4.8)
yljgllyk—l

V-1 =

We then (formally) update HIEO) m times using the BFGS formula (4.6)-(4.7) and the
m pairs {s;,y;}, i =k —m,...,k — 1. The product Hyg;, is obtained by performing a
sequence of inner products involving g and these m pairs {sy, ys }. After computing
the new iterate, we save the most recent correction pair {sg,yr } — unless the storage
is full, in which case we first delete the oldest pair {sg—m, Yr—m} to make room for
the newest one, {sk,yr}.

This approach is suitable for large problems because it has been observed in
practice that small values of m, say m € [3,20] often give satisfactory results [44],
[31]. The numerical performance of the limited memory method L-BFGS is illus-
trated in Table 2, where we compare it [65] with the Newton method provided by
the LANCELOT package on a set of test problems from the CUTE [6] collection.

14

Table 2. Unconstrained Problems

Problem n | L-BFGS LANC/Newt

nfg time | nfg time
CRAGGLVY 1000 95 13| 15 10
FMINSURF 1024 | 186 11 | 316 106
DIXMAANI 1500 | 1237 166 8 9
EIGENCLS 462 | 2900 563 | 543 2300

The total number of function and gradient evaluations is denoted by nfg, and time
denotes the total execution time on a Sparcstation-2. The memory parameter for
L-BFGS was set to m = 5, and LANCELOT was run with all its default settings.
The four problems typify situations we have observed in practice. In CRAGGLVY
Newton’s method required much fewer function evaluations, but the execution times
of the two methods were similar; this is a common occurrence. FMINSURF is
highly atypical in that L-BFGS required fewer function and gradient evaluations.
In the ill-conditioned problem DIXMAANTI the advantage of the Newton method is
striking in both measures, and illustrates a case in which L-BFGS performs quite
poorly. Finally EIGENCLS represents a situation that is not uncommon: even
though LANCELOT requires much fewer function evaluations it takes longer to
solve the problem.

We can draw three conclusions from our computational experience with New-
ton and limited memory methods. First, it is clear that the quality of the limited
memory matrix is rather poor compared with the true Hessian, as is shown by the
wide gap in the number of iterations and function evaluations required for conver-
gence. The second observation is that the relative cost of the L-BFGS iteration is
so low that one cannot discount the possibility that it will require less computing
time than the Newton method. Finally, L-BFGS is not as reliable as a Newton or
partially separable quasi-Newton method. On problems with an unfavorable eigen-
value distribution L-BFGS may require a huge number of iterations [8], or may not
achieve good accuracy in the answer. These difficulties are sometimes overcome by
increasing m, say to 20 or 30, but this is not always the case.

An attractive feature of L-BFGS is that it can easily be generalized to solve
bound constrained problems. But in order to obtain an efficient implementation in
that case it is necessary to find new representations of limited memory matrices,
which we now discuss.

4.2.1 Compact Representations of Limited Memory Matrices

The limited memory techniques described so far only store the difference vectors s;
and y;, and avoid storing any matrices. We now show that limited memory updating
can also be described using outer products of matrices. We begin by describing a
result on BFGS updating that is interesting in its own right.

Let us define the n x k matrices S; and Y} by

Sk = [So,...,skfl], Yk = [yo,...,ykfl]. (49)

It can be shown [11] that if Hp is symmetric and positive definite, and if Hy is
obtained by updating Hp k times using the BFGS formula (4.6) and the pairs
{Si) yz}f:_[)lv then

R, T(Dy+Y,THoYy)R, " —R," SF
Hy=Ho+[St HoY:] ;
~-R* 0 vl Hy
(4.10)

15

where Ry and Dy, are k x k matrices given by

T . . .
sy ifi<j
(Br)ij = { 0 otherwise ’ (4.11)
and
Dy, = diag [sgyg, e, skT_lyk,l] . (4.12)

It is easy to describe a limited memory implementation based on this representa-
tion. We keep the m most recent difference pairs {s;,y;} in the matrices Sy and Yy,
and Hy stands for the basic matrix H}go) defined through (4.8). The difference pairs
are refreshed at every iteration by removing the oldest pair and adding a new one
to Sp and Yj. After this is done, the matrices R; and D; are updated to account
for these changes.

Note that the inner matrix in (4.10) is of size 2m X 2m, i.e. it is very small, so
that the total storage of this representation is essentially the same as storing only
the difference pairs {s;,y;}. One can show that updating the limited memory matrix
and computing the search direction Hpgy using the compact representation (4.10)
costs roughly the same as in the approach described earlier, so that there is no clear
benefit from using the compact form in the unconstrained case.

There are, however, many advantages to this approach if we wish to use updating
formulae other than BFGS, or if we need to solve problems with bounds on the
variables. For example products of the form HpA, where A is a sparse matrix,
occur often in constrained optimization and can be performed efficiently using (4.10).
In particular, when using the range-space or dual approach [32] to solve linearly
constrained subproblems, we need to compute AT Hj A, whose symmetry can be
exploited to give further savings in computation.

In constrained optimization, however, it is more common to work with an approx-
imation By to the Hessian matrix, rather than with an inverse approximation Hy.
One can derive compact representations for the limited memory Hessian approxima-
tion By that are similar to (4.10). These give rise to considerable savings compared
with the simple-minded approach of storing only the correction vectors arising in
BFGS updating. There are, in addition, compact representations for the symmetric
rank-one (SR1) updating formula, which is particularly appealing in the constrained
setting because it is not restricted by the positive definiteness requirement.

The recently developed code L-BFGS-B [12], [65] uses a gradient projection ap-
proach together with compact limited memory BFGS matrices to solve the bound
constrained optimization problem

min f(z)
subject to [<z < u.

Table 3 illustrates the performance of L-BFGS-B on bound constrained problems
from the CUTE collection. Once more we use the Newton code of LANCELOT as
a benchmark [65].

Table 3. Bound Constrained Problems

L-BFGS-B | LANC/Newt

Problem n nbds | nfg time | nfg time
JNLBRNGA 15,625 5,657 | 332 740 | 22 1503
LINVERSE 999 338 | 291 o7 | 28 150
OBSTCLAE 5,625 2,724 | 258 207 6 1423
TORSION6 14,884 12,316 | 362 707 9 130

16

Here nbds denotes the number of active bounds at the solution. We find again
that the Newton code of LANCELOT requires much fewer function evaluations, but
in terms of computing time L-BFGS-B performs quite well. This may be due to the
fact that the compact representations allow us to implement the projected gradient
method with minimal computational cost. We should note, however, that L-BFGS-
B fails to solve a few of the bound constrained problems in the CUTE collection to
reasonable accuracy, and that the Newton method is more reliable in this respect.

4.2.2 Current Research and Open Questions

We have devoted much attention so far to the L-BFGS method, but this may not be
the most economical limited memory method. New algorithms designed to reduce
the amount of storage without compromising performance are proposed in [23], [60],
[27], [43]; see also [1]. It is easy to see that if the BFGS method is started with
an initial matrix that is a multiple of the identity, then sx € span{go, ..., gr}. This
suggests that there is some redundancy in storing both s; and y; in a limited memory
method, and in most of the recent proposals storage is in fact cut in half.

A variety of new limited memory methods have been proposed to realize these
savings; some of them are based on ingenious formulas for updating the informa-
tion containing the quasi-Newton update information. Even though the algorithm
proposed in [60] appears to give good performance compared with L-BFGS more
analysis and testing is necessary.

Another recently proposed idea [13] is to combine the properties of Newton and
limited memory in the Discrete Newton Method with Memory. This method attempts
to reduce the computational cost of the Hessian free Newton method by saving
information from the inner CG iteration and keeping it in the form of a limited
memory matrix. Once this information has been gathered, a sequence of limited
memory steps is performed until it is judged that a new Hessian free Newton step
is needed.

Thus the algorithm interleaves limited memory and Hessian free Newton steps,
but it does not simply alternate them. The key is to view the inner CG iteration in
Algorithm I from the perspective of quasi-Newton methods, and to realize that it
may probe the function f along directions of small curvature that would normally be
ignored by a limited memory method; this information could improve the quality of
the limited memory matrix. The Hessian free Newton step therefore serves the dual
purpose of giving good progress towards the solution and of gathering important
information for the subsequent limited memory steps.

Good results have been obtained with the Discrete Newton Method with Mem-
ory, when solving problems in a controlled setting [13]. In these experiments the
eigenvalue distribution of the Hessian was known, and the inner CG iteration was
designed to take advantage of it. Extensive numerical tests have not yet been per-
formed, and it remains to be seen if these ideas — or variations of them — will prove
to be valuable in practice.

4.3 Sparse Quasi-Newton Updates

An interesting idea that had been explored [62] and abandoned in the late 1970’s has
recently been resurrected [26], [28]. It consists of developing quasi-Newton updates
that mimic the sparsity pattern of the Hessian matrix V2 f.

In the approach described in [28], the goal is to construct a symmetric matrix
Byy1 with the same sparsity pattern as V2f, and which attempts to satisfy the
secant conditions Byii1s; = y;, j = k—m + 1,...,k, as well as possible along m
past directions. The sparse quasi-Newton matrix is constructed using the following
variational approach. Let Sj and Yj denote the matrices containing the m most

17

recent difference pairs, as in (4.9), and let Q specify the sparsity pattern of the
Hessian matrix. The matrix By41 will be defined as the solution to

ml;{HHBSk —Yill%

subject to B = BT, and B;; =0 forall i,j€Q,

where || - || denotes the Frobenius norm. Thus the secant equation Byi15; = yj,
may not be satisfied even along the latest search direction sy.

This convex optimization problem always has a solution, but to compute one
is not easy. It is shown in [28] that the solution is unique if Sy, satisfies a certain
linear independence assumption. In this case Biy; can be computed by solving a
positive definite system — but By, itself is not guaranteed to be positive definite.
The analysis, which is quite novel, also reveals the minimum number m of difference
pairs required to estimate a Hessian with a given sparsity pattern. Finding out this
minimum number, can be difficult because it requires consideration of all possible
orderings of certain sparse matrices. Nevertheless some interesting cases are simple
to analyze. For example, it is shown that 2 difference pairs are sufficient to estimate
an arrowhead matrix.

A trust region method implementing these ideas is given in [28]. Since the num-
ber of elements of the Hessian approximation By that can be estimated is lim-
ited by the number m of difference pairs in Sy and Y}, the algorithm begins by
approximating only the diagonal; after the second iteration the diagonal plus one
off-diagonal element per column is estimated, and so on. Once sufficient difference
pairs have been saved to approximate all the nonzero elements in By, the oldest
pair is replaced by a new one, as in limited memory updating.

One of the drawbacks of this approach is that the system that needs to be
solved to obtain the new sparse quasi-Newton matrix By can be very large: its
dimension equals the number of nonzeros in the lower triangular part of the Hessian.
Preliminary numerical tests appear to indicate that this sparse quasi-Newton method
requires fewer iterations than the L-BFGS method, but the difference seems to be
too small to overcome the much larger expense of the iteration. It is not known if
this approach can be made into a competitive algorithm. If this were to be the case,
its main use could be in constrained optimization, where the sparse quasi-Newton
matrix would be part of a KKT system.

5 Nonlinear Conjugate Gradient Methods

Conjugate gradient methods remain very popular due to their simplicity and low
storage requirements. They fall in the same category as limited memory and Hes-
sian free Newton methods, in that they require only gradient information (and no
information about the structure of the objective function), and use no matrix stor-
age. Even though limited memory and Hessian free methods tend to be more pre-
dictable, robust and efficient, nonliner CG methods require only a fraction of the
storage. Most of the recent work in nonlinear CG methods has focused on global
convergence properties and on the design of new line search strategies.
The search direction in all nonlinear conjugate gradient methods is given by

dy = —gr, + Brdr_1. (5.1)

There are two well-known choices [25] for 3: the Fletcher-Reeves formula

e lall?
= g P

18

and the more successful Polak-Ribiere formula

o 9i(gk — gr—1)
lgr—1ll

The new iterate is given by xg+1 = xp + apdy, where the steplength ay (usually)
satisfies the strong Wolfe conditions [45]

f(z) + orargy dy (5.3)
_UQdika (54)

flzr + ardy)
lg(zk + ardr)” dy|

where 0 < 01 < 03 < 3.

A major drawback of nonlinear CG methods is that the search directions tend to
be poorly scaled, and the line search typically several function evaluations to obtain
an acceptable steplength ay,. This is in sharp contrast with quasi-Newton and limited
memory methods which accept the unit steplength most of the time. Nonlinear CG
methods would therefore be greatly improved if we could find a means of properly
scaling dj,. Many studies have suggested search directions of the form

dy = —Hpgr + Brdr—1 (5.5)

where Hy, is a simple symmetric and positive definite matrix, often satisfying a secant
equation [40]. However, if H}, requires several vectors of storage, the economy of
the nonlinear CG iteration disappears, and its performance compared with limited
memory methods is unlikely to be as good. This is because the second term in (5.5)
may prevent dj from being a descent direction unless the line search is relatively
accurate. In addition, the last term in (5.5) can introduce bad scaling in the search
direction. So far all attempts to derive an efficient method of the form (5.5) have
been unsuccessful.

An interesting framework for studying nonlinear CG, as well as quasi-Newton and
Newton methods, is that of Successive Affine Reduction [51]. The idea is to make
curvature estimates of the Hessian matrix in a low dimensional subspace formed
by some of the most recent gradients and search directions. Quadratic termination
properties of these methods have been studied in some detail, but practical imple-
mentations have not yet been fully developed, and their effectiveness in the context
of large scale optimization remains to be demonstrated.

In an effort to improve nonlinear CG methods, some researchers have turned
to global convergence studies to gain new insights into their behavior. This work
is based on two important results concerning the Polak-Ribiere [58] and Fletcher-
Reeves methods [2]. In both cases it is assumed that the starting point zo is such that
the level set £ := {z : f(x) < f(zo)} is bounded, and that in some neighborhood
N of L the objective function f is continuously differentiable, and its gradient is
Lipschitz continuous. The nonlinear CG method is also assumed to include no
regular restarts.

It is shown in [58] that the Polak-Ribiere method may fail to approach a solu-
tion point, in the sense that the sequence {||gk||} is bounded away from zero. In
this analysis the line search always finds the first stationary point of the univariate
function ¥(«) = f(zy + ardy). Recently, however, it has been shown [36] that these
difficulties can be overcome by using a new line search strategy. More specifically,
the Polak-Ribiere iteration using this line search satisfies

liminf ||gx|| = 0. (5.6)
k— 00

However numerical results appear to indicate that only a marginal improvement over
the standard implementation of the Polak-Ribiére method is obtained.

19

A different approach is motivated by the observation [58] that some undesirable
behavior of the Polak-Ribiere method occurs if the parameter 8, becomes negative
at regular intervals. It is shown in [30] that if G is defined as

ﬁk = max{ﬁ]l:Ra 0}) (57)

and if the line search satisfies a slight modification of the strong Wolfe conditions
(5.3)-(5.4), then the global convergence result (5.6) can be established. This analysis
has been generalized in [37] by allowing a more flexible line search. Numerical
experiments again fail to show a significant improvement in performance over the
standard Polak-Ribiere method.

The analysis for the Fletcher-Reeves method is simpler. It is shown in [2] that if
the line search satisfies the strong Wolfe conditions then the Fletcher-Reeves method
is globally convergent in the sense that (5.6) is satisfied. The same result is proved
in [64] for all methods of the form (5.1) with a line search satisfying the strong Wolfe
conditions, and with any 34 such that 0 < 8, < B;®. The analysis is taken one step
further in [30], where it is shown that global convergence is obtained for any method
with |8;| < B;%. Moreover this result is tight in the following sense: there exists a
smooth function f, a starting point, and values of 3 satisfying

Bk < eBi",

for some ¢ > 1, such that the sequence of gradient norms {||gx||} is bounded away
from zero.

Even though most of these theoretical results are interesting, and some of the
proof techniques are innovative, these studies have not lead to significant practical
advances in nonlinear CG methods. Their main contribution has been a better
understanding of the crucial role played by line searches.

Acknowledgments. I would like to thank Marcelo Marazzi and Guanghui Liu for
carefully reading the manuscript and suggesting many improvements.

Bibliography

1. L. Adams and J.L. Nazareth, eds. (1996). Linear and nonlinear conjugate
gradient-related methods, STAM.

2. M. Al-Baali (1985). Descent property and global convergence of the Fletcher-
Reeves method with inexact line search, IMA Journal of Numerical Analysis 5,
121-124.

3. M. Arioli, T.F. Chan, L. S. Duff, N.I.M. Gould and J. K. Reid (1993). Computing
a search direction for large-scale linearly constrained nonlinear optimization
calculations, Technical Report TR/PA/93/94, CERFACS Toulouse, France.

4. B.M. Averick, R.G. Carter, J.J. Moré and G. Xue (1992). The Minpack-2 test
problem collection, Preprint MCS-P153-0692, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory.

5. C.H. Bischof, A. Bouaricha, P.M. Khademi and J.J Moré (1995). Computing
gradients in large scale optimization using automatic differentiation. Report
ANL/MCS-P488-0195, Argonne National Laboratory.

6. I. Bongartz, A. R. Conn, N.I.M. Gould, Ph.L. Toint (1993). CUTE: constrained
and unconstrained testing environment, Research Report, IBM T.J. Watson
Research Center, Yorktown Heights, NY.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Bouaricha and J.J. Moré (1996). A preconditioned Newton method for large-
scale optimization. Presented at the Workshop on Linear Algebra in Optimiza-
tion, Albi, France.

M.G. Breitfeld and D.F. Shanno (1994). Computational experience with modi-
fied log-barrier functions for large-scale nonlinear programming, in W.W. Hager,
D.W. Hearn and P.M. Pardalos, eds., Large Scale Optimization: State of the
Art, Kluwer Academic Publishers B.B.

A. Buckley and A. LeNir (1985). BBVSCG —A variable storage algorithm for
function minimization, ACM Transactions on Mathematical Software 11, 2, pp.
103-119.

A. Buckley (1989). Remark on algorithm 630, ACM Transactions on Mathe-
matical Software 15, 3, pp. 262-274.

R. H. Byrd, J. Nocedal and R. B. Schnabel (1994). Representation of quasi-
Newton matrices and their use in limited memory methods, Mathematical Pro-
gramming 63, 4, pp. 129-156.

R. H. Byrd, P. Lu, J. Nocedal and C. Zhu (1995). A limited memory algorithm
for bound constrained optimization, SIAM Journal on Scientific Computing,
16, 5, pp. 1190-1208.

R. H. Byrd, J. Nocedal and C. Zhu (1995). Towards a discrete Newton method
with memory for large scale optimization, to appear in Nonlinear Optimization
and Applications, G. Di Pillo and F. Giannessi, eds. Plenum.

T.F. Coleman (1991). Large-Scale Numerical Optimization: Introduction and
Overview, Cornell Theory Center, Advanced Computing Research Institute,
Technical Report 85, pp. 1-28.

T.F. Coleman and J. Moré (1984). Estimation of sparse Hessian matrices and
graph coloring problems, Mathematical Programming 28, 243-270.

T.F. Coleman (1984). Large Sparse Numerical Optimization, Lecture Notes in
Computer Sciences 165, Springer Verlag.

A.R.Conn, N.LM. Gould, Ph.L. Toint (1992). LANCELOT: a FORTRAN pack-
age for large-scale nonlinear optimization (Release A), Number 17 in Springer
Series in Computational Mathematics, Springer-Verlag, New York.

AR. Conn, N.ILM. Gould, A. Sartenaer and Ph. L. Toint (1996). On iterated-
subspace minimization methods for nonlinear optimization, in Linear and Non-
linear Conjugate Gradient-Related Method, L. Adams and L. Nazareth, eds,
STAM.

A.R. Conn, N.I.M. Gould and Ph. L. Toint (1991). Convergence of quasi-Newton
matrices generated by the symmetric rank one update, Math. Prog. 2, 177-195.

A. Curtis, M.J.D. Powell and J.K. Reid (1974). On the Estimations of Sparse
Jacobian Matrices, J.I.M.A. 13, pp. 117-120.

R.S. Dembo, S.C. Eisenstat and T. Steihaug (1982). Inexact Newton methods,
SIAM J. Numer. Anal. 19, 400-408.

J.E. Dennis, Jr. and R.B. Schnabel (1983). Numerical Methods for Un-
constrained Optimization and Nonlinear Equations, Englewood Cliffs, N.J.,
Prentice-Hall.

21

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

M.C. Fenelon (1981). Preconditioned conjugate-gradient-type methods for
large-scale unconstrained optimization, Ph.D. Dissertation, Stanford Univer-
sity.

R. Fletcher (1993). An overview of unconstrained optimization, Tech. Report
NA/149, Department of Mathematics and Computer Science, University of
Dundee.

R. Fletcher (1987). Practical Methods of Optimization 1, Unconstrained Opti-
mization, John Wiley & Sons (New York).

R. Fletcher (1995). An optimal positive definite update for sparse Hessian ma-
trices, SIAM Journal on Optimization, 5 (1): 192-218, February 1995.

R. Fletcher (1990). Low storage methods for unconstrained optimization, Com-
putational Solutions of Nonlinear Systems of Equations, eds. E. L. Allgower and
K. Georg, Lectures in Applied Mathematics 26, AMS Publications, Providence,
RI.

R. Fletcher, A. Grothey and S. Leyffer (1996). Computing Sparse Hessian and
Jacobian approximations with optimal hereditary properties, Tech. Report, De-
partment of Mathematics, University of Dundee.

D.M. Gay (1996). More AD of nonlinear AMPL models: computing Hessian
information and exploiting partial separability, to appear in the Proceedings of
the Second International Workshop on Computational Differentiation.

J. C. Gilbert and J. Nocedal (1990). Global convergence properties of conjugate
gradient methods for optimization, SIAM Journal on Optimization, 2, (1).

J.C. Gilbert and C. Lemaréchal (1989). Some numerical experiments with vari-
able storage quasi-Newton algorithms, Mathematical Programming 45, pp. 407—
436.

P. E. Gill, W. Murray and M. H. Wright (1981). Practical Optimization, London,
Academic Press.

G.H. Golub and C.F. Van Loan (1989). Matriz Computations (Second Edition),
The Johns Hopkins University Press, Baltimore and London.

A. Griewank and Ph.L. Toint (1982). On the unconstrained optimization of
partially separable objective functions, in Nonlinear Optimization 1981 , M.J.D.
Powell, ed., Academic Press (London), 301-312.

A. Griewank and G.F. Corliss, eds. (1991). Automatic Differentiation of Algo-
rithms: Theory, Implementation and Application, STAM publications.

L. Grippo and S. Lucidi (1995). A globally convergent version of the Polak-
Ribiere gradient method, Dipartimento di Informatica e Sistematica, Universita
degli Studi di Roma “La Sapienza”, R. 08-95.

J. Han, G. Liu, D. Sun and H. Yin (1996). Relaxing sufficient descent condition
for nonlinear conjugate gradient methods. Tech. Report, Institute of Applied
Mathematics, Academia Sinica, China.

T. Head-Gordon, F.H. Stillinger, D.M. Gay and M.H. Wright (1992). Poly(L-
alanine) as a universal reference material for understanding protein energies
and structures, Proceedings of the National Academy of Sciences, USA, 89, pp.
11513-11517.

22

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

92.

53.

o4.

35.

56.

o7.

N.J. Higham (1996). Accuracy and Stability of Numerical Algorithms, STAM
Publications.

Y.F. Hu and C. Storey (1990). On unconstrained conjugate gradient optimiza-
tion methods and their interrelationships, Mathematics Report Number A129,
Loughborough University of Technology.

M.T. Jones and P. Plassman (1995). An improved incomplete Cholesky factor-
ization, ACM Trans. on Mathematical Software, 21 pp. 5-17.

N.K. Karmakar and K.G. Ramakrishnan (1991). Computational results of an
interior point algorithm for large scale linear programming, Mathematical Pro-
grammsing, 52, pp. 555-586.

M.W. Leonard (1995). Reduced Hessian quasi-Newton methods for optimiza-
tion. Ph.D. Dissertation, University of California, San Diego.

D. C. Liu and J. Nocedal (1989). On the limited memory BFGS method for
large scale optimization, Mathematical Programming, pp. 503-528.

J. J. Moré and D.J. Thuente (1994). Line search algorithms with guaranteed
sufficient decrease, ACM Transactions on Mathematical Software, Vol. 20, No.
3, pp. 286-307.

S.G. Nash (1984). Newton-type minimization via the Lanczos method, SIAM.
J. Numerical Analysis, 21,4.

S.G. Nash (1984). User’s guide for TN/TNBC: FORTRAN routines for nonlin-
ear optimization, Report 397, Mathematical Sciences Dept., The Johns Hopkins
University.

S.G. Nash (1985). Preconditioning of truncated-Newton methods, STAM Jour-
nal on Scientific and Statistical Computing 6, 599-616.

S.G. Nash and J. Nocedal (1991). A numerical study of the limited memory
BFGS method and the truncated-Newton method for large scale optimization,
SIAM Journal on Optimization, 1, 3, pp. 358-372.

A. Neumaier (1996). Molecular modeling of proteins: a feasibility study of
mathematical prediction of protein structure, manuscript.

J.L. Nazareth, (1986). The method of successive affine reduction for nonlinear
minimization, Mathematical Programming, 35, pp. 373-387.

J. Nocedal (1980). Updating quasi-Newton matrices with limited storage, Math-
ematics of Computation 35, pp. 773-782.

J. Nocedal (1992). Theory of algorithms for unconstrained optimization, Acta
Numerica, 1, pp.199-242.

D.P. O’Leary (1982). A discrete Newton algorithm for minimizing a function of
many variables, Mathematical Programming 23, 20-33.

C.C. Paige and M.A. Saunders (1975). Solution of sparse indefinite systems of
linear equations, SIAM. J. Numer. Anal., 12, pp. 617-629.

M.J.D. Powell (1970a). A hybrid method for nonlinear equations, in Numerical
Methods for Nonlinear Algebraic Equations, (P. Rabinowitz, ed.), Gordon and
Breach, London, pp. 87-114.

M.J.D. Powell (1984). On the global convergence of trust region algorithm for
unconstrained optimization, Mathmatical Programming 29, pp. 297-303.

23

58.

99.

60.

61.

62.

63.

64.

65.

M.J.D. Powell (1984). Nonconvex minimization calculations and the conju-
gate gradient method, in Lecture Notes in Mathematics 1066, Springer-Berlag
(Berlin), 122-141.

T. Schlick and A. Fogelson (1992). TNPACK - A truncated Newton package for
large-scale problems: I. Algorithms and usage. ACM Transactions on Mathe-
matical Software, 18,1,46-70.

D. Siegel (1992). Implementing and modifying Broyden class updates for large
scale optimization, Report DAMPT 1992/NA12, University of Cambridge.

T. Steihaug (1983). The conjugate gradient method and trust regions in large
scale optimization, STAM J. Num. Anal. 20, 626—637.

Ph. L. Toint (October 1977). On sparse and symmetric matrix updating subject
to a linear equation, Mathematics of Computation, 31 (140): 954-961.

Ph.L. Toint (1983). VEO8AD, a routine for partially separable optimization
with bounded variables, Harwell Subroutine Library, A.E.R.E. (UK).

D. Touati-Ahmed and C. Storey (1990), Efficient hybrid conjugate gradient
techniques, Journal of Optimization Theory and Applications 64, 379-397.

C. Zhu, R.H. Byrd, P. Lu and J. Nocedal (1995). L-BFGS-B: FORTRAN sub-
routines for large-scale bound constrained optimization, Tech. Report, Depart-
ment of Electrical Engineering and Computer Science, Northwestern University.

24

