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Abstract

This paper reviews, extends and analyzes a new class of penalty methods for
nonlinear optimization. These methods adjust the penalty parameter dynami-
cally; by controlling the degree of linear feasibility achieved at every iteration,
they promote balanced progress toward optimality and feasibility. In contrast
with classical approaches, the choice of the penalty parameter ceases to be
a heuristic and is determined, instead, by a subproblem with clearly defined
objectives. The new penalty update strategy is presented in the context of
sequential quadratic programming (SQP) and sequential linear-quadratic pro-
gramming (SLQP) methods that use trust regions to promote convergence.
The paper concludes with a discussion of penalty parameters for merit func-
tions used in line search methods.
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1 Introduction

In recent years, there has been a resurgence of interest in exact penalty methods
[1, 2, 10, 25, 28, 31, 37] because of their ability to handle degenerate problems and
inconsistent constraint linearizations. Exact penalty methods have been used suc-
cessfully to solve mathematical programs with complementarity constraints (MPCCs)
[3, 30], a class of problems that do not satisfy the Mangasarian-Fromovitz constraint
qualification at any feasible point. They are also used in nonlinear programming al-
gorithms to ensure the feasibility of subproblems and to improve the robustness of
the iteration [6, 24]. In this paper we discuss a new strategy for choosing the penalty
parameter that overcomes (at least for a class of algorithms) the difficulties that have
plagued penalty methods for many years. The new strategy steers penalty methods so
as to ensure balanced progress toward feasibility and optimality. To select a penalty
parameter that achieves this goal, one must solve an additional subproblem at some
iterations.

Penalty methods have undergone three stages of development since their introduc-
tion in the 1950s. They were first seen as vehicles for solving constrained optimization
problems by means of unconstrained optimization techniques. This approach has not
proved to be effective, except for special classes of applications. In the second stage,
the penalty problem is replaced by a sequence of linearly constrained subproblems.
These formulations, which are related to the sequential quadratic programming ap-
proach, are much more effective than the unconstrained approach but they leave open
the question of how to choose the penalty parameter. In the most recent stage of de-
velopment, penalty methods adjust the penalty parameter at every iteration so as to
achieve a prescribed level of linear feasibility. The choice of the penalty parameter
then ceases to be a heuristic and becomes an integral part of the step computation.

An earlier form of the penalty update strategy discussed in this paper is presented
in [6], in the context of a successive linear-quadratic programming (SLQP) algorithm.
The goal of this paper is to analyze and generalize this strategy to allow its application
in other methods. In sections 2 and 3 we present the classical penalty framework and
the unconstrained and linearly constrained formulations. The limitations of existing
penalty parameter update strategies are examined in section 4. The new penalty
strategy is presented in section 5 in the context of sequential quadratic programming
(SQP) methods. Later in that section we consider its application to an SLQP method
and discuss some modification of the strategy presented in [6]. In section 6 we discuss
the relationship between the new penalty method and other trust region approaches.
We change the focus slightly in section 7, where we consider merit functions for
line search methods, and in particular, how to choose the penalty parameter in this
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context.

2 Classical Penalty Framework

We are concerned with the solution of nonlinear programming problems of the form

minimize
x

f(x) (2.1a)

subject to hi(x) = 0, i ∈ E , (2.1b)

gi(x) ≥ 0, i ∈ I, (2.1c)

where the functions f, hi, gi : IRn → IR are assumed to be twice continuously differen-
tiable. We can rephrase (2.1) as the unconstrained minimization of an exact penalty
function. In this paper we are interested only in nonsmooth exact penalty functions
as typified by the `1 penalty function

φν(x) = f(x) + ν
∑

i∈E

|hi(x)|+ ν
∑

i∈I

[gi(x)]−, (2.2)

where
[y]− = max(0,−y).

As is well known, for appropriate values of the penalty parameter ν, stationary points
of φν are either KKT points of the nonlinear program (2.1) or infeasible stationary
points; see e.g. [7]. This property is the most appealing feature of exact penalty meth-
ods because one choice of ν may be adequate for the entire minimization procedure.
Exact penalty methods are therefore less dependent on the penalty parameter than
the quadratic penalty method for which a sequence of subproblems with a divergent
series of penalty parameters must be solved. Use of such a function was proposed by
Zangwill [43] and Pietrzykowski [35] and methods using it were proposed by Conn
and Pietrzykowski [12, 13].

An algorithmic framework that forms the basis for many penalty methods pro-
posed in the literature is as follows. We present it here in the context of the `1 penalty
function.
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Algorithm 2.1: Classical `1 Penalty Method

Given ν0 > 0, tolerance τ > 0, starting point xs
0;

for k = 0, 1, 2, . . .
Find an approximate minimizer xk of φν(x), starting at xs

k;
if

∑

i∈E |hi(xk)|+
∑

i∈I [gi(xk)]
− ≤ τ

STOP with approximate solution xk;
else

Choose new penalty parameter νk+1 > νk;
Choose new starting point xs

k+1
;

end (if)
end (for)

The minimization of the `1 penalty function φν(x) is difficult because it is non-
smooth. We cannot apply algorithms for smooth unconstrained minimization, and
general techniques for nondifferentiable optimization, such as bundle methods [27],
are not efficient in this context, as they do not take account of the special nature of
the nondifferentiabilities. As a result of these obstacles, this unconstrained approach
does not translate easily into a general purpose technique for nonlinear programming.
On the other hand, it is well understood how to compute minimization steps using a
suitable model of φν(x), as we discuss next.

3 Linearly Constrained Reformulation

A breakthrough in penalty methods (Fletcher [19]) was the introduction of algorithms
that compute steps d based on a piecewise linear-quadratic model of φν , in a way that
resembles SQP methods. The model is given by

qν(d) = f(x) +∇f(x)T d + 1

2
dT Wd + ν

∑

i∈E |hi(x) +∇hi(x)T d|+

ν
∑

i∈I

[gi(x) +∇gi(x)T d]−, (3.3)

where W is a symmetric matrix approximating the Hessian of the Lagrangian of the
nonlinear problem (2.1). The model qν(d) is not smooth, but we can formulate the
problem of minimizing it as a smooth quadratic programming problem by introducing
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artificial variables ri, si, and ti, as follows:

minimize
d,r,s,t

f(x) +∇f(x)T d + 1

2
dT Wd + ν

∑

i∈E(ri + si) + ν
∑

i∈I ti (3.4a)

subject to hi(x) +∇hi(x)T d = ri − si, i ∈ E , (3.4b)

gi(x) +∇gi(x)T d ≥ −ti, i ∈ I, (3.4c)

r, s, t ≥ 0. (3.4d)

If a trust region constraint of the form ‖d‖∞ ≤ ∆ is added, (3.4) is still a quadratic
program. We can solve (3.4) using a standard quadratic programming algorithm.

An important advantage of this approach is that by imposing (approximate) lin-
earizations of the constraints, the step d is often able to make balanced progress to-
ward feasibility and optimality. In fact, when the artificial variables r, s, t are small,
(3.4) is closely related to the sequential quadratic programming (SQP) method which
is known to be very effective in practice. The step of a classical SQP method is given
by

minimize
d

f(x) +∇f(x)T d + 1

2
dT Wd (3.5a)

subject to hi(x) +∇hi(x)T d = 0, i ∈ E , (3.5b)

gi(x) +∇gi(x)T d ≥ 0, i ∈ I. (3.5c)

As is well known, however, the constraints (3.5b)-(3.5c) can be inconsistent; in con-
trast problem (3.4) is always feasible. Thus the penalty approach that computes steps
by (3.4) can be seen as a regularized SQP method in which the constraints have been
relaxed.

Algorithms based on the formulation (3.4), such as the S`1QP method of Fletcher
[19], have been shown to possess favorable global convergence properties. They were
implemented in the 1980s and early 1990s, and although they appear to have per-
formed well on some tests, they were never incorporated into production-quality soft-
ware. We conjecture that this was mainly due to the difficulties of choosing the
penalty parameter. Without a reliable update procedure for ν, it is not possible to
obtain uniform robustness and efficiency over a range of problems.

4 The Crucial Role of the Penalty Parameter

The strategy for choosing and updating the penalty parameter νk is crucial to the
practical success of the classical `1 penalty method of section 2. If the initial choice ν0

is too small, many cycles of the general framework outlined in section 2 may be needed
to determine an appropriate value. In addition, the iterates may move away from the
solution in these initial cycles, in which case the minimization of φνk

(x) should be
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Figure 1: Penalty function for problem (4.6) with ν > 1 (left) and ν < 1 (right).

terminated early, and xs
k should possibly be reset to a previous iterate. If, on the

other hand, νk is excessively large, the penalty function may be difficult to minimize
as emphasizing constraint feasibility too much may lead to small steps (or the rejection
of good steps), possibly requiring a large number of iterations. The difficulties caused
by an inappropriate value of ν are illustrated in the following examples.

Example 1. Consider the problem:

min x subject to x ≥ 1, (4.6)

whose solution is x∗ = 1. We have that

φν(x) =

{

(1− ν)x + ν if x < 1
x if x ≥ 1.

(4.7)

The penalty function has a minimizer at x∗ = 1 when ν > 1, but is a monotonically
increasing function when ν < 1; see Figure 1. If, for example, the current iterate
is xk = 1/2 and ν < 1, then almost any implementation of a penalty method will
give a step that moves away from the solution. This behavior will be repeated,
producing increasingly poorer iterates, until the penalty parameter is increased above
the threshold value of 1. 2

To attempt to overcome these difficulties, several strategies have been proposed
to update νk at every iteration instead of waiting for the approximate minimization
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of φν(x) to be completed. One strategy is to set νk to be modestly larger than ‖λk‖∞
where λk is the current Lagrange multiplier estimate. This choice is based on the
theory of penalty functions [26] which states that in a neighborhood of a solution x∗

satisfying certain regularity assumptions, νk can be set to be any value larger than
‖λ∗‖∞, where λ∗ is a vector of optimal Lagrange multipliers for (2.1). Computational
experience has shown, however, that this strategy is not generally successful because
it may produce an overly large penalty parameter (if an intermediate Lagrange mul-
tiplier estimate λk becomes excessively large) or an underestimate that may lead to
the difficulties just described.

Even if we knew an appropriate value of ν∗ at the solution x∗, this value may be
inadequate at the starting point or at iterates away from the solution. The following
example shows that it is not possible to prescribe in advance a value of the penalty
parameter that is adequate at every iteration.

Example 2. Consider the problem :

min x3 subject to x ≥ −1. (4.8)

The corresponding `1 penalty function is:

φν(x) = x3 + ν max(0,−x− 1).

The solution x∗ = −1 of (4.8) is a local minimizer of φν provided that ν > λ∗ = 3.
However, φν is unbounded below as x → −∞, and for any value of ν, there is a
starting point x0, such that there is no decreasing path in φν from x0 to x∗; see
Figure 2. For such a starting point, say x0 = −2 in Figure 2, a local optimization
algorithm cannot be expected to find x∗ by minimizing φν . 2

In spite of this, one could consider the heuristic strategy of setting the penalty
parameter to a very large value (say 1010) and keeping it fixed throughout the opti-
mization process. The hope is that such a value may be adequate for most problems
(and starting points) at hand. As we discuss in the next section, this is not to be
recommended because excessively large penalty parameters can lead to inefficient
behavior, damaging roundoff errors, and failures.

The difficulties of choosing appropriate values of νk in penalty methods [18] caused
nonsmooth penalty methods to fall out of favor during the early 1990s and stimulated
the development of filter methods which do not require a penalty parameter [21]. The
new approach for updating the penalty parameter discussed in section 5 promises,
however, to resolve the difficulties mentioned above. By requiring that each step make
progress in linear feasibility that is proportional to the optimal possible progress, the
new strategy will automatically increase the penalty parameter in the examples above
and overcome the undesirable behavior just described.
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Figure 2: Penalty function for problem (4.8) with ν = 10.

5 A New Penalty Parameter Update Strategy

We now propose a set of guidelines for updating the penalty parameter that can be
implemented in a variety of exact penalty methods. We present them first in the
context of a sequential quadratic programming method, and apply them later to a
sequential linear-quadratic programming method.

We noted in section 3 that a penalty-SQP method computes steps by solving
problem (3.4). In a trust region variant of this approach, the subproblem takes the
form [18, 19]

minimize
d,r,s,t

f(x) +∇f(x)T d +
1

2
dT Wd + ν

∑

i∈E

(ri + si) + ν
∑

i∈I

ti (5.9a)

subject to hi(x) +∇hi(x)T d = ri − si, i ∈ E , (5.9b)

gi(x) +∇gi(x)T d ≥ −ti, i ∈ I, (5.9c)

‖d‖∞ ≤ ∆, (5.9d)

r, s, t ≥ 0, (5.9e)

where ∆ is a trust region radius. The problem (5.9) is always feasible but the choice
of the penalty parameter ν influences the quality of the step. Rather than employ-
ing heuristics, our strategy considers the optimal improvement in linear feasibility
achievable inside the trust region. This will help us determine the amount of fea-
sibility improvement that is reasonable to expect from (5.9). Thus we consider the
auxiliary subproblem

minimize
d,r,s,t

∑

i∈E

(ri + si) +
∑

i∈I

ti (5.10a)
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subject to hi(x) +∇hi(x)T d = ri − si, i ∈ E , (5.10b)

gi(x) +∇gi(x)T d ≥ −ti, i ∈ I, (5.10c)

‖d‖∞ ≤ ∆, (5.10d)

r, s, t ≥ 0, (5.10e)

which can be viewed as a specialization of (5.9) with ν = ∞. Note that (5.10) is a
linear program (LP).

The proposed guidelines for updating the penalty parameter are as follows.

Updating Guidelines

1. If there is a step d that lies inside the trust region (5.10d) and satisfies the
linearized constraints

hi(x) +∇hi(x)T d = 0, i ∈ E , (5.11a)

gi(x) +∇gi(x)T d ≥ 0, i ∈ I, (5.11b)

we should compute such a step. In other words, the penalty parameter strategy
should choose ν large enough in this case such that all artificial variables r, s, t
in (5.9) are zero.

2. If there is no step inside the trust region (5.10d) that satisfies the constraints
(5.11a)-(5.11b), choose ν so that the reduction in the infeasibility of the con-
straints (5.11a)-(5.11b) is proportional to the best possible reduction, which is
defined as the reduction obtained with ν =∞ (i.e. by solving (5.10)).

3. In addition to the two previous requirements on the step d, we want the change
in the penalty function to be a good measure of progress made by d. Thus when
the step yields a large reduction in the linear model

mx(d) =
∑

i∈E

|hi(x) +∇hi(x)T d|+
∑

i∈I

[gi(x) +∇gi(x)T d]− (5.12)

of the constraints, ν should be chosen large enough such that the reduction in
the quadratic model (3.3) of the penalty function is large also.

A more precise description of these guidelines is as follows. Let d(ν) denote the
solution of the quadratic program (5.9) for a given value ν, and denote by d(ν∞) the
solution of (5.10). (We can also view d(ν∞) as a minimizer of mx(d) subject to the
trust region constraint (5.10d).)

The first guideline asks that if mx(d(ν∞)) = 0, then the penalty parameter ν+

chosen at the current iteration should be large enough such that mx(d(ν+)) = 0. The
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second requirement stipulates that, when the linearized constraints are not feasible,
ν+ should ensure that

mx(0)−mx(d(ν+)) ≥ ε1[mx(0)−mx(d(ν∞))], (5.13)

where ε1 ∈ (0, 1) is a prescribed parameter.
Beyond these two conditions, the third condition requires that the penalty function

give sufficient recognition to improvement in feasibility in order to promote acceptance
of a good step. Suppose the step d(ν+) that minimizes qν+

makes good progress on
feasibility, so that the first two conditions are satisfied, but decreases qν+

by only
a small amount. Then, nonlinearities in the objective f and constraints h, g, could
overwhelm this small improvement, and the step d(ν+) could cause the actual value of
the penalty function φν+

to increase, and thus be rejected. To prevent this undesirable
behavior, after computing a trial value ν+ of the penalty parameter so that the first
two requirements are satisfied, we increase it further if necessary to ensure that

qν+
(0)− qν+

((d(ν+)) ≥ ε2ν+[mx(0)−mx(d(ν+))], (5.14)

where ε2 ∈ (0, 1). We note that a condition similar to (5.14) has been used for the merit
function in a variety of trust region methods [8, 14, 16, 29, 34] that compute steps d
without reference to a penalty function. Condition (5.14) has some resemblance to
a condition proposed by Yuan [42] for adjusting the penalty parameter in an exact
penalty method. However, Yuan’s condition compares the actual decrease in the
penalty function to infeasibility, and he uses the condition to update the penalty
parameter for use in the next step.

We summarize the discussion by providing a concrete strategy that implements
the guidelines described above.
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Algorithm 5.1: Penalty Parameter Update Strategy

Initial data: (xk, νk−1, ∆k) and the parameters ε1, ε2 ∈ (0, 1).

1. Solve quadratic program (5.9) with (xk, νk−1, ∆k) to get d(νk−1). If
d(νk−1) is linearly feasible (i.e., mxk

(d(νk−1)) = 0), set ν+ ← νk−1 and
proceed to step 4.

2. Solve the linear program (5.10) to get d(ν∞). If d(ν∞) is linearly feasible,
choose some ν+ > νk−1 such that mxk

(d(ν+)) = 0 and proceed to step
4.

3. Choose some ν+ > νk−1 such that the solution d(ν+) of (5.9) satisfies
(5.13).

4. If ν+ satisfies (5.14), set νk ← ν+; else choose, νk > ν+ such that d(νk)
satisfies (5.14).

A variant of this algorithm would treat the linear feasible and infeasible cases equally.
Instead of insisting that mx(d(ν+)) = 0 whenever d(ν∞) is linearly feasible, one can
accept any trial values of ν that satisfy (5.13). We expect this approach to be effective
in practice, but to ensure a fast rate of convergence, the parameter ε1 must vary, and
as the iterates approach a solution, it must converge to 1.

Another variant consists of not recomputing the vector d(νk) in step 4 of Algo-
rithm 5.1. Instead, we can keep the vector d(ν+) from the previous steps of Al-
gorithm 5.1 (but during the same iteration) and increase ν as necessary to satisfy
condition (5.14).

Algorithm 5.1 may call for additional solves of the linear and quadratic programs
given by (5.10) and (5.9) to determine an appropriate value of ν. These extra solves
are potentially expensive, but the hope is that the additional expense is offset by a
reduction in the number of iterations of the SQP method. We have not yet developed
a software implementation of the penalty SQP method just outlined, and therefore,
cannot evaluate the computational tradeoffs of the penalty update strategy. However,
we have produced a software implementation for the SLQP method discussed next,
and the results are highly encouraging.
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5.1 Application to a Sequential Linear-Quadratic Program-
ming Method

SLQP methods [6, 11, 22] compute a step in two stages. First, a linear program
(LP) is solved to identify a working set W . Then an equality constrained quadratic
program (EQP) is solved in which the constraints in the working set W are imposed
as equalities, while the remaining constraints are temporarily ignored.

The need for a penalty function arises in the linear programming phase which has
the form

minimize
d

f(x) +∇f(x)T d (5.15a)

subject to hi(x) +∇hi(x)T d = 0, i ∈ E (5.15b)

gi(x) +∇gi(x)T d ≥ 0, i ∈ I (5.15c)

‖d‖∞ ≤ ∆. (5.15d)

A trust region constraint is necessary in (5.15) to ensure that the LP is not unbounded;
it also encourages that only locally active constraints are added to the working set.
As before, we can ensure the feasibility of the constraints (5.15b)-(5.15d) by following
an `1 penalty approach. Thus we reformulate the LP phase as

minimize
d,r,s,t

f(x) +∇f(x)T d + ν
∑

i∈E

(ri + si) + ν
∑

i∈I

ti (5.16a)

subject to hi(x) +∇hi(x)T d = ri − si, i ∈ E (5.16b)

gi(x) +∇gi(x)T d ≥ −ti, i ∈ I (5.16c)

‖d‖∞ ≤ ∆ (5.16d)

r, s, t ≥ 0. (5.16e)

We denote the solution of this problem as dLP(ν). The penalty update guidelines
will be applied to choose a suitable penalty parameter value for problem (5.16). The
constraints active at the solution of this LP are used to determine a working set W
of equality constraints, subject to which a quadratic model of the penalty function is
minimized. The total step of the algorithm is a combination of the steps obtained in
the linear programming and equality constrained phases; see [6, 22].

The subproblem (5.16) is identical to (5.9) except for the absence of the quadratic
term 1

2
dT Wd in (5.9a), but this does not alter in any way the goals of our updating

strategy. Instead of the quadratic model qν(d) given by (3.3), we now consider the
following piecewise linear model of φν :

`ν(d) = f(x)+∇f(x)T d+ν
∑

i∈E

|hi(x)+∇hi(x)T d|+ν
∑

i∈I

[gi(x)+∇gi(x)T d]−. (5.17)
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Algorithm 5.1 is applicable in the SLQP context, with the following changes. We
denote by dLP(ν∞) the solution of (5.10). Throughout Algorithm 5.1, we make the
replacement d← dLP, and condition (5.14) takes the form

`ν+
(0)− `ν+

(dLP(ν+)) ≥ ε2ν+[mx(0)−mx(d
LP(ν+))]. (5.18)

The strategy given in Algorithm 5.1 has been implemented in the SLQP method
that forms part of the Knitro 4.0 software package [40]; it is available under the
option Knitro-Active. It initializes ν0 = 10 at the beginning of the algorithm, and
sets ε1 = 0.1 in (5.13) and ε2 = 0.5 in (5.14). The implementation of Steps 2, 3 and 4
is achieved by increasing νk−1 by a factor of 10 and re-solving (5.16) until the desired
condition is satisfied. (An earlier version of this penalty update strategy is described
in [6]. )

Numerical tests with Knitro-Active indicate that Algorithm 5.1 is substantially
more efficient and robust than classical strategies that use a more static penalty
update strategy. Although Algorithm 5.1 calls for potentially many extra linear
programs to be solved in selecting the penalty parameter, the cost of these extra
LPs has proved to be fairly small in practice for two reasons. Firstly, we have noticed
that the strategy described in Algorithm 5.1 typically finds an adequate value of the
penalty parameter quickly, after which it stabilizes resulting in a small number of
extra LPs and a reduction in the overall number of outer iterations compared with
other heuristic techniques for modifying the penalty parameter. Secondly, when using
a simplex method, the extra LPs with varying values of ν which need to be solved
are typically solved very quickly using warm starts. In our tests on a large set of test
problems, we found that the number of simplex iterations used in solving the extra
LPs was less than three percent of the total number of simplex iterations used in
computing the steps d actually taken.

A global convergence analysis of a penalty SLQP method is given in [7]. In that
study, condition (5.14) is replaced by the condition

`ν+
(0)− `ν+

((dLP(ν+)) ≥ ε2ν+[mx(0)−mx(d
LP(ν∞))],

which is less restrictive than (5.14) because mx(d
LP(ν)) ≥ mx(d

LP(ν∞)). Therefore
the analysis in [7] is of broad applicability.

5.2 Behavior on Three Examples

Let us examine the behavior of the penalty update strategy of Algorithm 5.1 on the
two examples given in section 4 and on a linear programming problem studied by
Fletcher [20].

Example 1, Revisited.
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Figure 3: Penalty function for problem (4.8) after adjustment of penalty parameter.

Suppose that xk = 1/2, νk−1 = 0.1 and that W = 0 in (5.9). Let us denote the
current trust region radius by ∆k. For this value of ν, the artificial variable t is not
zero and the step generated by (5.9) would move away from the solution. For ν =∞
we see that if ∆k ≥

1

2
then the artificial variable t will be set to zero and the step d

will be feasible. Algorithm 5.1 would then increase ν until t is driven to zero, that
is, it will choose νk ≥ 1. On the other hand, if ∆k < 1

2
then by setting ν = ∞ the

artificial variable t is not driven to zero, but takes the value 1

2
−∆k. Algorithm 5.1

will choose νk to satisfy (5.13), which in this case requires ν > 1 for any ε1 ∈ (0, 1).
In either case the algorithm will perform as desired.

Example 2, Revisited.
For simplicity, we assume again that W = 0 in (5.9). At an iterate xk < −1 we

have that mk(d) = max(−xk−1−d, 0), and d(ν∞) = min(∆k,−1−xk). The linearized
model of the penalty function is given by `ν(d) = 3x2

kd + ν max(−xk − 1 − d, 0). If
we want d(ν) to make any progress on feasibility, we must have d(ν) > 0, and this
can only occur if ν > 3x2

k. If ν+ is chosen that large, then d(ν+) = min(∆k,−1 −
xk) = d(ν∞), and (5.13) is satisfied. If we also impose (5.14), then we must have
ν > 3x2

k/(1 − ε2). Now if ν+ is chosen to have such a large value, then it is still the
case that φν+

(x) is unbounded below but φ′
ν+

(x) < 0 on the interval [xk,−1]; see
Figure 3 where we use the value ν = 15, which is sufficiently large when xk = −2.
By increasing ν we have enlarged the basin of attraction of the solution to include
the current iterate; thus a minimization method on φν should be expected to move
toward the solution x∗ = −1, indicating that φν is a useful penalty function.

Example 3: ADLITTLE



15

The problem ADLITTLE from the Netlib LP collection [23] was used by Fletcher
[20] to illustrate the difficulties of designing a robust penalty method. For the `1

penalty function to have a minimizer at the solution of this linear program, ν must
be at least as large as roughly 3.31× 103.

Consider a penalty method that computes a step by minimizing (3.3), i.e. by
solving (3.4). We want to keep the penalty parameter ν as small as possible to avoid
ill-conditioning and the desired threshold value of 3.31× 103 is unknown to the algo-
rithm at the outset. We expect that if we choose a value of ν less than the threshold,
then the minimization of the penalty function will terminate without driving the con-
straints to zero and we will be alerted to increase the penalty parameter. However,
Fletcher points out that if ν is slightly less than 3.31 × 103, the function (3.3) be-
comes unbounded. Therefore a penalty method which does not dynamically update
the penalty parameter based on progress in linear feasibility will generate a sequence
of iterates that moves away from the feasible region. (We confirmed this behavior
experimentally.)

We applied the exact penalty method implemented in Knitro-Active which uses
Algorithm 5.1 to select the penalty parameter. Choosing ν0 = 10, setting the initial
trust region radius to a very large number (∆0 = 1010), and turning off the scaling
feature of Knitro, we observed that the algorithm immediately increases the penalty
parameter to 104 which is sufficient to achieve feasibility, and solves the problem in
one iteration. This is expected, because for a large initial trust region, the constraints
(5.15b)-(5.15d) are consistent and Algorithm 5.1 forces the penalty parameter large
enough to achieve feasibility such that the solution of (5.10) corresponds to the solu-
tion of the original LP defined by ADLITTLE.

We repeated the experiment with ∆0 = 10. This initial ∆0 is small enough such
that the algorithm cannot achieve linear feasibility in one step. Although ADLITTLE

is a linear program, this information is not given to Knitro-Active (which assumes
that the problem is a general nonlinear program). As a result, it solves a sequence of
penalty problems of the form (5.10), adjusting ν and ∆ as it progresses. The problem
was solved in 6 iterations, with a final value of the penalty parameter (achieved at
iteration 3) of 104. Therefore the algorithm behaved as expected, both with large and
small initial trust regions. 2

We conclude this section with some remarks about alternative strategies for up-
dating the penalty parameter. One simple strategy is to choose a very large and fixed
value of ν for all problems. The hope is that if a scale-invariant Newton-type method
is used to generate steps, the ill-conditioning introduced by a large penalty parameter
may not be detrimental.

We experimented with running Knitro-Active using an initial penalty param-
eter value of ν = 105 and observed a degradation of performance. The number of
problems (from a subset of the CUTEr test set) solved successfully went from 485
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out of 616 to 449. When we tested an initial value of ν = 1010, the number of prob-
lems successfully solved dropped to only 321. Many of the failures caused by large
values of ν seemed to occur because, near the feasible region, there are often small
increases in infeasibility due to nonlinearities in constraints or roundoff error in even
linear constraints. Because of the large value of ν, these increases dominated the
objective function improvement, and forced the method to take very small steps, and
sometimes completely prevented further progress. We conclude that the risks of using
excessively large penalty parameters are real indeed and that an adaptive strategy,
such as the one described above is valuable in practice.

Other, more sophisticated, penalty update strategies have been proposed recently.
Chen and Goldfarb [10] propose rules that update the penalty parameter as optimality
of the penalty problem is approached; they are based in part on feasibility and the
size of the multipliers. Leyffer et al. [30] consider penalty methods for MPCCs and
describe dynamic criteria for updating the penalty parameter based on the average
decrease in the penalized constraints. The methods proposed in section 5 differ from
these strategies in that they assess the effect of the penalty parameter on the step to
be taken, based on the current model of the problem.

6 Balancing Feasibility and Optimality in Other

Trust Region Methods

Algorithm 5.1 provides a strategy for balancing progress on optimality and on feasi-
bility in an exact penalty method. In trust region SQP methods that compute steps
without regard to a penalty function there is also a need to balance these two goals,
and some of the proposed methods for doing this are analogous to the procedure
described in the previous section.

Consider a problem with equality constraints only. Trust region SQP methods
aim to compute a step d by solving the subproblem

minimize
d

f(x) +∇f(x)T d + 1

2
dT Wd (6.19a)

subject to hi(x) +∇hi(x)T d = 0, i ∈ E , (6.19b)

‖d‖∞ ≤ ∆. (6.19c)

One way to ensure that the constraints (6.19b)-(6.19c) are always compatible, is to
relax the linear constraints (6.19b). The question of how much to relax them is
delicate and is analogous to the question of what value to give a penalty parameter.
A number of proposed methods adopt strategies that, like Algorithm 5.1, proceed
by working on minimizing a measure of feasibility alone. Both Byrd and Omojokun
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[5, 34], and Powell and Yuan [36] solve a problem of the form

minimize
v

‖h(x) +∇h(x)T v‖2 (6.20a)

subject to ‖v‖2 ≤ β∆, (6.20b)

where β ∈ (0, 1) and where h denotes the vector with components hi(x), i ∈ E .
The resulting step v is usually referred to as the normal step. Byrd and Omojokun
suggest the value β = 0.8 in (6.20b) and compute a total step d by solving (6.19) with
(6.19b) replaced by the condition

hi(x) +∇hi(x)T d = hi(x) +∇hi(x)T v, i ∈ E .

This is very similar to solving the subproblem with ν =∞ in step 2 of Algorithm 5.1.
Thus the normal step v, and hence the total step d, provides exactly the best possible
decrease in the linearized constraints within the (shortened) trust region (6.20b).

Powell and Yuan replace (6.19b) with

‖h(x) +∇h(x)T v‖2 ≤ ζk, (6.21)

where ζk is the optimal value of (6.20a) for some value of β ∈ (0, 1). This has the flavor
of condition (5.13). Celis, Dennis and Tapia [9] also impose a constraint of the form
(6.21), but define ζ as the value ‖h(x) +∇h(x)T dC‖2, where dC is a Cauchy step for
problem (6.20). In this respect it is different from the approaches considered earlier
in the paper which aim for at least a fraction of the optimal linear decrease, whereas
Celis, Dennis and Tapia are satisfied with a more modest decrease. Additionally,
Burke [4] describes a trust region method that is similar to these.

The approaches of Powell and Yuan and of Celis, Dennis and Tapia allow more
flexibility in reducing the objective function, while the Byrd-Omojokun approach
involves a subproblem that is easier to solve. (The Byrd-Omojokun technique is at
the core of the interior-point option Knitro-Interior/CG.) All of these approaches
share the property of requiring somewhat less than the level of linearized feasibility
that is attainable within the current trust region ∆k. Thus the β of (6.20b), the single
steepest descent step of Celis, Dennis and Tapia, and the ε1 of condition (5.13) used
in Algorithm 5.1 all play similar roles.

7 Penalty Parameters in Merit Functions

The main goal of this paper has been to describe guidelines for dynamically updating
the penalty parameter in penalty methods for constrained optimization. However,
penalty parameter update strategies are also important in methods that use a nons-
mooth penalty function only as a merit function, i.e., to judge the acceptability of the
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step but not to determine the search direction. As noted previously, a condition like
(5.14) is also known to be effective for merit functions used with trust-region meth-
ods. In this section, we point out that this condition is also relevant for choosing the
penalty parameter value in merit functions with line search methods.

Let us begin by considering trust region methods that use a nondifferentiable
function like (2.2) as a merit function. After a step d is computed, these methods
adjust the penalty parameter so that the merit function is compatible with the step.
We have argued in the paragraph that contains condition (5.14) that, for penalty
methods, it is reasonable to select the penalty parameter ν+ so the decrease in the
model that produced the step is proportional to the product of ν and the decrease
in the linearized constraints. This requirement was expressed as condition (5.14) for
an SQP-based method. The same reasoning is valid for (non penalty) SQP methods
of the type described in the previous section. Therefore, the condition (5.14) is still
appropriate, and we restate it here:

qν(0)− qν(d(ν)) ≥ ε2ν[mx(0)−mx(d(ν))]. (7.22)

Several trust region algorithms [8, 14, 16, 29, 34] select the penalty parameter ν+ at
every iteration so that a condition like (7.22) is satisfied. (Some of these methods
omit the factor ν from the right side of (7.22). However, our numerical experience
indicates that when ν is large, step acceptance is more likely when ν is included.)
This strategy has proved to be effective in the trust region algorithm implemented in
Knitro-Interior/CG.

Line search methods, however, have generally had less success using nonsmooth
merit functions. Several authors, most recently Wächter [38], report that `1 and `2

merit functions interfere unduly with good Newton steps, even if a mechanism to
overcome the Maratos effect is employed. The perception is that it is difficult to
find rules for selecting the penalty parameter that are effective over a wide range of
problems. As a result, nonsmooth merit functions have often been discarded in favor
of smooth merit functions, such as augmented Lagrangians, or filters [15, 21, 24, 32,
39].

It should be noted that historically line search methods have not enforced a con-
dition like (7.22), but rather have typically required that the penalty parameter be
chosen to ensure the computed step is a descent direction for the merit function.
Recently, however, Waltz et. al. [41] have reported good computational results for
a line search interior-point method that uses a nonsmooth merit function in which
the penalty parameter is selected by condition (7.22). Their strategy was motivated
by computational efficiency; we now analyze it in the context of the updating guide-
lines of section 5. For simplicity, we restrict our attention to equality constrained
optimization.

Let us consider a method that computes the search direction d by solving the
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Newton-KKT system

[

W ∇h(x)
∇h(x)T 0

] [

d
dλ

]

= −

[

∇xL(x, λ)
h(x)

]

, (7.23)

where L is the Lagrangian of the nonlinear program (2.1), and W is an approximation
to ∇2

xxL that is positive definite on the null space of the Jacobian matrix, ∇h(x)T .
The method then performs a line search to find a steplength α > 0 such that φν(x+αd)
is sufficiently smaller than φν(x), where

φν(x) = f(x) + ν‖h(x)‖,

and ‖ · ‖ is a vector norm.
It follows from (7.23) that the step d satisfies

m(d) = ‖h(x) +∇h(x)T d‖ = 0, (7.24)

i.e., d has achieved the best possible decrease in linear feasibility. Therefore, the
updating guidelines of section 5 would simply require that inequality (7.22) be satisfied
for some appropriate model qν . This model will be chosen differently than in the trust
region case. Following El Hallabi [17], Waltz et al. [41] define

qν(d) = f(x) +∇f(x)T d +
σ

2
dT Wd + ν‖h(x) +∇h(x)T d‖, (7.25)

with

σ =

{

1 if dT Wd > 0
0 otherwise.

(7.26)

Note that (7.25) differs from (6.19) only in the parameter σ. The new penalty pa-
rameter ν+ is required to satisfy condition (7.22), which by (7.24) can be written
as

qν(0)− qν(d) ≥ ε2ν‖h(x)‖ (7.27)

(we removed the dependence of d on ν). It follows from (7.25) that condition (7.27)
implies

ν ≥
∇f(x)T d + σ

2
dT Wd

(1− ε2)‖h(x)‖
≡ νTRIAL. (7.28)

The update rule for the penalty parameter is as follows. If ν denotes the penalty
parameter from the previous iteration, we define the new parameter by

ν+ =

{

ν if ν ≥ νTRIAL

νTRIAL + 1 otherwise.
(7.29)
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The role of the term σ in (7.25) is to ensure that the direction computed by (7.23)
is a descent direction for φν+

. It is not difficult to show (see e.g. [33, p. 545]) that
the directional derivative of φν in the direction d is given by

Dφν(x; d) = ∇f(x)T d− ν‖h(x)‖. (7.30)

If ν+ satisfies (7.28) we have

Dφν+
(x; d) ≤ −ε2ν+‖h(x)‖, (7.31)

and therefore d is a descent direction for the merit function φν+
. This inequality is,

however, not always valid if σ = 1 and dT Wd < 0.
The numerical tests reported in [39, 41] indicate that the strategy (7.28)-(7.29)

is effective in practice. Wächter [39] made a controlled comparison with a filter line
search method and found that the merit function strategy just described appears to be
as effective as a filter approach in its ability to accept good steps. Our experience with
Knitro-Interior/Direct also indicates that the strategy (7.28)-(7.29) is significantly
more effective than choosing ν simply to ensure that (7.31) holds. The latter condition
implies

ν ≥
∇f(x)T d

(1− ε2)‖h(x)‖
. (7.32)

By comparing (7.32) and (7.28) we see that, when σ > 0, the new strategy selects
a larger penalty parameter, placing more weight on the reduction of the constraints.
As a consequence, if the step d decreases the constraints but increases the objective,
it has better chances of being accepted by the merit function.

In summary, the penalty update strategy (7.28)-(7.29) can be justified for (non
penalty) line search methods, and has proved to be effective in practice. It is interest-
ing, that this strategy is consistent, and could have been derived, from the updating
guidelines proposed in this paper. It remains an open question, however, how to
extend our guidelines to penalty line search methods.

8 Final Remarks

The penalty update strategy presented in this paper is significantly different from
most of the approaches described in the literature. We take the view that choosing an
appropriate value of ν is not a simple task and requires, in some cases, the solution of
an auxiliary subproblem. Fortunately, in several algorithmic contexts this subproblem
adds little computational cost to the iteration.
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