
Knitro: An Integrated Package for Nonlinear Optimization

Richard H. Byrd∗ Jorge Nocedal† Richard A. Waltz†

July 6, 2005

Abstract

This paper describes Knitro 5.0, a C-package for nonlinear optimization that com-
bines complementary approaches to nonlinear optimization to achieve robust perfor-
mance over a wide range of application requirements. The package is designed for
solving large-scale, smooth nonlinear programming problems, and it is also effective for
the following special cases: unconstrained optimization, nonlinear systems of equations,
least squares, and linear and quadratic programming. Various algorithmic options are
available, including two interior methods and an active-set method. The package pro-
vides crossover techniques between algorithmic options as well as automatic selection
of options and settings.

1 Introduction

Nonlinear programming problems are often difficult to solve. In spite of the rapid pace
of algorithmic improvements, the most efficient algorithms available at present provide no
guarantees of success or of fast performance over a range of applications. To complicate
matters, the search for improved methods has led researchers to propose a variety of algo-
rithms, each of which is typically implemented in a separate software package. To overcome
the numerous difficulties that arise in practice, software developers have included a variety
of options and heuristics to improve the chances of success. These packages are, how-
ever, constrained by the underlying algorithm, and as is well known, no single approach is
uniformly successful in nonlinear optimization. The prospective user is thus faced with a
difficult choice. Each code is unique in many ways: input and output formats, options and
conventions. Thus there is a steep learning curve in trying to achieve the most effective use
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of a package. The availability of many codes through the NEOS Server
http://www-neos.mcs.anl.gov/ addresses only some of these issues.

The Knitro software package aims to achieve greater flexibility and robustness through
an integration of two powerful and complementary algorithmic approaches for nonlinear op-
timization: the interior-point approach and the active-set approach. The impressive success
of an integrated approach of this sort for linear and integer programming, particularly over
the past decade [21, 23], argues for a similar approach to be taken in nonlinear optimization.
Knitro is capable of applying features of an interior-point method or an active-set method
— or possibly both — depending on problem characteristics. Within the interior-point
approach, Knitro provides two algorithms implementing distinct barrier approaches. One
of the main challenges in the development of Knitro has been the effective integration of
the interior and active-set algorithms into a unified package, and the development of tools
that exploit the power of our integrated approach.

The nonlinear programming formulation considered in this paper is:

min
x

f(x) (1.1a)

subject to cE(x) = 0 (1.1b)

cI(x) ≥ 0, (1.1c)

where f : R
n → R, cE : R

n → R
l and cI : R

n → R
m are twice continuously differentiable

functions. Problem (1.1) includes as special cases unconstrained optimization, systems of
nonlinear equations, least squares problems, linear programs and quadratic programs. An
important feature of the algorithms implemented in Knitro is that they automatically
reduce to effective algorithms for each of the simpler problem classes.

The quality and diversity of nonlinear optimization software has greatly improved dur-
ing the last 10 years. Some of the established packages have matured, and new packages
have emerged. Snopt [18] and FilterSQP [15] implement active-set sequential quadratic
programming (SQP) methods. Snopt uses a line search approach, and in its default set-
ting, employs quasi-Newton approximations to the Hessian. FilterSQP follows a trust
region approach, with filter globalization, and makes use of second-derivative information.
The Minos [29] and Lancelot [12] packages, which were the first widely available codes
capable of solving problems with tens of thousands of variables and constraints, implement
augmented Lagrangian methods. Another well established package is Conopt [14], which
offers reduced Hessian and SQP methods.

Most of the new packages are based on the interior-point approach. Loqo [33] im-
plements a line search primal-dual algorithm that can be viewed as a direct extension of
interior methods for linear and quadratic programming. The first release of Knitro [6]
offered a trust region interior-point algorithm employing a conjugate gradient iteration in
the step computation; the second release added a line search interior algorithm that is safe-
guarded by the trust region approach [38]. Barnlp [2] and Ipopt [36] implement line search
interior-point approaches; Ipopt uses a filter globalization and includes a feasibility restora-
tion phase. Mosek [1] is a primal-dual interior-point method for convex optimization, and
Pennon [25] follows an augmented Lagrangian approach.
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Figure 1: The main algorithmic options in the Knitro 5.0 package.

New active-set methods based on Sequential Linear-Quadratic Programming (SLQP)
have recently been studied by Chin and Fletcher [9] and Byrd et al. [5]. Unlike SQP meth-
ods, which combine the active-set identification and the step computation in one quadratic
subproblem, SLQP methods decouple these tasks into two subproblems. The active-set
algorithm in Knitro, implements the SLQP method described in [5].

Interior-point and active-set methods offer competing state-of-the-art approaches for
solving nonlinear optimization problems — each with its own set of advantages. Bench-
marking studies [13, 28] have tried to identify the classes of problems for which each ap-
proach is best suited, but the rapid pace of software development makes it difficult to arrive
at concrete conclusions at this time. We take the view that interior-point and active-set
methods will both be needed in the years to come.

2 Overview of the Package

Knitro 5.0 is a C-package for solving nonlinear optimization problems. It is designed for
large-scale applications, but it is also effective on small and medium scale problems. A great
deal of attention has been given to the performance of the Knitro algorithms on simpler
classes of problems such as systems of nonlinear equations and unconstrained problems
because these tasks are crucial in the solution of nonlinear programming problems. We have
also ensured that the algorithms are fast and reliable on linear and quadratic programming
problems. A schematic view of the Knitro package is given in Figure 1.

In Figure 1 the nomenclature CG reflects the fact that the algorithmic step is computed
using an iterative conjugate gradient approach, while DIRECT implies that the step is
(usually) computed via a direct factorization of a linear system. As the figure suggests,
the software design will enable the addition of future options in the package such as a
DIRECT version of the active-set algorithm. Throughout the remainder of this paper we
will refer to the implementations of the CG and direct interior-point algorithms in Knitro
as Interior/CG and Interior/Direct, and the active-set algorithm implementation will
be called Active.

In the following sections we give an outline of the algorithms implemented in Kni-
tro. The descriptions are inevitably incomplete, since many additional features (such as
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second-order corrections, iterative refinement steps, resetting of parameters, and regulariza-
tion procedures) are needed to achieve efficiency and robustness over a range of problems.
Nevertheless, our outlines highlight the main features of the algorithms.

3 Interior-Point Methods

The interior (or barrier) methods implemented in Knitro associate with (1.1) the barrier
problem

min
x,s

f(x)− µ
m
∑

i=1

log si (3.1a)

subject to cE(x) = 0 (3.1b)

cI(x)− s = 0, (3.1c)

where s is a vector of slack variables and µ > 0. The interior approach consists of find-
ing (approximate) solutions of the barrier problem (3.1) for a sequence of positive barrier
parameters {µk} that converges to zero.

The KKT conditions for (3.1) can be written as

∇f(x)−AE

T (x)y −AI

T (x)z = 0 (3.2a)

−µe + Sz = 0 (3.2b)

cE(x) = 0 (3.2c)

cI(x)− s = 0, (3.2d)

where e = (1, ..., 1)T , S = diag(s1, ..., sm), AE and AI are the Jacobian matrices correspond-
ing to the equality and inequality constraint vectors respectively, and y and z represent
vectors of Lagrange multipliers. We also must have that s, z ≥ 0. In the line search ap-
proach, we apply Newton’s method to (3.2), backtracking if necessary so that the variables
s, z remain positive, and so that the merit function is sufficiently reduced. In the trust
region approach, we associate a quadratic program with (3.1) and let the step of the algo-
rithm be an approximate solution of this quadratic subproblem. These two approaches are
implemented, respectively, in the Interior/Direct and Interior/CG algorithms, and
are described in more detail below.

The other major ingredient in interior methods is the procedure for choosing the se-
quence of barrier parameters {µk}. Several options are provided in Knitro. In the Fiacco-
McCormick/monotone approach, the barrier parameter µ is held fixed for a series of it-
erations until the KKT conditions (3.2) are satisfied to some accuracy. An alternative is
to use an adaptive strategy in which the barrier parameter is updated at every iteration.
We have implemented the following adaptive update options: (i) the rule implemented in
Loqo [33] based on the deviation of the minimum complementarity pair from the average;
(ii) a probing strategy that uses Mehrotra’s predictor step to select a target value for µ;
(iii) a so-called quality-function approach; (iv) variants of option (ii) which possibly utilize
safeguarded corrector steps. These rules are described and tested in Nocedal, Wäechter
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and Waltz [30]. Since it is not known at present which one is the most effective in practice,
Knitro allows the user to experiment with the barrier update strategies just mentioned.

To control the quality of the steps, both interior algorithms make use of the non-
differentiable merit function

φν(x, s) = f(x)− µ
m
∑

i=1

log si + ν‖cE(x)‖2 + ν‖cI(x)− s‖2, (3.3)

where ν > 0. A step is acceptable only if it provides a sufficient decrease in φν . Although it
has been reported in the literature [22, 34] that merit functions of this type can interfere with
rapid progress of the iteration, our experience indicates that the implementation described in
Section 3.3 overcomes these difficulties. These observations are consistent with the results
reported in Table 2 of Wächter and Biegler [36], which suggest that this merit function
approach is as tolerant as a filter mechanism.

3.1 Algorithm I: Knitro-Interior/Direct

In this algorithm a typical iteration first computes a (primary) line search step using direct
linear algebra. In order to obtain global convergence in the presence of non-convexity
and Hessian or Jacobian singularities, the primary step may be replaced, under certain
circumstances, by a safeguarding trust region step. Interior-Direct is an implementation
of the algorithm described in [38].

We begin by describing the (primary) line search step. Applying Newton’s method to
(3.2), in the variables x, s, y, z, gives








∇2
xxL 0 −AE

T (x) −AI

T (x)
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AE(x) 0 0 0
AI(x) −I 0 0
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∇f(x)−AE

T (x)y −AI

T (x)z
Sz − µe
cE(x)

cI(x)− s









,

(3.4)
where L denotes the Lagrangian

L(x, s, y, z) = f(x)− yT cE(x)− zT (cI(x)− s). (3.5)

If the inertia of the matrix in (3.4) is

(n + m, l + m, 0), (3.6)

then the step d determined from (3.4) can be guaranteed to be a descent direction for the
merit function (3.3). In this case, we compute the scalars

αmax

s = max{α ∈ (0, 1] : s + αds ≥ (1− τ)s}, (3.7a)

αmax

z = max{α ∈ (0, 1] : z + αdz ≥ (1− τ)z}, (3.7b)

with τ = 0.995. If min(αmax
s , αmax

z ) is not too small, we perform a backtracking line search
that computes the steplengths

αs ∈ (0, αmax

s ], αz ∈ (0, αmax

z ], (3.8)
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providing sufficient decrease of the merit function (3.3). The new iterate is then defined as

x+ = x + αsdx, s+ = s + αsds, (3.9a)

y+ = y + αzdy, z+ = z + αzdz. (3.9b)

On the other hand, if the inertia is not given by (3.6) or if the steplength αs or αz

is less than a given threshold αmin, then the primary step d is rejected. In this case the
algorithm reverts to the trust region method implemented in the Interior/CG algorithm
(see the next section) which is guaranteed to provide a successful step even in the presence
of negative curvature or singularity.

The use of this safeguarding trust region step makes the Knitro-Interior/Direct
algorithm distinct from other line search interior-point algorithms, such as Barnlp, Ipopt
and Loqo, which modify the Hessian ∇2

xxL whenever the inertia condition (3.6) is not
satisfied. We prefer to revert to a trust region iteration because this permits us to compute
a step using a null-space approach, without modifying the Hessian ∇2

xxL. An additional
benefit of invoking the trust region step is that it guarantees progress in cases when the
line search approach can fail [7, 35]. Since it is known that, when line search iterations
converge to non-stationary points, the steplengths αs or αz in (3.9) converge to zero, we
monitor these steplengths. If one of them is smaller than a given threshold, we discard the
line search iteration (3.4)-(3.9) and replace it with the trust region step.

We outline the method in Algorithm 3.1. Here Dφν(x, s; d) denotes the directional
derivative of the merit function φν along a direction d. The algorithm maintains a trust
region radius ∆k at every iteration, in case it needs to revert to the trust region approach.

The initial multipliers y0, z0 are computed as the least-squares solution of the system
(3.2a)-(3.2b). When the line search step is discarded (the last If-Endif block in Algo-
rithm 3.1) we compute one or more Interior/CG steps (described in the following section)
until one of them provides sufficient reduction in the merit function.

We assume in Algorithm 3.1 that we are using the Fiacco-McCormick/monotone ap-
proach for updating the barrier parameter µ. However, this algorithm is easily modified to
implement the adaptive barrier update strategies discussed at the beginning of Section 3.
In this case, there is no barrier stop test and the barrier parameter µ is updated at every
iteration using some adaptive rule (which could cause µ to increase or decrease).

3.2 Algorithmic Option II: Knitro-Interior/CG

The second interior algorithm implemented in Knitro computes steps by using a quadratic
model and trust regions. This formulation allows great freedom in the choice of the Hessian
and provides a mechanism for coping with Jacobian and Hessian singularities. The price for
this flexibility is a more complex iteration than in the line search approach. Interior/CG
is an implementation of the algorithm described in [6], which is based on the approach
described and analyzed in [3].
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Algorithm 3.1: Knitro-Interior/Direct

Choose x0, s0 > 0, and the parameters 0 < η, and 0 < αmin < 1. Compute initial
values for the multipliers y0, z0 > 0, the trust-region radius ∆0 > 0, and the barrier
parameter µ > 0. Set k = 0.

Repeat until a stopping test for the nonlinear program (1.1) is satisfied:
Repeat until the perturbed KKT conditions (3.2) are approximately satisfied:

Factor the primal-dual system (3.4) and record the number neig
of negative eigenvalues of its coefficient matrix.
Set LineSearch = False.
If neig ≤ l + m

Solve (3.4) to obtain the search direction d = (dx, ds, dy, dz).
Define w = (xk, sk) and dw = (dx, ds).
Compute αmax

s , αmax
z by (3.7).

If min{αmax
s , αmax

z } > αmin,
Update the penalty parameter νk (see Section 3.3).
Compute a steplength αs = ᾱαmax

s , ᾱ ∈ (0, 1] such that
φν(w + αsdw) ≤ φν(w) + ηαsDφν(w; dw).
If αs > αmin,

Set αz = ᾱαmax
z .

Set (xk+1, sk+1, yk+1, zk+1) by (3.9).
Set LineSearch = True.

Endif

Endif

Endif

If LineSearch == False,
Compute (xk+1, sk+1, yk+1, zk+1) using the Interior/CG algorithm
of Section 3.2.

Endif

Compute ∆k+1.
Set k ← k + 1.

End

Choose a smaller value for the barrier parameter µ.
End
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To motivate the Interior/CG algorithm, we first note that the barrier problem (3.1)
is an equality-constrained optimization problem and can be solved by using a sequential
quadratic programming method with trust regions. A straightforward application of SQP
techniques to the barrier problem leads, however, to inefficient steps that tend to violate the
positivity of the slack variables and are frequently cut short by the trust-region constraint.
To overcome this problem, we design the following SQP method specifically tailored to the
barrier problem.

At the current iterate (xk, sk), and for a given barrier parameter µ, we first compute
Lagrange multiplier estimates (yk, zk) and then compute a step d = (dx, ds) that aims to
solve the subproblem,

min
dx,ds

∇f(xk)
T dx +

1

2
dT

x∇
2
xxL(xk, sk, yk, zk)dx − µeT S−1

k ds +
1

2
dT

s Σkds

(3.10a)

subject to AE(xk)dx + cE(xk) = rE (3.10b)

AI(xk)dx − ds + cI(xk)− sk = rI (3.10c)

‖dx, S−1

k ds‖2 ≤ ∆k (3.10d)

ds ≥ −τs, (3.10e)

where Σk = S−1

k Zk and τ = 0.995. Ideally, we would like to set r = (rE, rI) = 0, but
since this could cause the constraints to be incompatible or produce poor steps, we choose
r as the smallest vector such that (3.10b)-(3.10d) are consistent (with some margin). This
computation is described in more detail below.

We can motivate the choice of the objective (3.10a) by noting that the first-order opti-
mality conditions of (3.10a)-(3.10c) are given by (3.2) (with the second block of equations
scaled by S−1). The steps computed by using (3.10) are thus related to those of the line
search algorithm described in the previous section. The trust-region constraint (3.10d)
guarantees that (3.10) has a finite solution even when ∇2

xxL(xk, sk, yk, zk) is not positive
definite. Therefore the Hessian need never be modified. The scaling S−1

k in the trust-region
constraint is crucial; its effect on the iteration will be discussed later on.

Step Computation
The subproblem (3.10) is difficult to minimize exactly because of the presence of the

nonlinear constraint (3.10d) and the bounds (3.10e). We can, however, compute useful
inexact solutions, at a moderate cost. To do so, Knitro follows a null-space approach in
which the step d is the sum of a normal step v that attempts to satisfy the linear constraints
(3.10b)-(3.10c) (with r = 0) as well as possible subject to a trust region, and a tangential
step that lies on the tangent space of the constraints and that tries to achieve optimality.

To compute the normal step v = (vx, vs), we formulate the following subproblem:

min
v

‖AEvx + cE‖
2
2 + ‖AIvx − vs + cI − s‖22 (3.11a)

subject to ‖(vx, S−1vs)‖2 ≤ 0.8∆. (3.11b)
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(Here and below we omit the arguments of the functions for simplicity.) We compute an
inexact solution of this problem using a dogleg approach, which minimizes (3.11a) along a
piecewise linear path composed of a steepest descent step in the norm used in (3.11b) and
a minimum-norm Newton step with respect to the same norm. The scaling S−1vs in the
norm tends to limit the extent to which the bounds on the slack variables are violated.

Once the normal step v is computed, we define the vectors rE and rI in (3.10b)-(3.10c)
as the residuals in the normal step computation, namely,

rE = AEvx + cE, rI = AIvx − vs + (cI − s).

Having computed the normal step (vx, vs), the subproblem (3.10) can therefore be written
as

min
dx,ds

∇fT dx − µeT S−1ds +
1

2
(dT

x∇
2
xxLdx + dT

s Σds) (3.12a)

subject to AEdx = AEvx (3.12b)

AIdx − ds = AIvx − vs (3.12c)

‖(dx, S−1ds)‖2 ≤ ∆, (3.12d)

which we refer to as the tangential subproblem. To find an approximate solution d of (3.12),
we first introduce the scaling

d̃s ← S−1ds, (3.13)

which transforms (3.12d) into a sphere. Then we apply the projected conjugate gradient
(CG) method of Section 5 to the transformed quadratic program, iterating in the linear
manifold defined by (3.12b)-(3.12c). During the solution by CG, we use a Steihaug strat-
egy, monitoring the satisfaction of the trust-region constraint (3.12d), and stopping if the
boundary of this region is reached or if negative curvature is detected. Finally, we truncate
the step d if necessary in order to satisfy (3.10e).

We outline this interior method in Algorithm 3.2. Here

ared(d) = φν(x, s)− φν(x + dx, s + ds) (3.14)

is the actual reduction in the merit function, and the predicted reduction, pred(d), is defined
by (3.15),(3.16).

The multiplier estimates (yk, zk) are computed by a least squares approximation to the
equations (3.2a)-(3.2b) at xk, and shifted to ensure positivity of zk. The barrier stop toler-
ance can be defined as εµ = µ. As with the Interior/Direct algorithm, this algorithm is
easily modified to implement adaptive barrier update strategies.

The interior-point method outlined in Algorithm 3.2 is asymptotically equivalent to
standard line search interior methods, but it is significantly different in two respects. First,
it is not a fully primal-dual method in the sense that multipliers are computed as a function
of the primal variables (x, s) — as opposed to the formulation (3.4) in which primal and dual
variables are computed simultaneously from their previous values. Second, the trust-region
method uses a scaling of the variables that discourages moves toward the boundary of the
feasible region. This causes the algorithm to generate steps that can be very different from
those produced by a line search method.
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Algorithm 3.2: Knitro-Interior/CG

Choose parameter η > 0. Choose initial values for µ > 0, x0, s0 > 0 and ∆0 > 0.
Set k = 0.

Repeat until a stopping test for the nonlinear program (1.1) is satisfied:
Repeat until the perturbed KKT conditions (3.2) are approximately satisfied:

Compute the normal step vk = (vx, vs).
Compute Lagrange multipliers yk, zk > 0.
Compute the total step dk by applying the projected CG method to

(3.12a)-(3.12c) (see Section 5).
Update the penalty parameter νk (see Section 3.3).
Compute aredk(dk) by (3.14) and predk(dk) by (3.16).
If aredk(dk) ≥ ηpredk(dk)

Set xk+1 = xk + dx, sk+1 = sk + ds, and update ∆k+1.
Else

Set xk+1 = xk, sk+1 = sk, and choose ∆k+1 < ∆k.
Endif

Set k ← k + 1.
End

Choose a smaller value for the barrier parameter µ .
End
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3.3 Merit Function

The role of the merit function (3.3) is to determine whether a step is productive and should
be accepted. Our numerical experience has shown that the choice of the merit parameter
ν plays a crucial role in the efficiency of the algorithm. Both interior-point methods in
Knitro choose ν at every iteration so that the decrease in a quadratic model of the merit
function produced by a step d is proportional to the product of ν times the decrease in
linearized constraints.

To be more specific, suppose that either the Interior/Direct or Interior/CG algo-
rithm has produced a step d. We define the following linear/quadratic model of the merit
function φν :

Qν(d) = ∇fT dx − µeT S−1ds +
σ

2

(

dT
x∇

2
xxLdx + dT

s Σds

)

+ ν (m(0)−m(d)) , (3.15)

where

m(d) =

∥

∥

∥

∥

[

AEdx + cE

AIdx − ds + cI − s

]∥

∥

∥

∥

2

,

denotes the first-order violation of the constraints, and σ is a parameter to be discussed
below. We also define the predicted decrease in the merit function as

pred(d) = Qν(0)−Qν(d). (3.16)

In all cases we choose the penalty parameter ν large enough such that

pred(d) ≥ ρν[m(0)−m(d)], (3.17)

for some parameter 0 < ρ < 1 (e.g. ρ = 0.1). If the value of ν from the previous iteration
satisfies (3.17), it is left unchanged, otherwise ν is increased so that it satisfies this inequality
with some margin. Condition (3.17) is standard for trust region methods, but not for line
search methods, where it may require ν to be larger than is needed to simply provide a
descent direction. As shown in [38] this stronger condition can improve performance of the
line search iteration.

For a trust region method, such as that implemented in Interior/CG, we set σ = 1
in (3.15) because these methods can deal well with indefiniteness of the Hessian. A line
search method, on the other hand, does not always produce a descent direction for the merit
function if the model on which it is based is not convex. Therefore in the Interior/Direct
algorithm we define σ as

σ =

{

1 if dT
x∇

2
xxLdx + dT

s Σds > 0
0 otherwise.

(3.18)

This choice of σ guarantees the directional derivative of φν in the direction d is negative.
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4 Active-set Sequential Linear-Quadratic Programming

The active-set method implemented in Knitro does not follow an SQP approach because,
in our view, the cost of solving generally constrained quadratic programming subproblems
imposes a limitation on the size of problems that can be solved in practice. In addition, the
incorporation of second derivative information in SQP methods has proved to be difficult.

We use, instead a sequential linear-quadratic programming (SLQP) method [5, 9, 16]
that computes a step in two stages, each of which scales up well with the number of variables.
First, a linear program (LP) is solved to identify a working set. This is followed by an
equality constrained quadratic programming (EQP) phase in which the constraints in the
working set W are imposed as equalities. The total step of the algorithm is a combination
of the steps obtained in the linear programming and equality constrained phases.

To achieve progress on both feasibility and optimality, the algorithm is designed to
reduce the `1 penalty function,

P (x; ν) = f(x) + ν
∑

i∈E

|ci(x)|+ ν
∑

i∈I

(max(0,−ci(x)), (4.1)

where ci, i ∈ E , denote the components of the vector cE, and similarly for cI. The penalty
parameter ν is chosen by an adaptive procedure described below.

An appealing feature of the SLQP algorithm is that established techniques for solving
large-scale versions of the LP and EQP subproblems are readily available. Modern LP
software is capable of solving problems with more than a million variables and constraints,
and the solution of an EQP can be performed efficiently using the projected conjugate
gradient iteration discussed in Section 5. We now outline the SLQP approach implemented
in Knitro-Active. This algorithm is an implementation of the algorithm Slique described
in [5].

4.1 Algorithm III: Knitro-Active

In the LP phase, given an estimate xk of the solution of the nonlinear program (1.1), we
would like to solve

min
d

∇f(xk)
T d (4.2a)

subject to ci(xk) +∇ci(xk)
T d = 0, i ∈ E (4.2b)

ci(xk) +∇ci(xk)
T d ≥ 0, i ∈ I (4.2c)

‖d‖∞ ≤ ∆LP

k , (4.2d)

with ∆LP

k > 0. (Note that (4.2) differs from the subproblem used in SQP methods only in
that the latter include a term of the form 1

2
dT Hd in (4.2a), where H is an approximation

to the Hessian of the Lagrangian of the nonlinear program.) Since the constraints of (4.2)
may be inconsistent, we solve instead the `1 penalty reformulation of (4.2) given by

min
d

lν(d)
def
= ∇f(xk)

T d + νk

∑

i∈E

|ci(xk) +∇ci(xk)
T d|
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+νk

∑

i∈I

max (0,−ci(xk)−∇ci(xk)
T d) (4.3a)

subject to ‖d‖∞ ≤ ∆LP

k . (4.3b)

The solution of this linear program, which we denote by dLP, is computed by the simplex
method so as to obtain an accurate estimate of the optimal active set.

Based on this solution, we define the working setW as some linearly independent subset
of the active set A at the LP solution, which is defined as

A(dLP) = {i ∈ E | ci(xk) +∇ci(xk)
T dLP = 0} ∪ {i ∈ I | ci(xk) +∇ci(xk)

T dLP = 0}.

Likewise, we define the set V of violated constraints as

V(dLP) = {i ∈ E | ci(xk) +∇ci(xk)
T dLP 6= 0} ∪ {i ∈ I | ci(xk) +∇ci(xk)

T dLP < 0}.

To ensure that the algorithm makes progress on the penalty function P , we define the
Cauchy step,

dC = αLPdLP, (4.4)

where αLP ∈ (0, 1] is a steplength that provides sufficient decrease in the following (piece-
wise) quadratic model of the penalty function P (x; ν):

qk(d) = lν(d) +
1

2
dT H(xk, λk)d. (4.5)

Here H is the Hessian of the Lagrangian or an approximation to it, and lν(d) is defined in
(4.3a).

Given the working set Wk, we now solve an equality constrained quadratic program
(EQP) treating the constraints in Wk as equalities and ignoring all other constraints. This
gives the subproblem

min
d

1

2
dT H(xk, λk)d +

(

∇f(xk) + νk

∑

i∈V

γi∇ci(xk)

)T

d (4.6a)

subject to ci(xk) +∇ci(xk)
T d = 0, i ∈ E ∩Wk (4.6b)

ci(xk) +∇ci(xk)
T d = 0, i ∈ I ∩Wk (4.6c)

‖d‖2 ≤ ∆k, (4.6d)

where γi is the algebraic sign of the violated i-th constraint. Note that the trust region
(4.6d) is spherical, and is distinct from the trust region ∆LP used in (4.2d). Problem (4.6) is
solved for the vector dQ by applying the projected conjugated gradient procedure described
in Section 5. The total step d of the SLQP method is given by

d = dC + αQ(dQ − dC),

where αQ ∈ [0, 1] is a steplength that approximately minimizes the model function (4.5).
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Algorithm 4.1: Knitro-Active

Initial data: x0, ∆0 > 0, ∆LP

0 > 0, 0 < η < 1. Set k = 0.

Repeat until a stopping test for the nonlinear program (1.1) is satisfied:
LP point. Update the penalty parameter νk and solve the LP (4.3)

to obtain the step dLP

k , and working set Wk.
Cauchy point. Compute αLP

k ∈ (0, 1] as an approximate minimizer of
q(αdLP

k ) such that αLP

k ‖d
LP

k ‖ ≤ ∆k. Set dC

k = αLP

k dLP

k .
EQP point. Compute dQ

k by solving the EQP (4.6).
Define dCE

k = dQ

k − dC

k as the segment leading from the Cauchy point
to the EQP point.

Trial point. Compute αQ

k ∈ [0, 1] as an approximate minimizer of
q(dC

k + αdCE

k ). Set dk = dC

k + αQ

k dCE

k and xT = xk + dk.
Step Acceptance. Compute

ρk = (P (xk; νk)− P (xT; νk))/(qk(0)− qk(dk)).
If ρk ≥ η, set xk+1 ← xT, otherwise set xk+1 ← xk.

Update ∆LP

k+1
and ∆k+1. Set k ← k + 1.

End

The trust region radius ∆k for the EQP phase is updated based on the ratio ρk, following
standard trust region update strategies. The choice of ∆LP

k+1
is based on an effort to generate

a good working set. In our implementation, ∆LP

k+1
is set to be a little larger than the total

step dk, subject to some other restrictions, as described in [5]. The multiplier estimates λk

used in the Hessian are least squares estimates using the working set Wk, and modified so
that λi ≥ 0 for i ∈ I.

Penalty Parameter Update Strategy.
A novel feature of our SLQP algorithm is the procedure for updating the penalty pa-

rameter. Unlike most strategies proposed in the literature [11], which hold the penalty
parameter ν fixed for a series of iterations and only update it if insufficient progress toward
feasibility is made, our algorithm chooses an appropriate value of ν at each iteration. This
selection takes place during the linear programming phase, as we now explain.

We define a (piecewise) linear model of constraint violation at a point xk by

mk(d) =
∑

i∈E

|ci(xk) +∇ci(xk)
T d|+

∑

i∈I

max (0,−ci(xk)−∇ci(xk)
T d), (4.7)

so that the objective (4.3) of the LP subproblem can be written as

lν(d) = ∇f(xk)
T d + νk mk(d). (4.8)

Given a value νk, we write the solution of the LP problem (4.3) as dLP(νk) to stress its depen-
dence on the penalty parameter. Likewise, dLP(ν∞) denotes the minimizer of mk(d) subject
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to the trust region constraint (4.3b). The following algorithm describes the computation of
the LP step dLP

k and the penalty parameter νk.

Algorithm Penalty Update. LP Step and Penalty Update Strategy.
Initial data: xk, νk−1 > 0, ∆LP

k > 0, and parameters ε1, ε2 ∈ (0, 1).

Solve the subproblem (4.3) with ν = νk−1 to obtain dLP(νk−1).
If mk(d

LP(νk−1)) = 0
Set ν+ ← νk−1.

Else compute dLP(ν∞)
If mk(d

LP(ν∞)) = 0
Find ν+ > νk−1 such that mk(d

LP(ν+)) = 0.
Else

Find ν+ ≥ νk−1 such that
mk(0)−mk(d

LP(ν+)) ≥ ε1[mk(0)−mk(d
LP(ν∞))].

Endif

Endif

Increase ν+ if necessary to satisfy
lν+(0)− lν+(dLP(ν+)) ≥ ε2ν

+[mk(0)−mk(d
LP(ν+))].

Set νk ← ν+ and dLP

k ← dLP(ν+).

The selection of ν+ > νk−1 is achieved in all cases by successively increasing the current
trial value of ν by 10 and re-solving the linear program. The penalty update algorithm
above guarantees that ν is chosen large enough to ensure convergence to a stationary point
[4]. Although the procedure does require the solution of some additional linear programs,
our experience is that it results in an overall savings in iterations (and total LP solves) by
achieving a better penalty parameter value more quickly, compared with rules which update
the penalty parameter based on monitoring progress in feasibility. In addition, the extra LP
solves are typically very inexpensive requiring relatively few simplex iterations because of
the effectiveness of warm starts when re-solving the LP with a different penalty parameter
value.

5 Projected CG Iteration

One of the main modules shared by the algorithms implemented in Knitro, is a projected
conjugate gradient iteration. The tangential subproblem (3.12) in the Interior/CG algo-
rithm and the EQP phase (4.6) of the Active algorithm both require the solution of an
equality constrained quadratic program. We solve these problems using a projected conju-
gate gradient iteration [10, 20, 24, 26, 32], which is well suited for large problems and can
handle the negative curvature case without the need for Hessian modifications. We now
outline this iteration and refer the reader to [20] for a more detailed derivation.

Consider the quadratic program

min
x

1

2
xT Gx + hT x (5.9a)
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subject to Ax = b, (5.9b)

and assume that G is positive definite on the null space of A. One way to solve (5.9) is to
eliminate the constraints (5.9b) and apply the conjugate gradient method to the reduced
problem. An equivalent strategy is to apply a special form of the CG iteration to the KKT
system of (5.9), which is given by

[

G AT

A 0

] [

x
v

]

=

[

−h
b

]

. (5.10)

Although the coefficient matrix is not positive definite, we can apply the CG method to
(5.10), provided we precondition and project the CG method so that it effectively solves
the positive definite reduced problem within the feasible manifold (5.9b). This algorithm is
specified below. Here we denote the preconditioning/projection operator by P and give its
precise definition later on.

Algorithm PCG. Preconditioned Projected CG Method.
Choose an initial point x0 satisfying Ax0 = b. Set x ← x0, compute r = Gx + h, z = Pr
and p = −z.
Repeat the following steps, until ‖z‖ is smaller than a given tolerance:

α = rT z/pT Gp (5.11)

x ← x + αp (5.12)

r+ = r + αGp (5.13)

z+ = Pr+ (5.14)

β = (r+)T z+/rT z (5.15)

p ← −z+ + βp. (5.16)

z ← z+ and r ← r+ (5.17)

End

This iteration has exactly the same form as the (standard) preconditioned CG method
for solving symmetric and positive definite systems; see e.g. [19]. The crucial difference
is that normally P is a symmetric and positive definite matrix, whereas in our case it
represents a projection and preconditioning matrix, which we define (indirectly) as follows.
Given a vector r, we compute z = Pr as the solution of the system

[

D AT

A 0

] [

z
w

]

=

[

r
0

]

, (5.18)

where D is a symmetric matrix that is positive definite on the null space of A, and w is
an auxiliary vector. For (5.18) to be a practical preconditioning operation, D should be a
sparse matrix, so that solving (5.18) is significantly less costly than solving (5.10).

By construction z = Pr is in the null space of A, and so are all the search directions
generated by Algorithm PCG. Since initially Ax0 = b, all subsequent iterates x also satisfy
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the linear constraints. To view this iteration relative to the reduced CG method in which
we eliminate the constraints (5.9b) and apply CG to a problem of dimension n− l, note that
all iterates of Algorithm PCG may be expressed as x = x0 + Zu, for some vector u ∈ Rn−l,
and where the columns of the n × (n − l) matrix Z form a basis for the null space of A.
In these null-space coordinates the solution of the quadratic program (5.9) is given by the
vector u that solves

(ZT GZ)u = ZT (Gx0 + h). (5.19)

It can be shown (see e.g. [20]) that the iterates x generated by Algorithm PCG are given by
x = x0 + Zu, where u are the iterates of the preconditioned conjugate gradient method on
the system (5.19), using the matrix ZT DZ as a preconditioner. Therefore, Algorithm PCG
is a standard preconditioned CG iteration as long as G and D are positive definite on the
null space of A.

There are two advantages of following the approach of Algorithm PCG over the reduced
CG approach. First, there is no need to compute a null space basis and consequently no
risk that ill-conditioning in Z will deteriorate the rate of convergence of the CG iteration.
Moreover, in the Interior/CG algorithm we first scale the slack variables by (3.13), so
that the matrix A in (5.9) has the form

[

AE 0
AI −S

]

. (5.20)

Therefore there is no ill conditioning caused by some slack variables approaching 0. The
second benefit is that the projection matrix in (5.18) can also be used to compute the
normal step and Lagrange multipliers; thus the extra cost of each of these computations is
only one back solve involving the factors of this projection matrix.

In the Interior/CG and Active algorithms we solve quadratic programs of the form
(5.9) subject to a trust region constraint ‖x‖ ≤ ∆; in addition, G may not be positive
definite on the null space of A. We adapt Algorithm PCG to this case by following Steihaug’s
approach: we terminate Algorithm PCG if the trust region is crossed or if negative curvature
is encountered.

Knitro 5.0 sets D = I in (5.18) so that the preconditioner removes only ill-conditioning
associated with the constraint matrix A. (We have experimented with other choices of D and
future releases of Knitro will include banded and incomplete Cholesky preconditioners.)

Algorithm PCG assumes that an initial feasible point x0 is provided. The factorization
of the system in (5.18) allows us to compute such a point by solving

[

D AT

A 0

] [

w
x0

]

=

[

0
b

]

,

which is in fact the minimum-norm solution in the norm weighted by D.

6 Special Algorithmic Features

The Knitro package provides many algorithmic options and features that are listed com-
prehensibly in the documentation that accompanies the software [37]. Here we highlight
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some of these options and discuss their relationship to the algorithms presented in the
previous sections.

Hessian Options
The user can supply first and second derivatives, which generally results in the greatest

level of robustness and efficiency for the three algorithms in Knitro. In some applications,
however, the Hessian of the Lagrangian ∇2

xxL cannot be computed or is too large to store,
but products of this Hessian times vectors can be obtained through automatic differentiation
tools, adjoint codes or user-provided routines. For this case the Interior/CG and Active
algorithms allow the user to provide these Hessian vector products at every iteration of the
projected CG iteration. In a related option, Knitro takes control of this process and ap-
proximates the Hessian-vector products by finite differences of gradients of the Lagrangian;
in this case the user need only provide gradients of the objective and constraints.

Quasi-Newton options have also been implemented for the three algorithms in Knitro.
Here, the Hessian of the Lagrangian ∇2

xxL is replaced by a quasi-Newton approximation
Bk, which is updated by the BFGS, SR1 or limited memory BFGS formulae. For example,
for the interior-point methods, we define

∆l = ∇xL(x+, s+, y+, z+)−∇xL(x, s+, y+, z+), ∆x = x+ − x,

and substitute the correction pairs (∆l, ∆x) in the standard definition of the BFGS, SR1
or limited memory BFGS update formulae (see e.g. [31]). To ensure positive definiteness
of the BFGS and L-BFGS updates the vector ∆l is modified, if necessary, using Powell’s
damping procedure. SR1 updating is safeguarded to avoid unboundedness, but is allowed
to generate indefinite approximations.

Feasible Mode.
In some applications, it is desirable for all of the iterates generated by the optimization

algorithm to be feasible with respect to some or all of the inequality constraints. For
example, the objective function may be defined only when some of the constraints are
satisfied, making this feature absolutely necessary. Interior-point methods provide a natural
framework for deriving feasible algorithms, and we have therefore developed versions of the
Interior/CG and Interior/Direct algorithms that have this feature.

The adaptation is simple. If the current iterate x satisfies cI(x) > 0, then after computing
the step d, we let x+ = x + dx, redefine the slacks as

s+ ← cI(x
+), (6.21)

and test whether the point (x+, s+) is acceptable for the merit function φν . If so, we
define this point to be the new iterate; otherwise we reject the step d and compute a new,
shorter, trial step (in a line search algorithm we backtrack, and in a trust-region method
we compute a new step with a smaller trust region). This strategy is justified by the fact
that, if at a trial point we have that ci(x

+) ≤ 0 for some inequality constraint, the value
of the merit function is +∞, and we reject the trial point. This strategy also rejects steps
x + dx that are too close to the boundary of the feasible region because such steps increase
the barrier term −µ

∑m
i=1

log(si) in the merit function (3.3). Apart from the reset (6.21),
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in the Interior/CG algorithm we must introduce a slight modification [8] in the normal
step computation to ensure that this step makes sufficient progress toward feasibility.

Initial Point Strategy.
As is well known, interior methods can perform poorly if the initial point is unfavorable.

To overcome this problem, we have implemented several initial point strategies that work
well for linear and quadratic programming and are also appropriate for nonlinear programs.
At present, the initial point strategies are available only in the Interior/Direct option.
We now describe one of these strategies.

We first compute, at the user supplied initial point x0, an affine scaling step
dA = (dA

x , dA
s , dA

y , dA
z ) by setting µ = 0 in (3.4). Then we define

s1 = max(1, |s0 + dA
s |), z1 = max(1, |z0 + dA

z |),

where the max and absolute values are applied component-wise. The primal variables x
and the equality-constraint multipliers y are not altered, i.e., we define (x1, y1) = (x0, y0).
Finally we define the initial value of the barrier parameter as µ1 = sT

1 z1/m.
The motivation for this strategy is to take care that the initial slacks and inequality

multipliers are not too close to the feasible boundary which can lead to slow progress,
and ideally to generate an initial point nearer to the central path. Furthermore, nonlinear
programming algorithms compute only local minimizers and accept user-supplied initial
estimates x0 that often lie in the vicinity of a minimizer of interest. Therefore initial point
strategies should either respect the user-supplied estimate x0 or compute one that is not too
distant from it. In addition, large initial values of the multipliers should be avoided in the
Hessian since they may introduce unnecessary non-convexities in the problem. In particular
if one of the components, say zi

1, is large and the corresponding Hessian term ∇2c1(x1) is
indefinite, the Hessian of the Lagrangian can become indefinite, slowing down the iteration.
Therefore, when computing the first step of the interior algorithm from (x1, s1, y1, z1) we
evaluate the Hessian of the Lagrangian using z0 and not z1, i.e., ∇2

xxL(x0, s0, y0, z0) (this
Hessian is independent of s, so the choice of that variable is irrelevant). More details about
the initial point strategies are given in [17].

Special Problem Classes
When the nonlinear program (1.1) has a special form, the algorithms in Knitro often

reduce to well-known special-purpose methods.
For unconstrained optimization problems, the Interior/CG and Active algorithms

(using second derivatives) reduce to an inexact Newton-CG method with trust regions. This
is because, in the unconstrained case, these algorithms skip their respective first phases, and
compute the step using, respectively, the tangential subproblem (3.12) and the EQP phase
(4.6), which are identical in this case. In the Interior/Direct option, the algorithm will
attempt to compute the Cholesky factorization of the Hessian, and if it is positive definite
a backtracking line search will be performed along the Newton direction. If the Hessian
is not positive definite, the algorithm reverts to the trust region Interior/CG algorithm
and therefore computes an inexact Newton-CG step.

If the problem (1.1) is a system of nonlinear equations, the algorithms in Knitro imple-
ment a form of Newton’s method (if second derivatives are provided). In Interior/CG,
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only the normal step (3.11) is computed, and the resulting algorithm coincides with the
Levenberg-Marquardt trust region method. The Interior/Direct algorithm reduces to
a line search Newton method in this case, using as a merit function the Euclidean norm
of the residuals of the system of equations. If the Jacobian is singular, Interior/Direct
reverts to the Levenberg-Marquardt method.

Knitro adapts itself automatically to the two classes of problems just discussed (un-
constrained minimization and nonlinear equations). If the problem is a linear or quadratic
program, the user must inform Knitro, so that the algorithms can take full advantage of
this fact. For LPs or QPs, Interior/Direct is the recommended interior-point option and
automatically enables the initial point strategy described above, as well as a more aggressive
barrier update strategy. Active reduces to a simplex method in the LP case.

Infeasibility detection
It is not rare for users to generate optimization problems that do not have a feasible

solution, and Knitro includes heuristics to attempt to diagnose this situation. As is well
known, however, infeasibility detection is a very difficult problem for nonlinear constraints,
and the algorithms in Knitro cannot distinguish between infeasible problems and conver-
gence to an (infeasible) stationary point for a measure of feasibility.

In the interior point algorithms, our heuristics are based on the theory developed in [3].
It states that, if the interior point algorithm is not capable of finding a feasible point, then
we have that AE(xk)

T cE(xk)→ 0, and AI(xk)
T cI

−(xk)→ 0, where cI

− = max(0,−cI). The
Knitro interior-point algorithms will terminate if these vectors are sufficiently small while
‖(cE(xk), cI

−(xk))‖ stays above some level.
Since the algorithm implemented in Active is a penalty method, it can deal naturally

with infeasibility. If a problem is infeasible then the penalty parameter will be driven to
infinity. Moreover, if the algorithm is converging to a stationary point for our infeasibility
measure, we have

mk(0)−mk(d
LP(ν∞))→ 0,

during the penalty update procedure providing a clear indication of local infeasibility.

7 Crossover

Interior methods provide only an approximate estimate of the solution and the optimal
active set. In many practical applications, however, it is useful to know precisely which
constraints are active because this corresponds to the presence or activity of certain con-
stituents of the solution. In addition, it is often important to have accurate estimates of the
Lagrange multipliers (or sensitivities). This can be done by switching from the interior to an
active-set iteration, a process that is often called crossover. Although crossover techniques
have received much attention in the context of linear programming [27], to the best of our
knowledge, none of the nonlinear interior codes provide an option for it. We regard it as
essential to have this facility in our integrated system, both for computational efficiency,
and to return solutions in a form that is useful for applications.
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In linear programming, crossover involves two stages: identifying active constraints, and
moving from a nonbasic optimal solution to a nearby basic one. In nonlinear programming,
of course, we cannot expect the set of active constraints to correspond to a basic solution.
Instead, our crossover procedure seeks to identify a set of active constraints with linearly
independent constraint gradients, and computes a solution at which those constraints are
satisfied with near equality, and which satisfies Lagrangian stationarity using these con-
straints only.

This crossover procedure is implemented by internally switching to the Active algo-
rithm after the Interior/Direct or Interior/CG algorithm has solved the problem to
the requested tolerance. We first solve the EQP phase of Active using a tolerance-based
active-set estimate, and minimize the model function (4.5) along the resulting step direction
to generate a new solution estimate. If this step does not solve the problem immediately,
we begin the full Active algorithm with an initial LP trust region based on that active-set
estimate. The goal is to judiciously choose the initial LP trust region small enough to ex-
clude all the inactive constraints, but large enough to include the active ones. Below is a
basic description of the Knitro crossover procedure.

Algorithm Crossover. Knitro Crossover Procedure.

1. The interior-point iteration terminates with stopping tolerance εTOL at iterate
(xk, sk, yk, zk).

2. Estimate the set of active constraints, A, using a tolerance test based on primal-dual
feasibility and complementarity.

3. Using this active-set estimate, generate a step by solving the EQP given by (4.6) for
dQ and perform a line search to compute the steplength αQ. If xk +αQdQ satisfies the
stopping tolerances, terminate with that value and the corresponding multipliers.

4. Otherwise determine the initial LP trust region ∆LP

0 , and penalty parameter ν0 for
the Knitro-Active algorithm (Algorithm 4.1):

∆LP

0 = min{
ci(xk, sk)

‖∇ci(xk, sk)‖
: i 6∈ A}, (7.22)

ν0 = 10‖(yk, zk)‖∞. (7.23)

5. Start Knitro-Active using initial point (xk, sk, yk, zk), ∆LP

0 and ν0.

Initially in Step 3 of crossover, the active set is estimated using a tolerance test rather
than by solving the LP (4.3). This is because, on some difficult problems, the cost of solving
the LP subproblem can be non-trivial and we would like the cost of our crossover procedure
in most cases to be a small part of the overall solution time. Therefore, if it is not necessary
to solve the LP to identify the optimal active set, we seek to avoid doing this. In many
cases, especially if strict complementarity holds at the solution, the initial estimate of the
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active set based on the simple tolerance test will be correct and the crossover will succeed
in one iteration without solving any LPs.

The condition (7.22) used to initialize the initial LP trust region ∆LP guarantees that
if our active-set estimate is correct, the initial LP trust region will be small enough to
exclude all inactive constraints. Motivated by the theory for the `1 exact penalty function,
the penalty parameter ν is initialized to be a little larger than the Lagrange multiplier of
largest magnitude at the interior-point solution.
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