
ON THE IMPLEMENTATION OF AN ALGORITHM FOR
LARGE-SCALE EQUALITY CONSTRAINED OPTIMIZATION∗

MARUCHA LALEE† , JORGE NOCEDAL† , AND TODD PLANTENGA‡

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 8, No. 3, pp. 682–706, August 1998 004

Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region
algorithm for solving nonlinear equality constrained optimization problems. The code is designed
for the efficient solution of large problems and provides the user with a variety of linear algebra
techniques for solving the subproblems occurring in the algorithm. Second derivative information
can be used, but when it is not available, limited memory quasi-Newton approximations are made.
The performance of the code is studied using a set of difficult test problems from the CUTE collection.

Key words. minimization, nonlinear optimization, large-scale optimization, constrained opti-
mization, trust region methods, quasi-Newton methods

AMS subject classifications. 65K05, 90C30

PII. S1052623493262993

1. Introduction. This paper describes the implementation and testing of an
algorithm for solving large nonlinear optimization problems with equality constraints.
We write this problem as

min
x∈Rn

f(x) subject to c(x) = 0,(1.1)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable functions,
and where n ≥ m. The algorithm is an extension of the trust region method proposed
by Byrd [2] and Omojokun [32], and our implementation is designed for large-scale
applications. By this we mean problems where the matrices of function derivatives
are more profitably treated using sparse data structures. We have in mind problems
with a thousand or more unknowns, and the number of constraints may be small,
large, or even equal to n—the algorithm treats all cases in a uniform manner.

Every iteration of the algorithm of Byrd and Omojokun requires the solution of
two trust region subproblems of smaller dimension. We provide both iterative and
direct solvers for these subproblems, allowing the user to select the most efficient
solver for a particular problem. If second derivatives of f and c are not provided, our
code automatically generates limited memory BFGS (�-BFGS) approximations.

Inequality constraints are not considered in this study for two reasons. First, we
want to determine if the method of Byrd and Omojokun is robust, and we wish to give
careful attention to its proper implementation in the setting of large-scale optimiza-
tion, starting with the simpler case of equality constraints. As we will discuss below,
this case raises many difficult questions and requires a sophisticated implementation.
The second reason is that the algorithm developed in this paper forms the core of two
new algorithms for handling general inequality constraints that are currently under
investigation [34], [3].

∗Received by the editors February 15, 1994; accepted for publication (in revised form) March 3,
1997; published electronically June 3, 1998. This work was supported by National Science Foundation
grants CCR-9101359 and ASC-9213149 and by Department of Energy grant DE-FG02-87ER25047.

http://www.siam.org/journals/siopt/8-3/26299.html
†Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,

IL 60208 (nocedal@ece.nwu.edu).
‡Sandia National Laboratories, MS 9214, P.O. Box 969, Livermore, CA 94551-0969 (tdplant@

ca.sandia.gov).

682

EQUALITY CONSTRAINED OPTIMIZATION 683

The algorithm is motivated and described in section 2. Two trust region subprob-
lems arise in the algorithm, and section 3 digresses to develop some techniques for
finding approximate solutions for them. In section 4 the details of our implementation
are presented. The results of numerical experiments, which suggest that the method
holds great promise, are discussed in section 5. A summarizing discussion and ideas
for further enhancements presented in section 6 conclude the paper.

2. General description of the algorithm. We begin by introducing some
notation. The gradient of the objective function f is denoted by g, and A denotes the
n×m matrix of constraint gradients, i.e.,

A(x) = [∇c1(x), . . . ,∇cm(x)],

where ci, i = 1, ...,m are the components of the vector c. We will assume that
A(xk) has full column rank for all xk. The Lagrangian of problem (1.1) is L(x, λ) =
f(x) − λT c(x), where λ is the vector of Lagrange multipliers. Throughout the paper
‖ · ‖ denotes the �2 norm.

The algorithm of Byrd [2] and Omojokun [32] can be interpreted as a sequential
quadratic programming method with a trust region, and it is derived from earlier
work by Vardi [42]; Celis, Dennis, and Tapia [7]; Powell and Yuan [38], and Byrd,
Schnabel, and Schultz [5]. (Although motivated differently, [45] and [12] present
related methods.) The algorithm decomposes each constrained SQP subproblem into
two smaller unconstrained trust region subproblems which are easier to solve. This
makes the Byrd–Omojokun method attractive for large-scale optimization, which was
one of the reasons why we chose to base our implementation on it.

The algorithm is simple to explain and motivate. At a current iterate xk we choose
a trust region radius ∆k and Lagrange multipliers λk, and attempt to generate a new
step dk by solving

min
d∈Rn

dT gk +
1

2
dT∇2

xL(xk, λk) d(2.1)

subject to AT
k d + ck = 0,(2.2)

‖d‖ ≤ ∆k,(2.3)

where the subscript denotes evaluation of a function at xk. However, as is well known,
restricting the size of the step by (2.3) may preclude us from satisfying the linear
constraint (2.2). Therefore Byrd and Omojokun first compute a step that lies well
within the trust region and that satisfies the linear constraint (2.2) as much as possible.
This is done by defining a relaxation parameter ζ ∈ (0, 1) and computing a step vk
that solves the vertical (or normal) subproblem

min
v∈Rn

‖AT
k v + ck‖(2.4)

subject to ‖v‖ ≤ ζ∆k.(2.5)

This problem can have many solutions, but we will show in section 4.1 that it always
has a solution vk in the range space of Ak; i.e., vk will be expressed as a linear combi-
nation of the columns of Ak. This allows us to completely decouple this subproblem
from the next one.

The algorithm is designed so that the full step d need not move any closer to the
feasible manifold than vk does, so we next reformulate (2.1)–(2.3) as

684 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

min
d∈Rn

dT gk +
1

2
dT∇2

xL(xk, λk) d(2.6)

subject to AT
k d = AT

k vk,(2.7)

‖d‖ ≤ ∆k.(2.8)

This problem, unlike (2.1)–(2.3), always has a nonempty feasible region (for instance,
d = vk satisfies all constraints). Byrd and Omojokun solve for d by seeking a step
complementary to vk. To this end we compute an n× (n−m) matrix Zk that spans
the null space of Ak (so that AT

k Zk = 0), and we define the total step of the algorithm
as d = vk + Zku, where the vector u ∈ Rn−m is yet to be determined. Substituting
for d in (2.6)–(2.8), noting that vk and Zku are orthogonal, and ignoring constant
terms, we obtain

min
u∈Rn−m

(gk + ∇2
xLkvk)

TZku +
1

2
uTZT

k ∇2
xLkZku(2.9)

subject to ‖Zku‖ ≤
√

∆2
k − ‖vk‖2.(2.10)

We denote the solution of this horizontal (or tangential) subproblem by uk, and we
define the total step as

dk = vk + Zkuk.(2.11)

We then set

xk+1 = xk + dk,

provided xk+1 gives a reduction in the merit function; otherwise, the trust region is
reduced and a new trial step is computed. (The merit function will be described later
in section 4.6.)

The approach of Byrd–Omojokun thus consists of replacing (2.1)–(2.3) with two
trust region subproblems of smaller dimension, each with just a single quadratic con-
straint. The vertical subproblem (2.4)–(2.5) has a spherical trust region in Rn,
whereas the horizontal subproblem (2.9)–(2.10) has an ellipsoidal trust region in
Rn−m. Both subproblems appear to be much easier to solve than the trust region
formulations studied by Celis, Dennis, and Tapia [7], and by Powell and Yuan [38],
which include an additional quadratic constraint.

Let us compare the Byrd–Omojokun algorithm with some other methods for large-
scale constrained optimization. The trust region method implemented in LANCELOT
[9] is based on the minimization of an augmented Lagrangian and is quite differ-
ent from the SQP approach. The SL1QP method developed by Fletcher [18] also
poses a single unconstrained trust region subproblem of dimension n, but it differs
markedly from our approach in that it requires the minimization of a nondifferentiable
model. SNOPT [23], a new line search implementation of the sequential quadratic
programming method, appears to hold much promise, but the computational issues
for large-scale problems are fundamentally different from those arising in our trust
region method.

The second reason for our interest in the Byrd–Omojokun method (the first reason
is the simplicity of the trust region subproblems) is its ability to handle nonlinear
constraints. Note that when n = m, i.e., when the problem reduces to that of finding
the root of a system of nonlinear equations, the Byrd–Omojokun algorithm coincides

EQUALITY CONSTRAINED OPTIMIZATION 685

with the Levenberg–Marquardt method, which is known to be robust and efficient.
Most of the algorithms mentioned in the previous paragraph do not have this property,
and we believe that our code will prove to be very effective at handling highly nonlinear
constraints.

An outline of the algorithm studied in this paper is given below (section 4.9
contains the detailed version).

Algorithm 2.1. General description of the Byrd–Omojokun algorithm
Constants ε > 0 and η ∈ (0, 1) are given
Choose x0 and ∆0 > 0
loop, starting with k = 0

Compute fk, ck, gk, Ak, and Zk

Compute multipliers λk

if ‖gk −Akλk‖∞ < ε and ‖ck‖∞ < ε then stop
Compute vk by solving the vertical subproblem (2.4)–(2.5) approximately
Compute ∇2

xLk(xk, λk) or update its �-BFGS approximation
Compute uk by solving the horizontal subproblem (2.9)–(2.10) approximately
Set dk = vk + Zkuk

Compute the actual reduction in the merit function, a red,
and the predicted reduction, p red

if a red
p red

≥ η

then set xk+1 = xk + dk, ∆k+1 ≥ ∆k

else set xk+1 = xk, ∆k+1 < ‖dk‖
continue loop, after incrementing k
We show in the rest of the paper that this algorithm can be converted into efficient

and robust software for large-scale computations. Since the key to good performance
lies in finding approximate solutions to the subproblems without incurring a high
computational cost, we begin by studying a formulation of the trust region problem
that is general enough for our purposes.

3. Solving trust region subproblems. We wish to develop efficient methods
for approximately solving the trust region problem

min
s∈Rq

φ(s) = gT s +
1

2
sTBs subject to ‖Cs‖ ≤ ∆,(3.1)

where B is symmetric, C is a p × q matrix of full rank with p ≥ q, and where the
number of variables q is assumed to be large. The vertical subproblem (2.4)–(2.5) can
be written in this form with p = q = n and C = I, and the horizontal subproblem
(2.9)–(2.10) can be obtained by setting C = Zk, q = n−m, and p = n.

The presence of C can make the trust region ellipsoidal, and it is therefore con-
venient to transform the problem so that it has a spherical trust region. Let us define

s̃ ≡ (CTC)1/2s,(3.2)

so that

s = (CTC)−1/2s̃.(3.3)

Using (3.3) in (3.1) we obtain the equivalent problem

min
s̃∈Rq

φ̃(s̃) = g̃T s̃ +
1

2
s̃T B̃s̃ subject to ‖s̃‖ ≤ ∆,(3.4)

686 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

where we have defined

g̃ ≡ (CTC)−1/2g and B̃ ≡ (CTC)−1/2B(CTC)−1/2.(3.5)

We will now state some well-known methods for approximately solving the spher-
ically constrained trust region problem (3.4) and then transform them via (3.2) to
obtain methods for solving the ellipsoidally constrained problem (3.1). We begin by
discussing the Cauchy step, which plays a fundamental role in all of these methods.

Cauchy point. The Cauchy point for (3.4) is defined as the minimizer of φ̃ in
the direction of steepest descent at s̃ = 0, subject to the trust constraint. Therefore,
we solve the problem

min
α>0

−g̃T (αg̃) +
1

2
(αg̃)T B̃(αg̃) subject to ‖αg̃‖ ≤ ∆

to obtain
s̃cp = −α̃g̃,

where

α̃ =

g̃T g̃
g̃T B̃g̃

if g̃T B̃g̃ > 0 and
(g̃T g̃)3/2

g̃T B̃g̃
≤ ∆,

∆
‖g̃‖ otherwise.

(3.6)

(If ‖g̃‖ = 0 then we take s̃cp = 0.) We now apply the transformations (3.2) and (3.5)
to obtain the Cauchy step for the ellipsoidal problem (3.1),

scp = −α̃(CTC)−1g,(3.7)

where α̃ is defined in terms of g and B by (3.6) and (3.5). Thus the transformation
results in a Cauchy step in the direction of scaled steepest descent, the scale factor
(CTC)−1 coming from the ellipsoidal shape of the trust region constraint.

We next describe the two methods used in our code for approximately solving the
trust region problem (3.1) when the number of unknowns q is large: Powell’s dogleg
method and Steihaug’s conjugate gradient (CG) iteration.

Dogleg method. If the Hessian matrix B in (3.1) is positive definite, then Pow-
ell’s dogleg method [35] can give an inexpensive approximate solution. The method
calculates the Cauchy point scp and the Newton step sn = −B−1g (even if sn violates
the trust region constraint). The dogleg path consists of the two line segments from
s = 0 to s = scp and from s = scp to s = sn. The dogleg method finds the minimizer
of φ along this path subject to ‖s‖ ≤ ∆. Since φ decreases monotonically along the
path, we simply find the intersection point with the trust region boundary, or we use
the Newton step if the path lies entirely inside the trust region [13, section 6.4.2].
It is well known that, in the unconstrained setting, the dogleg method is sufficiently
accurate to ensure first-order global convergence and a quadratic convergence rate
[39]; the same properties carry over to the Byrd–Omojokun algorithm [33]. The cost
of computing the Newton step can be high in large problems, and an approximation
to it is an attractive option.

Steihaug’s method. If the matrix B is not positive definite, there is no uncon-
strained minimizer of φ, and the Newton step sn is not defined. In this case one can
use an extension of CG proposed by Steihaug [40] (some elements of this method were
also suggested by Toint [41]). The method is shown for the spherically constrained
problem (3.4) in Algorithm 3.1.

EQUALITY CONSTRAINED OPTIMIZATION 687

Algorithm 3.1. Steihaug’s method for problem (3.4)
Constant ε̃ > 0 is given
Start with s̃0 = 0, r̃0 = −g̃, and p̃0 = r̃0
if ‖r̃0‖ < ε̃ then return s̃0

loop, starting with j = 0

if p̃Tj B̃p̃j ≤ 0

then find τ̃ so that s̃ = s̃j + τ̃ p̃j minimizes φ̃(s̃)
and satisfies ‖s̃‖ = ∆, and return s̃

α̃j = r̃Tj r̃j / p̃
T
j B̃p̃j

s̃j+1 = s̃j + α̃j p̃j
if ‖s̃j+1‖ ≥ ∆

then find τ̃ ≥ 0 so that ‖s̃j + τ̃ p̃j‖ = ∆,
and return s̃j + τ̃ p̃j

r̃j+1 = r̃j − α̃jB̃p̃j
if ‖r̃j+1‖ / ‖r̃0‖ < ε̃ then return s̃j+1

β̃j+1 = r̃Tj+1r̃j+1 / r̃
T
j r̃j

p̃j+1 = r̃j+1 + β̃j+1p̃j
continue loop, after incrementing j

Note that when the trust region constraint is inactive and B̃ is positive definite,
Algorithm 3.1 reduces to a CG computation of the Newton step. Steihaug proved
[40] that φ̃ decreases monotonically with each step s̃j , and that every step moves
farther away from the start point s̃0 = 0, in the sense that ‖s̃j+1‖ > ‖s̃j‖. These two
properties imply that stopping the iteration as soon as the trust region is encountered
is a sensible strategy. Observe that the first step s̃1 is simply the Cauchy step s̃cp
(assuming ‖g̃‖ ≥ ε̃), and that the residual vector r̃j equals the gradient of φ̃ at s̃j .

To adapt Steihaug’s method for ellipsoidally constrained problem (3.1), we apply
the transformations (3.2) and (3.5). If we additionally define the vectors

rj ≡ (CTC)1/2r̃j and pj ≡ (CTC)−1/2p̃j ,

then we obtain Algorithm 3.2.
Algorithm 3.2. Steihaug’s method for problem (3.1)
Constant ε > 0 is given
Start with s0 = 0, r0 = −g, and p0 = (CTC)−1r0
if

√
rT0 (CTC)−1r0 < ε then return s0

loop, starting with j = 0
if pTj Bpj ≤ 0

then find τ so that s = sj + τpj minimizes φ(s)
and satisfies ‖Cs‖ = ∆, and return s

αj = rTj (CTC)−1rj / p
T
j Bpj

sj+1 = sj + αjpj
if ‖Csj+1‖ ≥ ∆

then find τ ≥ 0 so that ‖C(sj + τpj)‖ = ∆,
and return sj + τpj

rj+1 = rj − αjBpj

if
√
rTj+1(C

TC)−1rj+1 /
√
rT0 (CTC)−1r0 < ε then return sj+1

βj+1 = rTj+1(C
TC)−1rj+1 / r

T
j (CTC)−1rj

pj+1 = (CTC)−1rj+1 + βj+1pj
continue loop, after incrementing j

688 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

Algorithms 3.1 and 3.2 are equivalent and generate the same set of iterates. The
first step s1 of Algorithm 3.2 is again scp, and each residual rj is the gradient of
φ at sj . If the trust region constraint is inactive and B is positive definite, then
Algorithm 3.2 reduces to a preconditioned CG computation of the Newton step, with
CTC acting as the preconditioning matrix (although this “preconditioner” does not
necessarily make the problem better conditioned).

We are now ready to discuss the implementation of Algorithm 2.1.

4. Detailed description of the algorithm. We begin by applying the solu-
tion techniques of the previous section to the vertical and horizontal subproblems,
paying close attention to the linear algebra costs. Following that, we discuss other
components of the algorithm that also require a careful implementation.

4.1. Vertical step. Let us replace (2.4)–(2.5) by the equivalent problem

min
v∈Rn

cTkA
T
k v +

1

2
vTAkA

T
k v(4.1)

subject to ‖v‖ ≤ ζ∆k,(4.2)

and remember that we want the solution vk to lie in the range space of Ak (to make
it orthogonal to the horizontal step). To show that such a solution always exists, we
note that the exact solution of (4.1)–(4.2) satisfies the equation

(AkA
T
k + ρI)v∗ = −Akck(4.3)

for some ρ ≥ 0 [20, p. 101]. If ρ = 0, then v∗ = −Ak(A
T
kAk)

−1ck is a solution, and it
is clearly in the range space of Ak. On the other hand, if ρ > 0 then premultiplying
both sides of (4.3) by ZT

k gives ZT
k v∗ = 0, showing that v∗ is in the range of Ak.

Our implementation provides two options for computing an approximate vertical step
vk—the dogleg method and Steihaug’s method—and in both cases we ensure that vk
lies in the range space of Ak.

When we compare (4.1)–(4.2) with the general formulation (3.1), we see that
C = I, B = AkA

T
k is positive semidefinite, ∆ = ζ∆k, and g = Akck. Substituting

into (3.7), we obtain the Cauchy point

vcp = −αAkck,

where

α = min

{
ζ∆k

‖Akck‖ ,
‖Akck‖2

(Akck)TAkAT
k (Akck)

}
.

To formulate a dogleg method for (4.1)–(4.2) we need to define the Newton step.
Since the matrix AkA

T
k has n−m linearly independent null vectors, there is a whole

manifold of minimizers for (4.1), each satisfying the linear equations (2.2). In our
implementation we choose the shortest step, uniquely given by

vn = −Ak(A
T
kAk)

−1ck.(4.4)

Together, vcp and vn define a dogleg method for the vertical subproblem.
The main computational expense of the dogleg method lies in solving the lin-

ear system involving AT
kAk to obtain vn. We provide two strategies for performing

EQUALITY CONSTRAINED OPTIMIZATION 689

this calculation. One is to compute a sparse Cholesky factorization of AT
kAk (us-

ing the subroutines of Ng and Peyton [30]), which gives an accurate answer (unless
Ak is extremely ill conditioned), but could take O(n3) operations in the worst case.
The alternative is to estimate vn in (4.4) by the CG method (this is equivalent to
Craig’s method [10] applied to (4.1)), which can be a cheaper calculation, although
less accurate. Preconditioners would clearly enhance the performance of this inner
CG iteration, but none have been implemented yet in our software. Regardless of
whether Cholesky or CGs are used for solving (4.4) we include the following safe-
guard: if ‖vn‖ is smaller than ‖vcp‖, then serious roundoff errors may have occurred
in the computation of vn and we revert to using just the Cauchy segment of the dogleg
path. This is, in essence, our application of the dogleg method for the computation
of the vertical step.

Steihaug’s method as given in Algorithm 3.2 can also be applied to the vertical
subproblem. The Hessian B = AkA

T
k is of size n × n, but all search directions pj in

Algorithm 3.2 lie in the m-dimensional range space of Ak. Our test results indicate
Steihaug’s method sometimes performs better than the dogleg method and is certainly
an alternative worth considering.

4.2. Horizontal step. For convenience let us write Wk for the Hessian of the
Lagrangian or its limited memory BFGS approximation, and define ḡk ≡ gk + Wkvk
and ∆̄2

k ≡ ∆2
k − ‖vk‖2. Then the horizontal subproblem (2.9)–(2.10) can be written

as

min
u∈Rn−m

ḡTk Zku +
1

2
uTZT

k WkZku(4.5)

subject to ‖Zku‖ ≤ ∆̄k.(4.6)

This is a trust region subproblem with ellipsoidal constraint; in terms of the general
formulation (3.1) we have C = Zk, B = ZT

k WkZk, g = ZT
k ḡk, p = n, and q = n−m.

Using (3.7) we see that the Cauchy point is given by

ucp = −αūk, with ūk ≡ (ZT
k Zk)

−1ZT
k ḡk(4.7)

and α determined by the following rule:

if ūT
k Z

T
k WkZkūk ≤ 0

then

α = ∆̄k
‖Zkūk‖

else

α = min

{
∆̄k

‖Zkūk‖ ,
ḡTk Zkūk

ūT
k Z

T
k WkZkūk

}
.

It will be seen in section 4.3 that directly computing (ZT
k Zk)

−1 can be very
expensive, but the cost of multiplying Zk and ZT

k by a vector is much lower; therefore,
we solve for ūk approximately by the CG method.

This means that ucp is just an approximation to the Cauchy step, raising the
question whether global convergence of the Byrd–Omojokun algorithm is still assured.
Analysis similar to that in [6] shows that an approximation to ucp is adequate for
global convergence as long as the error in its computation tends to zero as fast as
ZT
k ḡk. Therefore, the stop tolerance in the CG iteration used for computing (4.7) is

set to a small fraction of ‖ZT
k ḡk‖.

690 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

The horizontal step should make at least as much a reduction in (4.5) as the
Cauchy step ucp does, and preferably more in order to accelerate convergence. The
dogleg method is only applicable to (4.5)–(4.6) in cases where Wk can be guaranteed
positive definite, but since Steihaug’s method can be applied for any Wk, we adopt it
as our sole option for computing the horizontal step. To define Steihaug’s method we
only need to make the appropriate substitutions from (4.5)–(4.6) into Algorithm 3.2.
This generates a set of iterates {uj} which estimate the solution of (4.5)–(4.6); the
final iterate is then multiplied by Zk to define the horizontal step.

A close examination reveals that this Steihaug iteration can be made more efficient
by directly generating iterates and search directions of the form Zkuj and Zkpj . To
see this, note that the matrices B and C appearing in Algorithm 3.2 are given in
this case by B = ZT

k WkZk and C = Zk. Thus, it is necessary to first multiply the
quantities uj (or sj in the notation of Algorithm 3.2) and pj by Zk at every place
they appear in the iteration. Instead of computing uj and pj themselves, we can work
with Zkuj and Zkpj directly, saving the cost of multiplying by Zk at every iteration of
Steihaug’s method. These ideas are implemented in Algorithm 4.1, where the symbols
(Zu)j and (Zp)j denote the iterates and search directions in the desired form. By
construction, all search directions (Zp)j lie in the null space of the constraint matrix,
i.e., in the span of Zk. Algorithm 4.1 also expresses the ellipsoidally scaled residual
explicitly as a vector tj , a quantity we shall examine more closely in a moment.

Algorithm 4.1. Computation of the horizontal step

Constants εh0 > 0 and εh > 0 are given
Start with (Zu)0 = 0 and r0 = −ZT

k ḡk
Solve (ZT

k Zk)t0 = r0 for t0, and set (Zp)0 = Zkt0
if

√
rT0 t0 < εh0

then use (4.7) and return the Cauchy step Zkucp

loop, starting with j = 0
if (Zp)Tj Wk(Zp)j ≤ 10−8(Zp)Tj (Zp)j

then find τ so that (Zu) = (Zu)j + τ(Zp)j minimizes (4.5)
and satisfies ‖(Zu)‖ = ∆̄k, and return (Zu)

αj = rTj tj / (Zp)Tj Wk(Zp)j
(Zu)j+1 = (Zu)j + αj(Zp)j
if ‖(Zu)j+1‖ ≥ ∆̄k

then find τ ≥ 0 so that ‖(Zu)j + τ(Zp)j‖ = ∆̄k

and return (Zu)j + τ(Zp)j
rj+1 = rj − αjZ

T
k Wk(Zp)j

Solve (ZT
k Zk)tj+1 = rj+1 for tj+1

if
√
rTj+1tj+1 < εh

√
rT0 t0 then return (Zu)j+1

βj+1 = rTj+1tj+1 / r
T
j tj

(Zp)j+1 = Zktj+1 + βj+1(Zp)j
continue loop, after incrementing j

As in the computation of the Cauchy step (4.7), we calculate tj+1 by approxi-
mately solving (ZT

k Zk)tj+1 = rj+1 by the CG method. This inner loop is terminated

when its residual becomes smaller than a fraction of εh
√
rT0 t0, which is the stop toler-

ance in Algorithm 4.1. Since rT0 t0 is proportional to ‖ZT
k gk‖2, an analysis similar to

that in [11] shows that this tolerance will give the algorithm a Q-quadratic asymptotic
rate of convergence in the case when second derivatives are used for Wk.

EQUALITY CONSTRAINED OPTIMIZATION 691

Unscaled Steihaug iteration. The approximate solution to the horizontal
subproblem found by Algorithm 4.1 turns out to be quite adequate for solving (1.1),
but the calculation of the scaled residual (ZT

k Zk)tj+1 = rj+1 is very time consuming
in many problems. This CG subiteration is effectively a triply nested loop since
Algorithm 4.1 lies within the main loop of Algorithm 2.1. Thus, we are motivated to
search for less expensive alternatives for computing uk that preserve the robustness
of the trust region algorithm. Our most successful idea, which we call the unscaled
Steihaug iteration, is to eliminate the matrix (ZT

k Zk)
−1 from Algorithm 4.1, thereby

setting tj+1 = rj+1. This can be viewed as preconditioning with the matrix ZT
k Zk;

however, this “preconditioner” is not chosen for the usual purpose of improving the
condition number of ZT

k WkZk but only to reduce the cost of the iteration. Indeed,
ignoring the matrix (ZT

k Zk)
−1 can be problematic, and must be done with certain

precautions.
If ZT

k WkZk is positive definite, and if the unscaled Steihaug iteration remains
inside the scaled trust region ‖Zu‖ ≤ ∆̄, then the solution obtained is simply the
Newton step for (4.5). In this case the “preconditioner” has had no effect on the
answer, and savings in computing time have been obtained. But if the unscaled Stei-
haug method terminates by reaching the trust region boundary, it is possible that the
resulting step is poor compared with the solution obtained by the regular Steihaug
iteration. The source of the difficulty is that, by removing the term (ZT

k Zk)
−1, the

inequalities ‖(Zu)j+1‖ > ‖(Zu)j‖ may no longer hold for all j. Therefore, an early
iterate (Zu)j could leave the trust region and a later iterate (Zu)j+s, giving a signif-
icantly lower value of (4.5), may subsequently return to the trust region. (It is still
true that (4.5) is reduced monotonically by the sequence of steps (Zu)j .)

To overcome this potential problem, we start with the unscaled Steihaug iteration
but discard all the information generated if it leaves the scaled trust region, instead
applying Algorithm 4.1. To minimize wasted effort, the unscaled Steihaug method is
tried only if the last step dk was accepted and ∆k+1 is the same as ∆k. In particular,
this ensures the method is tried as the iterates converge to a solution and the trust
region becomes inactive. As a further precaution the stop test requires two successive
residuals to be less than the tolerance εh. Numerical tests comparing both variations
of the Steihaug iteration are given in section 5.1.

4.3. Computation of Zk. Recall that Zk is the n × (n −m) matrix spanning
the manifold tangent to all constraints at xk; this means it satisfies AT

k Zk = 0. A
numerically stable way of calculating Zk from Ak is by means of the QR factoriza-
tion, which ensures that the columns of Zk are orthogonal. Although a sparse QR
factorization appears feasible, we suspect that it may be costly in many cases and
have deferred exploring this option to a later date. The idea we have pursued is one
of direct elimination (see for example [20, p. 234]). First, partition AT

k into

AT
k = [Bk Nk],(4.8)

where the m × m basis matrix Bk is nonsingular (for simplicity (4.8) assumes that
the basis Bk is formed by the first m columns of AT

k). Now define Zk to be

Zk =

[−B−1
k Nk

I

]
,(4.9)

which satisfies AT
k Zk = 0, although the columns of Zk are not orthogonal. Our

software uses Harwell subroutine MA28 [15] to first choose m columns of AT
k that

692 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

define the basis (MA28 can do this even though AT
k is not square), and then compute

the sparse LU factorization of Bk. MA28 selects the basis by considering both the
resulting sparsity and the size of the pivots in the LU factorization of Bk. Forming
Zk explicitly could be very expensive since B−1

k Nk requires n − m back-solves, and
could destroy sparsity. Instead, the implicit representation (4.9) of Zk is employed to
compute matrix-vector products of the form Zku and ZT

k x (Murtagh and Saunders
use the same concept in [29]). For example, Zku is obtained by computing b = Nku,
solving Bky = −b for y using the sparse LU factors of Bk, and appending u for the
last components.

MA28 is designed to take advantage of situations where matrix values change
but the sparsity pattern remains the same. This will be the case in our algorithm
as long as we can keep the same m columns to serve as the basis matrix. At the
beginning of the algorithm we do the costly work of choosing columns for B0 and
symbolically factoring it, and then use this same basis for subsequent iterates, saving
many computations. But it is possible for iterates to change enough that Bk becomes
very ill conditioned, in which case it is necessary to choose a different set of columns
to define the basis. We have devised the following heuristic to determine when to
change basis and refactor.

Heuristic I: Strategy for changing basis. When solving systems of the form
Bky = b or BT

k y = b (which arise in the horizontal subproblem), we compute the
ratio ‖b‖/‖y‖. This is a number that lies somewhere between the largest and smallest
singular values of Bk. During the lifetime of a particular choice of basis we remember
the largest and smallest ratios seen, then divide these to estimate the condition number
of the current Bk. If the estimate becomes greater than 102, then on the next iteration
we let MA28 try and choose a new basis and symbolically refactor.

To prevent this heuristic from interfering with good algorithm behavior we over-
rule it, and do not change basis, when the step is inside the trust region and is accepted
by the algorithm. The performance of the heuristic is documented in section 5.1.

4.4. Limited memory approximations. Our software supplies an alternative
when second derivatives are unavailable or prohibitively expensive to calculate. A
limited memory BFGS (�-BFGS) approximation to ∇2

xLk is maintained and used in
the role of Wk. The estimate is initialized with a scalar multiple of the identity matrix,
then is updated implicitly as described in [27]. Only information reflecting the last
t updates is kept, which requires O(tn) storage locations and O(tn) operations for
updating Wk and multiplying Wk by a vector. Limited memory approximations give
rise to a linear convergence rate, so there can be a significant loss in performance
compared with using second derivatives. Previous research [22], [27] has shown that
the choice t ∈ [4, 10] gives good performance, and our testing suggests �-BFGS is a
viable option within the framework of this algorithm.

The software implementation uses the compact representations of limited memory
BFGS matrices described in [4]. Every (implicit) BFGS update is of the form

Wk+1 = Wk − Wkdkd
T
kWk

dTkWkdk
+

yky
T
k

yTk dk
,(4.10)

where dk = xk+1 − xk and yk = (gk+1 − Ak+1λk+1) − (gk − Akλk). If yTk dk is not
positive, we enforce this condition by modifying yk according to Powell’s damping
strategy [36]:

EQUALITY CONSTRAINED OPTIMIZATION 693

if dTk yk < 0.2 dTkWkdk
then yk ← θyk + (1 − θ)Wkdk ,

where

θ =
0.8 dTkWkdk

dTkWkdk − dTk yk
.

There is also a danger that the last term in (4.10) becomes too large. To avoid this
the update is not performed if

10−8 yTk yk ≥ yTk dk.

4.5. Lagrange multipliers. At every new iterate xk+1 we compute least squares
Lagrange multiplier estimates λk+1 by solving

(AT
k+1Ak+1)λk+1 = AT

k+1gk+1.(4.11)

This linear system is solved by either sparse Cholesky factorization or by the CG
method. The accuracy of the Lagrange multipliers needs to be good enough to allow
proper evaluation of the first-order KKT measure ‖gk − Akλk‖∞. Therefore, when
the CG method is used, the iteration is stopped when the residual in (4.11) becomes
less than 10−2 ∗ max{‖ck‖∞, ‖gk −Akλk‖∞}.

4.6. Merit function and choice of penalty parameter. The merit function
is used to decide whether the step dk makes sufficient progress toward the solution of
problem (1.1). We follow the Byrd and Omojokun algorithm in [32] and use as merit
function

ψ(x, µ) = f(x) + µ‖c(x)‖,(4.12)

where µ > 0 is called the penalty parameter; recall that ‖ · ‖ denotes the �2 norm.
Since the last term in (4.12) is not squared, this merit function is not differentiable.
It is also exact: in a neighborhood of a solution point x∗, and for µ > ‖λ∗‖∞, the
minimizer of ψ(x, µ) is precisely x∗. We will see below that this merit function has
the advantage that the �2 norm used to penalize the constraints is compatible with
the �2 norm used in the formulation (2.4) of the vertical step.

We need to decide how the penalty parameter will be chosen at each iteration of
the algorithm. As is commonly done (see, for example, [24], [37]) we first compute a
step dk and then choose µ large enough that dk results in a reduction of the model.
To be more precise, let us replace f by the model objective (2.1) and linearize the
constraints in (4.12) to give the model merit function at xk,

ψ̂k(d, µ) ≡ dT gk +
1

2
dTWkd + µ‖AT

k d + ck‖,

where, as before, Wk denotes ∇2
xLk or an �-BFGS approximation to it. We now define

the predicted reduction p red in the model merit function ψ̂k by

p red = ψ̂k(0, µ) − ψ̂k(dk, µ)

= −dTk gk − 1

2
dTkWkdk + µ

(‖ck‖ − ‖AT
k vk + ck‖

)
,(4.13)

694 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

where we have used (2.11) and the fact that AT
k Zk = 0. The term inside the parenthe-

ses is nonnegative because the dogleg or Steihaug methods used in the vertical step
computation reduce the objective ‖AT

k v+ ck‖ from its initial value ‖ck‖ at v = 0. We
now compute the trial value

µ+ = max

{
µk, 0.1 +

dTk gk + 1
2d

T
kWkdk

‖ck‖ − ‖AT
k vk + ck‖

}
,(4.14)

where µk is the penalty parameter at the previous iteration. It is clear from (4.13)
that for this value of the penalty parameter the predicted reduction p red is positive.
(The term inside the parentheses in (4.13) can be zero when vk = 0, which only
happens when ck = 0. In this case (4.14) is not used because p red is made positive
from the decrease that dk makes in the objective of the horizontal subproblem (4.5).)

Before accepting the step, Algorithm 2.1 tests whether this choice of the penalty
parameter leads to an actual decrease in the merit function (and not just in the
model). We define the actual reduction a red in the merit function by

a red = ψ(xk, µ
+) − ψ(xk + dk, µ

+)

= f(xk) − f(xk + dk) + µ+(‖c(xk)‖ − ‖c(xk + dk)‖).(4.15)

If a red is sufficiently positive in the sense that a red ≥ η p red, dk is accepted and
we set µk+1 = µ+; otherwise, the second-order correction procedure described in
section 4.7 is invoked.

There is a danger of vk being so small that the denominator of (4.14) approaches
zero and µ+ blows up, but this will normally happen only if the constraints are already
nearly satisfied; in this case there is no point in further penalizing the constraints
and we are justified in keeping µ+ = µk. These guidelines for choosing the penalty
parameter are sufficient for robust algorithm performance, but we have observed that
the following modifications can often help the algorithm reach a solution faster.

Heuristic II: Update of penalty parameter. For certain problems with
nonlinear constraints, convergence can be very slow because the penalty parameter
is not increased enough. Formula (4.14) computes µ+ using a linearization of the
constraints, but if these are sufficiently nonlinear that ‖c(xk)‖ − ‖c(xk + dk)‖ is not
well approximated by ‖ck‖ − ‖AT

k dk + ck‖, then the step may increase the merit
function and be rejected. In these cases it is advantageous to give more weight to
constraint satisfaction by further increasing the penalty parameter. However, there
is a risk that an unnecessarily large penalty parameter will cause iterates to follow
the constraint manifold too closely, resulting in an excessive number of iterations for
convergence. In the following, heuristic k − s, with s ≥ 1, denotes the index of the
most recent iterate at which the step dk−s was accepted by the algorithm.

Algorithm 4.2. Heuristic for modifying the penalty parameter
Compute µ+ using (4.14)
if µ+ > µk and µ+ < 5µk and µk > µk−s and ‖ck‖ > 1

5‖ck−s‖
and one or both of the last two steps were rejected

then µ+ ← min{5µk, µ
+ + 25(µ+ − µk−s)}

if µ+ = µk and ‖vk‖ < ζ∆k/10 and ‖ck‖∞ < 104ε
then µ+ ← max{µ0, µ̄, ‖λk‖}

(ε is the stop tolerance in Algorithm 2.1 and µ̄ is the second term inside the
brackets in (4.14).)
The first if statement allows a further increase in the penalty parameter if not

much progress (‖ck‖ > 1
5‖ck−s‖) has been made toward feasibility—a condition that

EQUALITY CONSTRAINED OPTIMIZATION 695

indicates that the constraint error is not being weighed strongly enough in the merit
function—and if one of the last two steps failed, implying that the linearized constraint
model is not a good fit. Safeguards are included to prevent the penalty parameter
from changing too rapidly (µ+ < 5µk) and to permit increases only when the penalty
parameter is already on the rise (µk > µk−s). The second if statement permits re-
ductions of the penalty parameter when iterates are close to satisfying the equality
constraints; furthermore, the reduced µ+ is never smaller than ‖λk‖ (which is an esti-
mate of the theoretical safe lower bound on µ∗) or smaller than the value µ̄ needed to
assure that the step is a descent direction for the model merit function. In section 5.1
we present numerical results comparing this heuristic with the simpler rule (4.14).

4.7. Second-order correction. The merit function (4.12) is nondifferentiable
and can give rise to the Maratos effect [28], which results in poor performance on
some problems. The effect can be overcome by computing a second-order correction
term (see [20, pp. 393–396] or [8] for details) and adding it to dk, giving the new trial
step

dSOC = dk −Ak(A
T
kAk)

−1c(xk + dk).(4.16)

The linear system involving AT
kAk is solved just as in the computation of vn in sec-

tion 4.1: either by sparse Cholesky factorization or by CG. Computation of the second-
order correction term is costly, so we only try dSOC if the step dk has been rejected, xk

is already nearly feasible, and ‖vk‖ is small compared with ‖Zkuk‖. These conditions
attempt to identify the occurrence of the Maratos effect and are much simpler than
the rules given by Fletcher [19]. Combining this with the ideas of section 4.6, the final
if statement of Algorithm 2.1 is more precisely defined by the following rules.

Compute µ+ from Algorithm 4.2, a red from (4.15), and p red from (4.13)

if a red
p red

≥ η

then xk+1 = xk + dk, µk+1 = µ+, ∆k+1 ≥ ∆k

else if ‖vk‖ ≤ 0.8ζ∆k and ‖vk‖ ≤ 0.1‖Zkuk‖
then compute dSOC using (4.16)

recalculate a red with dk ← dSOC

if a red
p red

≥ η

then xk+1 = xk + dSOC,
µk+1 = µ+, ∆k+1 ≥ ∆k

else xk+1 = xk,
µk+1 = µk, ∆k+1 < ‖dk‖

else xk+1 = xk, µk+1 = µk, ∆k+1 < ‖dk‖.
4.8. Modifying the trust region. We will now describe in detail how to up-

date the trust region radius. Our numerical experience suggests that the following
aggressive strategy often saves many iterations of the algorithm and is rarely harmful.
When a step dk (or dSOC) is accepted we increase the trust radius according to the
following rule:

if a red
p red

≥ 0.9

then ∆k+1 = max{10 ‖dk‖,∆k}
else if a red

p red
≥ 0.3

then ∆k+1 = max{2 ‖dk‖,∆k}
else ∆k+1 = ∆k .

696 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

When the step is rejected, ∆k+1 is reduced to a fraction of the failed step length
such that ∆k+1 ∈ [0.1 ‖dk‖, 0.5 ‖dk‖]. The precise value is computed by assuming
that the ratio of actual to predicted reduction is a linear function h of the step length
‖d‖, satisfying h(0) = 1 and h(‖dk‖) = (a red/p red), and then finding the value of
‖d‖ where h equals η. Thus, the computation of ∆k+1 for a failed step is as follows:

Set ∆k+1 =
1 − η

1 − (a red/p red)
‖dk‖

if ∆k+1 > 0.5 ‖dk‖
then ∆k+1 ← 0.5 ‖dk‖

else if ∆k+1 < 0.1 ‖dk‖
then ∆k+1 ← 0.1 ‖dk‖ .

For other strategies of updating the trust region radius see [13, section 6.4.3] and
[9].

4.9. Summary of the algorithm implementation. The previous discussion
has provided a detailed description of our implementation of the Byrd–Omojokun
algorithm, including several options for approximately solving the subproblems that
arise. Below is an expanded description of Algorithm 2.1, which closely reflects the
form of our code.

Algorithm ETR. Trust region algorithm for equality constrained optimization
Constants ε > 0, and η, ζ ∈ (0, 1) are given
Choose x0 and ∆0, µ0 > 0
loop, starting with k = 0

Compute fk, ck, gk, and Ak

if Heuristic I (see section 4.3) indicates the basis Bk for Ak is ill conditioned
then Find a new basis and its LU factors
else Compute the LU factors of the current basis

(The null-space basis Zk is now defined by (4.9))
Compute multipliers λk by solving (AT

kAk)λk = AT
k gk

Option 1: solve the linear system by Cholesky factorization
Option 2: solve the system by CG

if ‖gk −Akλk‖∞ < ε and ‖ck‖∞ < ε then stop
Compute the vertical step vk

Option 1: use dogleg method, obtain the Newton step vn by Cholesky
Option 2: use dogleg method, obtain the Newton step vn by CG
Option 3: use Steihaug’s method

Compute Wk

Option 1: set Wk = ∇2
xLk(xk, λk)

Option 2: update the limited memory (�-BFGS) approximation Wk

Compute the horizontal step uk with the unscaled Steihaug iteration (section 4.2)
Set dk = vk + Zkuk

Compute µ+ using Heuristic II as given in Algorithm 4.2
Compute a red from (4.15) and p red from (4.13)

if a red
p red

≥ η

then xk+1 = xk + dk, µk+1 = µ+, and expand trust region
else if ‖vk‖ ≤ 0.8ζ∆k and ‖vk‖ ≤ 0.1‖Zkuk‖

then Compute the second-order correction dSOC from (4.16):
use the same option as was chosen to compute λk

EQUALITY CONSTRAINED OPTIMIZATION 697

Recalculate a red (4.15) at dSOC

if a red
p red

≥ η

then xk+1 = xk + dSOC, µk+1 = µ+, expand trust region
else xk+1 = xk, µk+1 = µk, contract trust region

else xk+1 = xk, µk+1 = µk, and contract trust region
(The expansion and contraction of the trust region ∆k+1 is made according
to the rules of section 4.8)

continue loop, after incrementing k

Let us reiterate our strategy for solving the linear systems involving the matrix
AT

kAk occurring in the algorithm. We provide two ways (Cholesky factorization and
CG) of solving these linear systems, which occur in the dogleg component of the
vertical subproblem vk, in the computation of the Lagrange multipliers λk, and in the
second-order correction step dSOC. For these systems we are consistent in our choice
of linear solver: if the vertical step is computed by Cholesky factorization, then the
Cholesky factors are saved and used for solving the other systems; otherwise, CG is
used to solve all three linear systems.

For testing purposes, the parameters occurring in the algorithm were selected
as follows. The stop tolerance was ε = 10−5, and we set η = 0.1, ζ = 0.8, and
∆0 = 1. The penalty parameter was always started at µ0 = 1. In the horizontal
step computation (Algorithm 4.1) we used stop tolerances of εh = 10−2 and εh0 =
10−10. The computation of the horizontal Cauchy step in (4.7) requires approximately
solving the system ZT

k Zk by CG; this inner iteration was stopped when the residual
was less than max{10−10, 10−8 ∗ min{1, ‖ZT

k ḡk‖}}. A more relaxed CG tolerance of
max{10−7, 10−2 ∗ min{1, rT0 t0}} was used to solve for tj+1 in Algorithm 4.1. When
CG was used to obtain Lagrange multipliers λk+1, we stopped iterating when the
residual became smaller than 10−2 ∗ max{‖ck‖∞, ‖gk − Akλk‖∞}. When CG was
used to obtain vn, the residual had to be less than max{10−8, 10−2 ∗ min{1, ‖ck‖}},
while the more stringent tolerance max{10−8, 10−7 ∗ min{1, ‖c(xk + dk)‖}} was used
to compute dSOC.

5. Test results. We tested our software implementation on a set of difficult
nonlinear equality constrained problems drawn from the CUTE collection [1]. The
problems are divided into two groups, large and small, based on the number of un-
knowns. Table 5.1 presents a brief overview of the large problems. An asterisk by the
problem name means the original CUTE problem has been modified for our use; for
example, nonlinear inequalities may have been dropped or changed into equalities, or
the problem parameters may have been altered to obtain a more ill conditioned or
badly scaled problem. (All problems can be obtained from the authors in electronic
form.) The number of nonzero elements in A is denoted by nnz(A). The value of the
objective at the solution is given under f(x∗) to the number of significant figures that
all optimization methods agreed upon. Note that in some problems n = m; in these
we seek the root of a system of nonlinear equations. The CUTE software interface
computes all derivatives by analytic formulae and provides a means of checking results
by comparing them with solutions obtained with other software packages.

Our main concern in this paper is the development of an algorithm suitable for
large-scale optimization; therefore, we begin by examining performance for the prob-
lems in Table 5.1 and defer the testing of small optimization problems until section 5.2.
We first present numerical results that explore the performance of three options intro-
duced in the previous sections: the use of the unscaled Steihaug iteration; Heuristic
I—the strategy for automatically choosing a new basis; and Heuristic II—the aggres-

698 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

Table 5.1

Description of large test problem set.

Problem name n m nnz(A) Objective Constraints f(x∗)

GENHS28 300 298 894 nonlinear linear 3.31481 × 101

HAGER2 10001 5001 15001 nonlinear linear 4.3208 × 10−1

HAGER3 8001 4001 12001 nonlinear linear 1.4096 × 10−1

ORTHREGA 2053 1024 7168 nonlinear nonlinear 5.66143 × 102

ORTHREGC 1005 500 3500 nonlinear nonlinear 1.87906 × 101

ORTHREGD 203 100 500 nonlinear nonlinear 3.05079 × 101

∗ORTHRGDS 203 100 500 nonlinear nonlinear 4.037 × 101

∗ORTHRGDM 4003 2000 10000 nonlinear nonlinear 1.55533 × 102

∗ORTHRGFB 1205 400 3200 nonlinear nonlinear 1.62006 × 101

∗OPTCTRL3 122 83 283 nonlinear nonlinear 1.34806 × 103

∗OPTCTRL6 122 83 283 nonlinear nonlinear 2.04802 × 103

DTOC1ND 2998 2000 13976 nonlinear nonlinear 2.37703 × 101

DTOC2 2998 2000 7988 nonlinear nonlinear 4.9723 × 10−1

DTOC3 14999 10000 34995 nonlinear linear 2.3526 × 102

DTOC4 14999 10000 34995 nonlinear nonlinear 2.868 × 100

DTOC5 9999 5000 14998 nonlinear nonlinear 1.534 × 100

DTOC6 2001 1001 3001 nonlinear nonlinear 1.7176 × 100

EIGENA2 110 55 1000 nonlinear nonlinear 0.00000 × 100

EIGENC2 462 231 9261 nonlinear nonlinear 0.00000 × 100

ARTIF 1002 1002 3002 - nonlinear -
BRATU3D 27000 27000 158712 - nonlinear -
BROYDNBD 5000 5000 34984 - nonlinear -
HTRODEQ 4656 4656 27361 - nonlinear -

* Test problem was created specifically for this paper.

sive strategy for updating the penalty parameter. After we have established that
these options perform well on a carefully chosen sample of our test problems, we de-
scribe the performance of the fully developed algorithm on the whole test set. All our
computations were performed in FORTRAN double precision on a Silicon Graphics
workstation running IRIX 5.2 using a 150 MHz MIPS R4400 processor and 64Mbytes
RAM.

5.1. Testing of heuristics. Let us begin by considering the unscaled Steihaug
iteration introduced in section 4.2 to reduce the cost of the horizontal step compu-
tation. Since this iteration ignores the matrix (ZT

k Zk)
−1 it generally performs more

steps than the regular Steihaug method. However, Table 5.2 shows that the many
steps of the unscaled Steihaug iteration are so much cheaper to compute that there
is still an overall savings in execution time. These experiments used the same stop
tolerance εh = 10−2 for both iterations, although the preconditioned algorithm re-
quires that two consecutive residuals be small enough before stopping, as discussed in
section 4.2. Table 5.2 gives the results on a selection of problems that highlight the
differences between the two approaches and considers the use of both exact Hessians
and �-BFGS approximations. The numbers in the table give the total CPU time for
solving the problem (CPU) and the cumulative total number of horizontal step it-
erations (h itr) of Algorithm 4.1. (The numbers were obtained by using the fastest
option for computing the vertical step.)

We observe that execution time nearly always decreases, sometimes dramatically,
using the unscaled Steihaug iteration. Since the restrictions described in section 4.2
on when to use the unscaled Steihaug iteration ensure that its application does not
alter the number of function and gradient evaluations needed to solve a problem, we
performed all subsequent experiments with the unscaled Steihaug iteration.

EQUALITY CONSTRAINED OPTIMIZATION 699

Table 5.2

Comparison of unscaled Steihaug and regular Steihaug iterations.

Exact Hessians �-BFGS approximations
Problem name Unscaled Steihaug Steihaug Unscaled Steihaug Steihaug

h itr CPU h itr CPU h itr CPU h itr CPU

HAGER2 11 18.7 sec 11 18.7 sec 13 19.3 sec 9 20.2 sec
HAGER3 12 14.4 sec 12 14.4 sec 16 14.3 sec 9 15.8 sec
ORTHREGA 128 168.9 sec 118 170.9 sec 485 275.0 sec 313 292.2 sec
ORTHREGC 179 23.3 sec 111 30.1 sec 424 42.8 sec 160 56.0 sec
ORTHRGDM 40 33.2 sec 16 35.7 sec 41 42.6 sec 19 46.9 sec
ORTHRGFB 71 27.7 sec 71 27.7 sec 213 32.6 sec 128 37.3 sec
DTOC1ND 33 39.0 sec 26 41.6 sec 83 85.8 sec 60 93.5 sec
DTOC2 7139 398.3 sec 331 949.9 sec 18008 1311.2 sec 962 3023.3 sec
DTOC5 11 78.6 sec 10 79.3 sec 14 105.7 sec 9 104.7 sec
DTOC6 243 134.3 sec 246 139.1 sec 321 206.8 sec 314 201.8 sec
EIGENC2 582 38.6 sec 408 101.3 sec 5022 234.0 sec 2039 506.7 sec

Table 5.3

Performance of strategies for choosing a basis.

Never change basis Always new basis Heuristic I
Problem name nb bas hor CPU nb bas hor CPU nb bas hor CPU

ORTHREGA 1 16% 67% 164.3 20 67% 17% 194.6 15 63% 20% 168.9
ORTHREGC 1 3% 93% 165.0 15 40% 35% 27.9 4 24% 48% 23.3
ORTHRGDM 1 70% 14% 33.1 7 84% 7% 57.9 1 70% 14% 33.2
ORTHRGFB 1 2% 95% 242.5 15 38% 36% 27.2 3 17% 57% 27.7
DTOC6 1 8% 89% 141.7 25 9% 87% 135.5 21 9% 88% 134.3
EIGENC2 1 16% 76% 38.8 10 32% 63% 48.7 1 16% 76% 38.6

Let us now test Heuristic I—the strategy for choosing a new basis with Harwell
subroutine MA28 described in section 4.3. We compare it with the alternative strate-
gies of always using the same basis and always letting MA28 choose a basis freely. We
expect the last strategy to produce a better conditioned basis and therefore a better-
conditioned horizontal subproblem (4.5)–(4.6). Heuristic I seeks to balance the cost
of using MA28 at every new iterate against the cost of solving badly conditioned
horizontal subproblems.

Table 5.3 shows a comparison between the three strategies for those test problems
in which it made a difference. (In the other problems either the basis chosen by
MA28 never varied for the three strategies, or the relative cost of executing MA28
was insignificant.) For each strategy we list the number of times that a new basis was
computed (nb), the percent of execution time spent by MA28 choosing and factoring
a basis (bas), the percent of execution time spent computing the horizontal step, and
the total number of CPU seconds used to solve the problem (CPU). All problems were
run using exact Hessian information and the fastest option for computing vk.

The data clearly shows a substantial tradeoff between the time spent finding a
good basis and the time needed to solve the horizontal subproblem. Table 5.3 suggests
that Heuristic I adequately controls the condition number of the basis and results in
an acceptable computing time. Therefore, even though our sample of results is small,
we have incorporated it into our code.

Next we study the performance of Heuristic II: the strategy for updating the
penalty parameter described in section 4.6. Table 5.4 compares the number of func-
tion and constraint evaluations required for convergence using first the updating rule

700 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

Table 5.4

Comparison of two strategies for updating the penalty parameter.

Exact Hessians �-BFGS approximations
Problem name Rule (4.14) Heuristic II Rule (4.14) Heuristic II

ORTHREGA 70 44 138 115
ORTHREGC 36 26 93 73
ORTHRGFB 28 27 60 53
OPTCTRL3 7 7 64 63
OPTCTRL6 9 8 150 164
DTOC1ND 7 7 17 17
DTOC3 6 6 10 10
DTOC4 5 5 7 7
DTOC5 6 6 8 8
DTOC6 > 1000 43 > 1000 164

(4.14) and then Heuristic II, as given in Algorithm 4.2. We present results only for
those problems for which the two strategies differed, that is, problems in which µ+

is increased by Algorithm 4.2 at some iteration. (Again, each problem was run using
the fastest option for computing vk.)

The results in Table 5.4 show that Heuristic II is significantly beneficial for sev-
eral problems while degrading performance in only one instance (OPTCTRL6). Our
sample of results is again quite small, but since the heuristic appears to work rather
well, it has been incorporated into the code.

5.2. Comprehensive tests. We are now ready to describe the performance
of the algorithm on the full set of test problems. The values of all tolerances and
parameters used by the algorithm during testing are given at the end of section 4.9.
First we give results for many small nonlinear problems to test the robustness of
the algorithm. Table 5.5 lists the number of unknowns (n) and constraints (m) in
each problem, the number of times that the function and constraints were evaluated
to obtain a solution (f,c), and the number of evaluations of gradients (g,A). As in
Table 5.1, an asterisk by the problem name means the original CUTE problem has
been modified for our use. We report the best results for the algorithm from among the
three different options for computing the vertical step. Note that in problems where
n = m there is no horizontal subproblem and Wk plays no role in the algorithm.

The results given in Table 5.5 suggest that our implementation of the Byrd–
Omojokun algorithm is robust. All the problems were solved successfully using the
default algorithm parameters described in section 4.9, except for HS104LNP and
HS111LNP. These two problems originally contained bound constraints that were
inactive at the solution. We deleted the bounds, but to prevent iterates from straying
into a region where f was not defined we had to limit the maximum growth of the
trust region to a factor of 2 instead of 10 (see section 4.8).

To further test robustness of the algorithm we duplicated the experiments de-
scribed in [43], in which problems HS6, HS7, HS8, HS9, HS26, HS27, HS39, HS40,
HS42, HS60b, HS77, HS78, and HS79 were posed with a set of more difficult starting
points. Out of 102 different test cases our algorithm (using exact Hessians and trying
all three options for computing the vertical step) failed to reach a solution in seven
instances. The failures were caused by rank deficiency in the constraint Jacobian Ak.
Thus our code appears to be extremely robust, although it could be improved by
better handling linear dependencies among the constraints.

EQUALITY CONSTRAINED OPTIMIZATION 701

Table 5.5

Performance on small test problems.

Exact Hessians �-BFGS approximations
Problem n m Number f,c Number g,A Number f,c Number g,A

BT1 2 1 51 18 12 8
BT2 3 1 13 13 16 16
BT4 3 2 7 7 12 11
BT5 3 2 7 7 10 10
BT6 5 2 17 13 19 15
BT7 5 3 36 22 361 170
BT8 5 2 10 10 13 13
BT10 2 2 7 7 no Hessian when n = m
BT11 5 3 7 7 12 12
BT12 5 3 6 6 9 7
HS6 2 1 30 13 20 12
HS7 2 1 8 7 15 11
HS8 2 2 6 6 no Hessian when n = m
HS9 2 1 6 4 6 6
HS26 3 1 16 16 42 24
HS27 3 1 39 18 25 17
HS39 4 2 17 13 26 19
HS40 4 3 4 4 7 5
HS42 4 2 5 5 8 8

∗HS60b 3 1 6 6 13 11
HS77 5 2 11 9 23 16
HS78 5 3 5 5 8 7
HS79 5 3 6 6 12 12

∗HS100LNP 7 2 11 8 18 15
∗HS104LNP 8 4 12 11 23 21
∗HS111LNP 10 3 11 11 30 24
METHANB8 31 31 4 4 no Hessian when n = m
METHANL8 31 31 6 6 no Hessian when n = m

* Test problem was created specifically for this paper.

Let us move on to our main goal in this section, testing algorithm performance
on the large-scale problems of Table 5.1. Table 5.6 presents results using exact second
derivatives to define the Hessian of the Lagrangian Wk and Table 5.7 the results
using �-BFGS approximations. Both tables characterize performance by listing the
number of times that the function and constraints were evaluated (f, c), the number
of evaluations of the gradients (g,A), and the total CPU time. Data is presented for
all three methods for computing the vertical step: dogleg using the sparse Cholesky
factorization of AT

kAk, Steihaug’s method, and dogleg using CG to obtain the point
vn in (4.4). Since Wk plays no role in problems where n = m, those problems are
omitted from Table 5.7.

In problems HAGER2, HAGER3, DTOC3, DTOC4, and DTOC5 the constraint
Jacobian Ak is ill conditioned and large; consequently, the CG iterations used in the
Steihaug and dogleg-CG options for computing vk were very inefficient. On the other
hand, a great amount of fill-in occurs during the formation or Cholesky factorization
of AT

kAk in the ORTHREG family of problems and BRATU3D. In three instances the
fill-in even exceeded the 100Mbyte virtual memory workspace of our workstation. As
these problems illustrate, the choice of iterative versus direct methods for computing
the vertical step depends on the nature of the problem’s constraints and can be critical
to performance. We therefore make both options available to the user in our software.

The results of Table 5.7 indicate that using limited memory approximations for
second derivatives gives rise to a slower algorithm that needs more function and first

702 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

Table 5.6

Performance results using exact Hessians.

vk by dogleg-Cholesky vk by Steihaug vk by dogleg-CG
Problem f,c g,A CPU time f,c g,A CPU time f,c g,A CPU time

GENHS28 4 4 0.2 sec 6 6 0.4 sec 6 6 0.4 sec
HAGER2 5 5 18.7 sec 5 5 884.7 sec 6 6 649.8 sec
HAGER3 5 5 14.4 sec 5 5 479.4 sec 6 6 399.5 sec
ORTHREGA ATA too dense 42 19 164.2 sec 44 20 168.9 sec
ORTHREGC 53 20 119.6 sec 26 15 23.3 sec 53 20 41.1 sec
ORTHREGD 14 10 1.4 sec 8 8 0.6 sec 15 10 1.6 sec
ORTHRGDM ATA too dense 8 8 37.9 sec 7 7 33.2 sec
ORTHRGFB 32 17 63.7 sec 27 15 27.7 sec 32 17 36.6 sec
OPTCTRL3 7 7 0.6 sec 7 7 0.8 sec 7 7 0.8 sec
OPTCTRL6 8 8 0.7 sec 9 9 1.1 sec 9 9 1.1 sec
DTOC1ND 7 7 39.0 sec 7 7 42.5 sec 7 7 42.2 sec
DTOC2 6 6 398.3 sec 7 7 502.1 sec 6 6 486.2 sec
DTOC3 6 6 68.9 sec 7 7 2505.3 sec 7 7 2991.1 sec
DTOC4 5 5 292.3 sec 12 9 6368.6 sec 5 5 3752.8 sec
DTOC5 6 6 78.6 sec 21 14 3190.6 sec 6 6 1081.1 sec
DTOC6 43 25 134.3 sec 27 18 171.9 sec 43 25 230.8 sec
EIGENA2 4 4 0.2 sec 4 4 0.2 sec 4 4 0.2 sec
EIGENC2 14 10 41.4 sec 14 10 38.7 sec 14 10 38.6 sec
ARTIF 10 10 1.0 sec 10 10 6.2 sec 14 11 14.7 sec
BRATU3D factors of ATA too dense 5 5 216.5 sec 5 5 281.6 sec
BROYDNBD ATA rank deficient 8 8 6.7 sec did not converge
HTRODEQ 12 10 36.3 sec did not converge did not converge

Table 5.7

Performance results using �-BFGS approximations.

vk by dogleg-Cholesky vk by Steihaug vk by dogleg-CG
Problem f,c g,A CPU time f,c g,A CPU time f,c g,A CPU time

GENHS28 8 8 0.3 sec 9 9 0.6 sec 9 9 0.6 sec
HAGER2 8 8 18.9 sec 8 8 1452.1 sec 8 8 937.4 sec
HAGER3 8 8 14.2 sec 8 8 803.4 sec 8 8 582.4 sec
ORTHREGA ATA too dense 95 41 189.8 sec 115 49 215.3 sec
ORTHREGC 118 47 256.8 sec 73 36 43.0 sec 100 41 57.4 sec
ORTHREGD 12 11 1.1 sec 11 11 0.6 sec 13 12 0.7 sec
ORTHRGDM ATA too dense 9 9 43.0 sec 9 9 41.7 sec
ORTHRGFB 28 21 64.6 sec 53 25 26.6 sec 46 24 29.5 sec
OPTCTRL3 63 45 2.1 sec 65 58 4.4 sec 68 47 3.7 sec
OPTCTRL6 did not converge 191 187 12.0 sec 164 154 9.7 sec
DTOC1ND 17 16 84.1 sec 22 18 105.7 sec 24 18 105.9 sec
DTOC2 102 93 1034.0 sec 195 99 3140.5 sec 101 88 2526.3 sec
DTOC3 10 8 70.3 sec 9 9 4402.1 sec 10 8 4433.4 sec
DTOC4 7 7 404.3 sec 7 7 4699.6 sec 7 7 6144.5 sec
DTOC5 8 8 103.2 sec 8 8 1795.1 sec 8 8 1610.7 sec
DTOC6 164 88 197.8 sec 89 52 364.2 sec 200 96 567.7 sec
EIGENA2 4 4 0.2 sec 4 4 0.2 sec 4 4 0.2 sec
EIGENC2 208 192 230.4 sec 217 203 193.6 sec 235 212 218.4 sec

derivative evaluations. This demonstrates the advantage of exploiting exact Hessian
information. However, second derivatives are difficult to obtain in some problems,
and then the availability of compact �-BFGS matrices is a valuable algorithm feature.

We monitored the speed of convergence of the algorithm, and when second deriva-
tives were used, all the problems exhibited quadratic contraction in the error during
the final iterations. The ORTHREG family of problems have the kind of constraint
curvature that gives rise to the Maratos effect, and our second-order corrections were

EQUALITY CONSTRAINED OPTIMIZATION 703

successful in maintaining a quadratic convergence rate. When �-BFGS approxima-
tions were used for Wk the rate of convergence was linear, as expected.

The algorithm failed to converge on problems BROYDNBD and HTRODEQ for
some of the vertical subproblem options. This is because the constraint Jacobian A in
these problems is nearly rank deficient, preventing us from reducing constraint infea-
sibility beyond a certain point. We constructed problem ORTHRGDS (see Table 5.1)
to investigate the limits of algorithm robustness when Ak becomes rank deficient. By
a judicious choice of the starting point we can make the algorithm converge to a so-
lution point where any desired number of the columns of A∗ vanish. As we increased
the number of zero columns, the algorithm took more and more CPU time to find a
solution satisfying the stop tolerance of ε = 10−5. When more than 5 columns of A∗
vanished at the solution, the algorithm was unable to meet this stop tolerance. There
is clearly a great need for modifying the algorithm so that it can cope with linearly
dependent constraint gradients, but this is a task that we have not yet addressed.

We modified the original OPTCNTRL problem so as to introduce ill conditioning
by adding a quadratic term to the objective function f . The resulting problems,
OPTCTRL3 and OPTCTRL6, have Hessian matrices with condition numbers of order
103 and 106, respectively. In these problems the merit function penalty parameter
becomes very large, but the algorithm is nevertheless able to reach the solution, except
for one case: when �-BFGS approximations are used with the dogleg-Cholesky option,
rounding errors prevent the stop tolerance ε = 10−5 from being satisfied.

A detailed analysis of other test results, and a discussion of the properties of the
test problems is given by Plantenga [33].

We also solved the large test problems with LANCELOT A (7/94) [9], using sec-
ond derivatives and the same stop tolerance of 10−5 (specified for both constraint-

accuracy-required and gradient-accuracy-required). The infinity-norm-

trust-region was applied, and an exact-cauchy-point-required. LANCELOT
provides a variety of preconditioners to choose from, and the results we state in Ta-
ble 5.8 are the best performance by LANCELOT out of a set of 11 preconditioners tried.
More specifically, for each problem we report the fewest function evaluations obtained
over the set of all preconditioning options and the smallest execution time and note
that the best performance with respect to these two measures was often obtained by
different options. The results for our code were tabulated in the same manner. We do
this because in some applications a user may want to minimize function evaluations,
while in others execution time may be the top priority.

We certainly do not yet consider our software to be as general or robust as
LANCELOT, and our tests show that it sometimes requires much more CPU time.
But the data in Table 5.8 indicate that our algorithm has great promise; perhaps the
most encouraging statistic is the smaller number of function and gradient evaluations
required by our algorithm in these tests. In the next section we mention various
possibilities for decreasing the CPU cost of an iteration.

6. Final remarks. During the last ten years much work has been devoted to
the development of trust region methods for equality constrained optimization based
on sequential quadratic programming ([42], [7], [38], [5], [12], [16], [17], [25], [43], [44],
[46]). However, to our knowledge, none of these methods has received a careful im-
plementation, and it was unknown to us if they would perform well in practice. We
therefore undertook the task of implementing one of these methods and observing its
performance both in the large-scale case and in the solution of ill-conditioned prob-
lems. We have chosen the trust region method of Byrd [2] and Omojokun [32] because

704 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

Table 5.8

Performance comparison with LANCELOT A (7/94) .

LANCELOT Algorithm ETR
Problem f,c g,A CPU time f,c g,A CPU time

GENHS28 6 7 0.6 sec 4 4 0.2 sec
HAGER2 8 9 21.1 sec 5 5 18.7 sec
HAGER3 8 9 19.2 sec 5 5 14.4 sec
ORTHREGA 118 107 97.4 sec 42 19 164.2 sec
ORTHREGC 30 28 11.8 sec 26 15 23.3 sec
ORTHREGD 44 40 1.4 sec 8 8 0.6 sec
ORTHRGDM 29 26 26.0 sec 7 7 33.2 sec
ORTHRGFB 42 38 10.9 sec 27 15 27.7 sec
OPTCTRL3 37 38 0.8 sec 7 7 0.6 sec
OPTCTRL6 46 47 1.1 sec 8 8 0.7 sec
DTOC1ND 15 15 21.2 sec 7 7 39.0 sec
DTOC2 20 21 17.9 sec 6 6 398.3 sec
DTOC3 22 23 76.4 sec 6 6 68.9 sec
DTOC4 13 14 54.2 sec 5 5 292.3 sec
DTOC5 21 22 41.0 sec 6 6 78.6 sec
DTOC6 54 55 19.3 sec 27 18 134.3 sec
EIGENA2 13 14 0.5 sec 4 4 0.2 sec
EIGENC2 174 148 62.0 sec 14 10 38.6 sec
ARTIF 23 17 3.3 sec 10 10 1.0 sec
BRATU3D 3 4 169.2 sec 5 5 216.5 sec
BROYDNBD 12 12 16.0 sec 8 8 6.7 sec
HTRODEQ did not converge 12 10 36.3 sec

we feel that it is well suited for large problems and because of its attractive conver-
gence properties. Our implementation can incorporate second derivative information
without an explicit Hessian matrix—only Hessian-vector products are needed. Alter-
natively, the software can supply an �-BFGS Hessian approximation. Our numerical
experience with a small but challenging set of test problems has convinced us that
this algorithm is quite effective and merits further development.

The following refinements and options that we plan to investigate may signifi-
cantly improve its efficiency:

1. Applying preconditioners to the many subproblems solved by CG iterations.

2. Replacing the system ZT
k Zk in the horizontal subproblem with a full-space

orthogonal projection, based on the identity Z(ZTZ)−1ZT = I−A(ATA)−1AT . Pre-
liminary tests indicate this significantly reduces computing time when the Cholesky
factorization of ATA can be obtained cheaply and accurately [26].

3. Using a sparse QR factorization of Ak to compute Zk. This eliminates the
difficulties associated with ill-conditioned bases in (4.8). The QR factorization may
not always be economical, but it is likely to be very effective on some problems.

4. Solving linear systems involving AT
kAk by the augmented system approach [14],

[21]. This provides an interesting alternative to the normal equations and extends the
class of problems for which a direct solution of the vertical problem is practical.

5. Computing the horizontal step more efficiently when using �-BFGS approxima-
tions. Our current code approximates the full Hessian of the Lagrangian Wk, projects
it onto the tangent space of the constraints, and applies Steihaug’s method via Algo-
rithm 4.1. The solution of this subproblem takes up to 60% of total execution time,
far too high given that the �-BFGS approximation is not very accurate. A promising
alternative currently under investigation [31] is to solve the horizontal subproblem
using a dual method.

EQUALITY CONSTRAINED OPTIMIZATION 705

6. Our current implementation requires that the matrices Ak of constraint gra-
dients be of full rank, but this is not intrinsic to the Byrd–Omojokun approach. An
important enhancement of our code will be the development of solvers that do not
require this full-rank assumption.

But the most pressing need is to adapt the algorithm so that it can accept in-
equality constraints. There are various ways of doing this, and they are currently the
subject of investigation [34], [3].

Acknowledgments. The authors would like to express their gratitude to Richard
Byrd for his insights. We also thank the referees and the associate editor for many
valuable comments and constructive suggestions.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
unconstrained testing environment, ACM Trans. Math. Software, 21 (1995), pp. 123–160.

[2] R. H. Byrd, Robust trust region methods for constrained optimization, Third SIAM Conference
on Optimization, Houston, TX, May 1987.

[3] R. H. Byrd, J. Ch. Gilbert, and J. Nocedal, A Trust Region Method Based on Interior
Point Techniques for Nonlinear Programming, Tech. report OTC 96/02, Optimization
Technology Center, Northwestern University, Evanston, IL, 1996.

[4] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices and
their use in limited memory methods, Math. Programming, Ser. A, 63 (1994), pp. 129–156.

[5] R. H. Byrd, R. B. Schnabel, and G. A. Schultz, A trust region algorithm for nonlinearly
constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.

[6] R. G. Carter, On the global convergence of trust region algorithms using inexact gradient
information, SIAM J. Numer. Anal., 28 (1991), pp. 251–265.

[7] M. R. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy for nonlinear equality
constrained optimization, in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and
R. B. Schnabel, eds., SIAM, Philadelphia, 1985, pp. 71–82.

[8] T. F. Coleman and A. R. Conn, Nonlinear programming via an exact penalty function: Global
analysis, Math. Programming, 24 (1982), pp. 137–161.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT : A Fortran Package for Large-
Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math., Springer-Verlag,
Berlin, 1992.

[10] E. J. Craig, The N-step iteration procedure, J. Math. Phys., 34 (1955), pp. 65–73.
[11] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.

Anal., 19 (1982), pp. 400–408.
[12] J. E. Dennis, M. El-Alem, and M. C. Maciel, A Global Convergence Theory for General

Trust-Region-Based Algorithms for Equality Constrained Optimization, Tech. report 92-28,
Dept. of Mathematical Sciences, Rice University, Houston, TX, 1992.

[13] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice–Hall, Englewood Cliffs, NJ, 1983.

[14] I. S. Duff and J. K. Reid, A comparison of some methods for the solution of sparse overde-
termined systems of linear equations, J. Inst. Maths. Applics., 17 (1976), pp. 267–280.

[15] I. S. Duff and J. K. Reid, Some design features of a sparse matrix code, ACM Trans. Math.
Software, 5 (1979), pp. 18–35.

[16] M. M. El-Alem, A global convergence theory for the Celis-Dennis-Tapia trust region algorithm
for constrained optimization, SIAM J. Numer. Anal., 28 (1991), pp. 266–290.

[17] M. M. El-Alem, A Robust Trust-Region Algorithm with a Non-monotonic Penalty Parameter
Scheme for Constrained Optimization, Tech. report, Dept. of Mathematical Sciences, Rice
University, Houston, TX, 1993.

[18] R. Fletcher, An �1 penalty method for nonlinear constraints, in Numerical Optimization 1984,
P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM, Philadelphia, 1985, pp. 26–40.

[19] R. Fletcher, Second order corrections for nondifferentiable optimization, in Numerical Anal-
ysis, Dundee 1981, G. A. Watson, ed., Lecture Notes in Math. 912, Springer-Verlag, Berlin,
1982.

[20] R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley & Sons, Chichester, UK,
1990.

706 M. LALEE, J. NOCEDAL, AND T. PLANTENGA

[21] R. Fourer and S. Mehrotra, Solving symmetric indefinite systems in an interior-point
method for linear programming, Math. Programming, Ser. B, 62 (1993), pp. 15–39.

[22] J. Ch. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-
Newton algorithms, Math. Programming, Ser. B, 45 (1989), pp. 407–435.

[23] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP Algorithm for Large-
Scale Constrained Optimization, Numerical Analysis Report 96-2, Dept. of Mathematics,
University of California, San Diego, La Jolla, CA, 1996.

[24] S. P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl.,
22 (1977), pp. 297–309.

[25] M. Heinkenschloss, On the solution of a two-ball trust region subproblem, Math. Program-
ming, Ser. A, 64 (1994), pp. 249–276.

[26] M. E. Hribar, Large-Scale Constrained Optimization, Ph.D. thesis, Dept. of Electrical Engi-
neering and Computer Science, Northwestern University, Chicago, IL, 1996.

[27] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Programming, Ser. B, 45 (1989), pp. 503–528.

[28] N. Maratos, Exact Penalty Function Algorithms for Finite Dimensional and Control Opti-
mization Problems, Ph.D. thesis, University of London, UK, 1978.

[29] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Math.
Programming, 14 (1978), pp. 41–72.

[30] E. G. Ng and B. W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor
computers, SIAM J. Sci. Statist. Comp., 14 (1993), pp. 1034–1056.

[31] J. Nocedal and T. D. Plantenga, Solving KKT systems using limited memory BFGS ma-
trices, manuscript.

[32] E. O. Omojokun, Trust Region Algorithms for Optimization with Nonlinear Equality and
Inequality Constraints, Ph.D. thesis, Dept. of Computer Science, University of Colorado,
Boulder, 1989.

[33] T. D. Plantenga, Large-Scale Nonlinear Constrained Optimization Using Trust Regions,
Ph.D. thesis, Dept. of Electrical Engineering and Computer Science, Northwestern Uni-
versity, Chicago, IL, 1994.

[34] T. D. Plantenga, A trust region method for nonlinear programming based on primal interior-
point techniques, SIAM J. Sci. Comput., to appear.

[35] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Non-
linear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London, UK, 1970,
pp. 87–114.

[36] M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained
optimization calculations, in Nonlinear Programming 3, O. Mangasarian, R. Meyer, and
S. Robinson, eds., Academic Press, New York, London, 1978, pp. 27–63.

[37] M. J. D. Powell and Y. Yuan, A recursive quadratic programming algorithm that uses dif-
ferentiable exact penalty functions, Math. Programming, 35 (1986), pp. 265–278.

[38] M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization,
Math. Programming, Ser. A, 49 (1991), pp. 189–211.

[39] G. A. Schultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM J. Numer.
Anal., 22 (1985), pp. 47–67.

[40] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[41] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, New York, 1981, pp. 57–87.

[42] A. Vardi, A trust region algorithm for equality constrained minimization: Convergence prop-
erties and implementation, SIAM J. Numer. Anal., 22 (1985), pp. 575–591.

[43] K. A. Williamson, A Robust Trust Region Algorithm for Nonlinear Programming, Ph.D.
thesis, Dept. of Mathematical Sciences, Rice University, Houston, TX, 1991.

[44] Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Math.
Programming, Ser. A, 47 (1990), pp. 53–63.

[45] J. Z. Zhang and D. T. Zhu, Projected quasi-Newton algorithm with trust region for constrained
optimization, J. Optim. Theory Appl., 67 (1990), pp. 369–393.

[46] Y. Zhang, Computing a Celis-Dennis-Tapia trust region step for equality constrained opti-
mization, Math. Programming, Ser. A, 55 (1992), pp. 109–124.

