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A REDUCED HESSIAN METHOD FOR LARGE�SCALE

CONSTRAINED OPTIMIZATION

by

Lorenz T� Biegler� Jorge Nocedal� and Claudia Schmid

ABSTRACT

We propose a quasi�Newton algorithm for solving large optimization problems with
nonlinear equality constraints� It is designed for problems with few degrees of freedom
and is motivated by the need to use sparse matrix factorizations� The algorithm
incorporates a correction vector that approximates the cross term ZTWY pY in order
to estimate the curvature in both the range and null spaces of the constraints� The
algorithm can be considered to be� in some sense� a practical implementation of
an algorithm of Coleman and Conn� We give conditions under which local and
superlinear convergence is obtained�

Key words� successive quadratic programming� reduced Hessian methods� constrained optimiza�
tion� quasi�Newton method� large�scale optimization�

Abbreviated title� A Reduced Hessian Method

�� Introduction

We consider the nonlinear optimization problem

min
x�Rn

f�x� �����

subject to c�x� � �� ���	�

where f 
 Rn � R and c 
 Rn � Rm are smooth functions� We are particularly interested
in the case when the number of variables n is large� and the algorithm we propose� which is a
variation of the successive quadratic programming method� is designed to be e�cient in this case�
We assume that the �rst derivatives of f and c are available� but our algorithm does not require
second derivatives�

The successive quadratic programming �SQP� method for solving �����
���	� generates� at an
iterate xk� a search direction dk by solving

min
d�Rn

g�xk�
T d�

�

	
dTW �xk�d �����

subject to c�xk� �A�xk�
T d � �� �����

�



where g denotes the gradient of f � W denotes the Hessian of the Lagrangian function L�x� �� �
f�x� � �T c�x�� and A denotes the n�m matrix of constraint gradients

A�x� � �rc��x�� ����rcm�x��� �����

A new iterate is then computed as

xk�� � xk � �kdk� �����

where �k is a steplength parameter chosen so as to reduce the value of the merit function� In
this study we will use the �� merit function

���x� � f�x� � �kc�x�k�� �����

where � is a penalty parameter� see� for example� Conn ������� Han ������ or Fletcher �������
We could have used other merit functions� but the essential points we wish to convey in this
article are not dependent upon the particular choice of the merit function�

The solution of the quadratic program �����
����� can be written in a simple form if we
choose a suitable basis of Rn to represent the search direction dk� For this purpose� we introduce
a nonsingular matrix of dimension n� which we write as

�Yk Zk�� �����

where Yk � R
n�m and Zk � R

n��n�m�� and we assume that

AT
k Zk � �� �����

�From now on we abbreviate A�xk� as Ak� g�xk� as gk� etc�� Thus Zk is a basis for the tangent
space of the constraints� We can now express dk� the solution to �����
������ as

dk � YkpY � ZkpZ� ������

for some vectors pY � R
m and pZ � R

n�m� Due to ����� the linear constraints ����� become

ck �AT
k YkpY � �� ������

If we assume that Ak has full column rank� then the nonsingularity of �Yk Zk� and equation �����
imply that the matrix AT

k Yk is nonsingular� so that pY is determined by ������


pY � ��AT
k Yk�

��ck� ����	�

Substituting this in ������� we have

dk � �Yk�A
T
k Yk�

��ck � ZkpZ� ������

Note that
Yk�A

T
k Yk�

�� ������

is a right inverse of AT
k and that the �rst term in ������ represents a particular solution of the

linear equations ������
We have thus reduced the size of the SQP subproblem� which can now be expressed exclusively

in terms of the variables pZ� Indeed� substituting ������ into ������ considering YkpY as constant�
and ignoring constant terms� we obtain the unconstrained quadratic problem

min
pZ�Rn�m

�ZT
k gk � ZT

k WkYkpY�
T pZ �

�

	
pZ

T �ZT
k WkZk�pZ� ������

�



If we assume that ZT
k WkZk is positive de�nite� the solution of ������ is

pZ � ��ZT
k WkZk�

���ZT
k gk � ZT

k WkYkpY�� ������

This determines the search direction of the SQP method�
We are particularly interested in the class of problems in which the number of variables n is

large� but n �m is small� In this case it is practical to approximate ZT
k WkZk using a variable

metric formula such as BFGS� On the other hand� the matrix ZT
k WkYk� of dimension �n�m��m

may be too expensive to compute directly when m is large� For this reason several authors simply
ignore the �cross term� ZT

k WkYkpY in ������ and compute only an approximation to the reduced
Hessian ZT

k WkZk� see Coleman and Conn ������� Nocedal and Overton ������� and Xie �������
This approach is quite adequate when the basis matrices Yk and Zk in ����� are chosen to be
orthonormal �Gurwitz and Overton ��������

For large problems� however� computing orthogonal bases can be expensive� and it is more
e�cient to obtain Yk and Zk by simple elimination of variables �cf� Fletcher �������� Unfortu�
nately� in this case ignoring the cross term ZT

k WkYkpY can make the algorithm ine�cient� as is
illustrated by an example given in a companion paper �Biegler� Nocedal� and Schmid ��������
The central point is that the range space component YkpY may be very large� and ignoring the
contribution from the cross term in ������ can result in a poor step�

Therefore� in this paper we suggest ways of approximating the cross term ZT
k WkYkpY by a

vector wk �
�ZT

k WkYk�pY � wk� ������

without computing the matrix ZT
k WkYk� We consider two approaches for calculating wk� the

�rst involves an approximation to the matrix �ZT
k WkYk� using Broyden�s update� and the second

generates wk using �nite di�erences� We will show that the rate of convergence of the new
algorithm is ��step Q�superlinear� as opposed to the 	�step superlinear rate for methods that
ignore the cross term �Byrd ������ and Yuan �������� The null space step ������ of our algorithm
will be given by

pZ � ��ZT
k WkZk�

���ZT
k gk � �kwk�� ������

where � 	 �k � � is a damping factor to be discussed later on�
To describe our �rst strategy for computing the vector wk� we consider a quasi�Newton method

in which the rectangular matrix ZT
k Wk is approximated by a matrix Sk� using Broyden�s method�

We then obtain wk by multiplying this matrix by YkpY� that is�

wk � SkYkpY�

How should Sk be updated� Since Wk�� � r�
xxL�xk��� �k���� we have that

ZT
k Wk���xk�� � xk� � ZT

k �rxL�xk��� �k����rxL�xk� �k����� ������

when xk�� is close to xk � We use this relation to establish the following secant equation
 we
demand that Sk�� satisfy

Sk���xk�� � xk� � ZT
k �rxL�xk��� �k����rxL�xk� �k����� ���	��

One point in this derivation requires clari�cation� In the left�hand side of ������ we have ZT
k Wk���

and not ZT
k��Wk��� We could have used Zk�� in ������� avoiding an inconsistency of indices�

but this is not necessary since we will show that using Zk instead of Zk�� in ���	�� results in
algorithms with all the desirable properties� This fact will not be surprising to readers familiar

�



with the analysis of SQP methods� see� for example� Coleman and Conn ������ or Nocedal and
Overton ������� In addition� using Zk allows updating of Sk�� and Bk�� prior to creating Zk��

at the new point�
Let us now consider how to approximate the reduced Hessian matrix ZT

k WkZk� Using �����
and ������ in ���	��� we obtain

�Sk��Zk��kpZ � ��kSk���YkpY� � ZT
k �rxL�xk��� �k����rxL�xk� �k�����

Since Sk�� approximates Z
T
k Wk� this suggests the following secant equation for Bk��� the quasi�

Newton approximation to the reduced Hessian ZT
k WkZk


Bk��sk � yk� ���	��

where sk is de�ned by
sk � �kpZ�

and yk by
yk � ZT

k �rxL�xk��� �k����rxL�xk� �k����� wk� ���		�

with
wk � �kSk���YkpY�� ���	��

We will update Bk by the BFGS formula �cf� Fletcher �������

Bk�� � Bk �
Bksks

T
kBk

sTkBksk
�
yky

T
k

yTk sk
� ���	��

provided sTk yk is su�ciently positive�
We highlight a subtle but important point� We have de�ned two correction terms� wk and

wk� Both are approximations to the cross term �ZTWY �pY� The �rst term� wk � which is needed
to de�ne the null�space step ������ � and thus the new iterate xk�� � makes use of the matrix
Sk� The second term� wk� which is used in ���		� to de�ne the BFGS update of Bk� is computed
by using the new Broyden matrix Sk�� and takes into account the steplength �k� We will see
below that it is useful to incorporate the most recent information in wk� Note that this requires
the Broyden update to be applied before the vector yk for the BFGS update can be calculated
from ���		��

The Lagrange multiplier estimates �k needed in the de�nition ���		� of yk are de�ned by

�k � ��Y T
k Ak �

��Y T
k gk� ���	��

This formula is motivated by the fact that� at a solution x� of �����
���	�� we have �g� � A����
and since Y��A

T
� Y��

�� is a right inverse of AT
� �

�� � ��Y T
� A��

��Y T
� g��

Using the same right inverse ������ in the de�nitions of pY and �k will allow us a convenient
simpli�cation in the formulae presented in the following sections� We stress� however� that other
Lagrange multiplier estimates can be used and that the best choice in practice might be the one
that involves the least computation or storage�

We can now outline the sequential quadratic programming method analyzed in this paper�

Algorithm I

�



�� Choose constants 
 � ��� ��	� and �� � � with � 	 � 	 � � 	 �� Set k 
 � �� and choose a
starting point x� and an �n�m�� �n�m� symmetric and positive de�nite starting matrix
B��

	� Evaluate fk� gk� ck� and Ak� and compute Yk and Zk�

�� Compute pY by solving the system

�AT
k Yk�pY � �ck� �range space step� ���	��

�� Compute an approximation wk to �Z
T
k WkYk�pY�

�� Choose the damping parameter �k � ��� �� and compute pZ from

BkpZ � ��ZT
k gk � �kwk �� �null space step� ���	��

De�ne the search direction by

dk � YkpY � ZkpZ� ���	��

�� Set �k � �� and choose the weight �k of the merit function ������

�� Test the line search condition

��k �xk � �kdk� � ��k �xk� � 
�kD��k �xk � dk�� ���	��

where D��k �xk � dk� is the directional derivative of the merit function � in the direction dk�

�� If ���	�� is not satis�ed� choose a new �k � ���k � �
��k� and go to ���� otherwise set

xk�� � xk � �kdk � ������

�� Evaluate fk��� gk��� ck��� and Ak��� and compute Yk�� and Zk���

��� Compute the Lagrange multiplier estimate

�k�� � ��Y T
k��Ak���

��Y T
k��gk��� ������

De�ne wk �as will be discussed in x��� and compute

sk � �kpZ ����	�

and
yk � ZT

k �rxL�xk��� �k����rxL�xk � �k����� wk� ������

If the update criterion �to be discussed in x���� is satis�ed� compute Bk�� by the BFGS
formula ���	��� else set Bk�� � Bk�

��� Set k 
� k � �� and go to ����

The algorithm has been left in a very general form� but in the next sections we discuss all its
aspects in detail� In x	 we consider the choice of the basis matrices Yk and Zk� In x� we describe
the calculation of the correction terms wk and wk� the conditions under which BFGS updating
takes place� the choice of the damping parameter �k� and the procedure for updating the weight
�k in the merit function� In x� and x� we analyze of the local behavior of the algorithm and
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show that the rate of convergence is at least R�linear� In x� we present a superlinear convergence
result� and some �nal remarks in x� conclude the paper�

We now make a few comments about our notation� Throughout the paper� the vectors pY
and pZ are computed at xk and could be denoted by pY

�k� and pZ
�k�� but we will normally omit

the superscript for simplicity� The symbol k � k denotes the l� vector norm or the corresponding
induced matrix norm� When using the l� or l� norms we will indicate it explicitly by writing
k � k� or k � k�� A solution of problem ����� is denoted by x�� and we de�ne

ek � xk � x� and 
k � maxfkekk� kek��kg� ������

Here� and for the rest of the paper� rL�x� �� indicates the gradient of the Lagrangian with respect
to x only�

�� The Basis Matrices

As long as Zk spans the null space of A
T
k � and �Yk Zk� is nonsingular� the choice of Yk and Zk

is arbitrary� However� from the viewpoint of numerical stability and robustness of the algorithm
it is desirable to de�ne Yk and Zk to be orthonormal� that is�

Z�x�TZ�x� � In�m

Y �x�T Y �x� � Im

Y �x�TZ�x� � ��

One way of obtaining these matrices is by forming the QR factorization of A� For large problems�
however� computing this QR factorization is often too expensive� Therefore many researchers�
including Gabay ����	�� Gilbert ������� Fletcher ������� Murray and Prieto ����	�� and Xie
������� consider other� nonorthogonal choices of Y and Z� For example� if we partition x into
m basic or dependent variables �which without loss of generality are assumed to be the �rst m
variables� and n�m nonbasic or control variables� we induce the partition

A�x�T � �C�x�N�x��� �	���

where the m�m basis matrix C�x� is assumed to be nonsingular� We now de�ne Z�x� and Y �x�
to be

Z�x� �

�
�C�x���N�x�

I

�
Y �x� �

�
I
�

�
� �	�	�

When A�x� is large and sparse� a sparse LU decomposition of C�x� can often be computed
e�ciently� and this approach will be considerably less expensive than the QR factorization of A�
Note that from the assumed nonsingularity of C�x� both Y �x� and Z�x� vary smoothly with x�
provided the same partition of the variables is maintained� In our implementation of the new
algorithm �Biegler� Nocedal� and Schmid ������� we choose Yk and Zk by �	�	��

There is a price to pay for using nonorthogonal bases� If the matrix C is ill conditioned
�and this can be di�cult to detect�� the step computation may be inaccurate� Moreover� even
if the basis is well conditioned� the range space step YkpY can be large� and ignoring the cross
term can cause serious di�culties� This phenomenon is illustrated in a two�dimensional example
given by Biegler� Nocedal� and Schmid ������� It is shown in that example that if the cross
term ZT

k WkYkpY is ignored� the ratio kxk � dkk�kxkk can be arbitrarily large� even close to the
solution� It is also shown that these ine�ciencies disappear if the cross term is approximated as
suggested in the following sections�

�



In the rest of the paper we allow much freedom in the choice of the basis matrices� They
can be given by �	�	�� can be orthonormal� or can be chosen in other ways� The only restrictions
we impose are that AT

kZk � � is satis�ed� that the n� n matrix �Yk Zk� is nonsingular and well
conditioned� and that this matrix varies smoothly in a neighborhood of the solution�

�� Further Details of the Algorithm

In this section we consider how to calculate approximations wk and wk to �Z
T
k WkYk�pY to

be used in the determination of the search direction pZ and in updating Bk� respectively� We
also discuss when to skip the BFGS update of the reduced Hessian approximation� as well as the
selection of the damping factor �k and the penalty parameter �k�

To calculate approximations to �ZTWY �pY� we propose two approaches� First� we consider a
�nite di�erence approximation to ZT

k Wk along the direction YkpY� While this approach requires
additional evaluations of reduced gradients at each iteration� it gives rise to a very good step�
The second� more economical approach de�nes wk and wk in terms of a Broyden approximation
to ZT

k Wk� as discussed in x�� and requires no additional function or gradient evaluations� Our
algorithm will normally use this second approach� but as we will later see� it is sometimes necessary
to use �nite di�erences�

���� Calculating wk and wk through Finite Di�erences

We �rst calculate the range space step pY at xk through Equation ���	��� Next we compute
the reduced gradient of the Lagrangian at xk � YkpY and de�ne

wk � ZT
k �rL�xk � YkpY� �k��rL�xk� �k��� �����

After the step to the new iterate xk�� has been taken� we de�ne

wk � ZT
k �rL�xk � �kYkpY� �k����rL�xk� �k����� ���	�

which requires a new evaluation of gradients if �k �� �� Thus� up to three evaluations of the
objective function gradient may be required at each iteration�

We note that this �nite�di�erence approach is very similar to the algorithm of Coleman and
Conn ����	� ������ Starting at a point zk� the Coleman�Conn algorithm �with steplength �k � ��
is given by

ZkpZ � �Z�zk�B
��
k Z�zk�

T g�zk� �����

YkpY � �Y �zk��A�zk�
TY �zk��

��c�zk � ZkpZ� �����

zk�� � zk � ZkpZ � YkpY� �����

Let us now consider Algorithm I� and to better illustrate its similarity with the Coleman and
Conn method� let us assume that instead of ������ wk is de�ned by

wk � Z�xk � YkpY�
T g�xk � YkpY�� Z�xk�

T g�xk��

which di�ers from ����� by terms of order O�kpYk�� Then Algorithm I with �k � � and �k � � is
given by

YkpY � �Y �xk��A�xk�
TY �xk��

��c�xk�� �����

�



ZkpZ � �Z�xk�B
��
k �Z�xk�

T g�xk� � wk�

� �Z�xk�B
��
k �Z�xk � YkpY�

T g�xk � YkpY��� �����

xk�� � xk � YkpY � ZkpZ� �����

The similarity between the two approaches is apparent in Figure �� especially if we consider the
intermediate points in the Coleman�Conn iteration to be the starting and �nal points� respectively�

	 	

	

zk zk � Zkpz

zk��

	

		

xk

xk��xk � Ykpy

Coleman�Conn step The step of Algorithm I

Figure �

Comparison of Coleman�Conn method and Algorithm I

In the Coleman�Conn algorithm� the approximation Bk to the reduced Hessian ZT
k WkZk is ob�

tained by moving along the null space direction ZkpZ� and making a new evaluation of the function
and constraint gradients� To be more precise� Coleman and Conn de�ne

yk � ZT
k �rL�xk � ZkpZ� �k��rL�xk � �k��

and sk � ZT
k �xk�� � xk � and apply a quasi�Newton formula to update Bk� Algorithm I� using

�nite di�erences� amounts essentially to the same thing� To see this� note that if Formula ���	�
is used in ������� then

yk � ZT
k �rL�xk��� �k����rL�xk � �kYkpY� �k�����

which represents a di�erence in reduced gradients of the Lagrangian along the null space direction
ZkpZ�

Byrd ������ and Gilbert ������ showed that the sequence fzk�ZkpZg �but not the sequence
fzkg� generated by the Coleman�Conn method converges one�step Q�superlinearly� If Algorithm I
always computed the correction terms wk and wk by �nite di�erences� its cost and convergence
behavior would be similar to those of the Coleman�Conn method �except when �k �� �� which
requires one extra gradient evaluation for Algorithm I�� However� we will often be able to avoid
the use of �nite di�erences and instead use the more economical approach discussed next�

���� Using Broyden�s Method to Compute wk and wk

We can approximate the rectangular matrix ZT
k Wk by a matrix Sk updated by Broyden�s

method� and then compute wk and wk by post�multiplying this matrix by YkpY or by a multiple

�



of this vector� As discussed in x�� it is reasonable to impose the secant equation ���	�� on this
Broyden approximation� which can therefore be updated by the formula �cf� Fletcher �������

Sk�� � Sk �
��yk � Sk�sk��s

T
k

�sTk �sk
� �����

where
�yk � ZT

k �rL�xk��� �k����rL�xk � �k���� ������

and
�sk � xk�� � xk � ������

We now de�ne
wk � SkYkpY and wk � �kSk��YkpY� ����	�

It should be noted that this approach requires the storage of the �n � m� � n matrix Sk�
in addition to the reduced Hessian approximation� Bk� For problems where n � m is small�
this expense is far less than the storage of a full Hessian approximation to Wk � On the other
hand� if n �m is not very small� it may be preferable to use a limited�memory implementation
of Broyden�s method� Here the matrices Sk are represented implicitly� using� for example� the
compact representation described in Byrd� Nocedal� and Schnabel ����	�� The advantage of the
limited memory implementation is that it requires the storage of only a few n�vectors to represent
S�

Since is no guarantee that the Broyden approximations Sk will remain bounded� we need to
safeguard them� At the beginning of the algorithm we choose a positive constant  and de�ne

wk 
�

�
wk if kwkk �

�
kpYk���

kpYk

wk
�kpYk���
kwkk

otherwise�
������

The correction wk will be safeguarded in a di�erent way� We choose a sequence of positive
numbers f�kg such that !

�
k���k 	
� and we set

wk 
�

�
wk if kwkk � �kkpYk��k
wk

�kkpYk
�kkwkk

otherwise�
������

As the iterates converge to the solution� pY � �� so that from ����	� and from the boundedness
of Yk we see that these safeguards allow the Broyden updates Sk to become unbounded� but
in a controlled manner� We will show in x� and x� that with the safeguards ������ and ������
Algorithm I is locally and R�linearly convergent and that this implies that the Broyden updates
Sk do� in fact� remain bounded� so that the safeguards become inactive asymptotically�

Our Broyden approximation to the correction terms wk and wk was motivated by recent work
of Gurwitz ������� She approximates ZT

k WkZk by the BFGS formula with

sk � ZT
k �xk�� � xk �

and
yk � ZT

k �rL�xk��� �k����rL�xk � �k����

and approximates ZT
k WkYk by a matrix Dk using Broyden�s formula ����� with

�sk � Y T
k �xk�� � xk �

	



�yk � ZT
k �rL�xk��� �k����rL�xk� �k�����BkpZ�

Since the updates may not always be de�ned� Gurwitz proposes to sometimes skip the update of
Bk or Dk� She shows ��step Q�superlinear convergence if and only if one of the updates is taken
at each iteration� but this cannot be guaranteed� The analysis of this paper will show that it is
preferable to update an approximation to ZT

k Wk� as in Algorithm I� instead of an approximation
to ZT

k WkYk� as proposed by Gurwitz� since our approach leads to ��step superlinear convergence
in all cases�

A related method was derived by Coleman and Fenyes ����	�� Their lower partition BFGS
formula �LPB� simultaneously updates approximations to ZT

k WkZk and Z
T
k WkYk� by means of a

new variational problem� The resulting updating formula requires the solution of a cubic equation�
and its roots can correspond to cases where updates should be avoided �e�g�� sTk yk � ��� The
drawback of this approach is that choosing the correct root is not always easy�

An earlier proposal by Tagliaferro ������ consists of approximating the matrices ZT
k WkZk and

ZT
k WkYk using the PSB update formula and Broyden�s method� respectively� One disadvantage

of this approach is that the matrices generated by this updating procedure may become very ill
conditioned�

���� Update Criterion

It is well known that the BFGS update ���	�� is well de�ned only if the curvature condition
sTk yk � � is satis�ed� This condition can always be enforced in the unconstrained case by perform�
ing an appropriate line search� see� for example� Fletcher ������� When constraints are present�
however� the curvature condition sTk yk � � can be di�cult to obtain� even near the solution�

To show this� we �rst note from ������� ���	��� and ����	� and from the Mean Value theorem
that

yk � ZT
k

�Z �

�

r�
xxL�xk � ��kdk� �k���d�

�
�kdk � wk

� ZT
k
"Wk�kdk � wk

� ZT
k
"WkZksk � �kZ

T
k
"WkYkpY � wk� ������

where we have de�ned

"Wk �

Z �

�

r�
xxL�xk � ��kdk� �k���d�� ������

Thus
sTk yk � sTk

�
ZT
k
"WkZk

�
sk � �ks

T
k

�
ZT
k
"WkYk

�
pY � sTk wk� ������

Near the solution� the �rst term on the right�hand side will be positive� since ZT
k
"WkZk can

be assumed positive de�nite� Nevertheless� the last two terms are of uncertain sign and can make
sTk yk negative� Several reduced Hessian methods in the literature set wk equal to zero for all k�
and update Bk only if pY is small enough compared with sk that the �rst term in the right�hand
side of ������ dominates the second term �see Nocedal and Overton ������� Gurwitz and Overton
������� and Xie ��������

Skipping the BFGS update may appear to be a crude heuristic� but we argue that it gives rise
to a sound algorithm� First of all� the last two terms in ������ normally converge to zero faster
than the �rst term� so that the right�hand side of ������ will often be positive near the solution
and BFGS updating will take place frequently� Furthermore� if the right�hand side of ������ is

�




negative� the range space step YkpY is relatively large� resulting in su�cient progress towards the
solution� These arguments will be made more precise in x��

We therefore opt for skipping the BFGS update� when necessary� and we now present a
strategy for deciding when to do so� Recall that 
k� de�ned by ������� converges to zero if the
iterates converge to x��

Update Criterion I

Choose a constant �fd � � and a sequence of positive numbers f�kg such that !�k���k 	
 �this
is the same sequence f�kg that was used in ��������

	 If wk is computed by Broyden	s method� and if both sTk yk � � and

kpYk � ��kkpZk ������

hold at iteration k� then update the matrix Bk by means of the BFGS formula ���
�� with
sk and yk given by ����
� and ������� Otherwise� set Bk�� � Bk�

	 If wk is computed by �nite di�erences� and if both sTk yk � � and

kpYk � �fdkpZk�

���
k ������

hold at iteration k� then update the matrix Bk by means of the BFGS formula ���
�� with
sk and yk given by ����
� and ������� Otherwise� set Bk�� � Bk�

Note that 
k requires knowledge of the solution vector x� and is therefore not computable�
However� we will later see that 
k can be replaced by any quantity that is of the same order as
the error ek� for example� the optimality conditions �kZ

T
k gkk�kckk�� Nevertheless� for convenience

we will leave 
k in �������
We now closely consider the properties of the BFGS matrices Bk when Update Criterion I is

used� Let us de�ne

cos �k �
sTkBksk

kskk kBkskk
� ���	��

which� as we will see� is a measure of the goodness of the null space step ZkpZ� We begin by
restating a theorem from Byrd and Nocedal ������ regarding the behavior of cos �k when the
matrix Bk is updated by the BFGS formula�

Theorem ��� Let fBkg be generated by the BFGS formula ���
�� where� for all k � �� sk �� �
and

yTk sk
sTk sk

� m � � ���	��

kykk
�

yTk sk
� M� ���		�

Then� there exist constants ��� ��� �	 � � such that� for any k � �� the relations

cos �j � �� ���	��

�� �
kBjsjk

ksjk
� �	 ���	��

hold for at least d ��ke values of j � ��� k��

��



This theorem refers to the iterates for which BFGS updating takes place� but since� for
the other iterates� Bk�� � Bk� the theorem characterizes the whole sequence of matrices fBkg�
Theorem ��� states that� if sTk yk is always su�ciently positive� in the sense that Conditions ���	��
and ���		� are satis�ed� then at least half of the iterates at which updating takes place are such
that cos �j is bounded away from zero and Bjsj � O�ksjk�� Since it will be useful to refer easily
to these iterates� we make the following de�nition�

De�nition ��� We de�ne J to be the set of iterates for which ���
�� and ���
�� hold� We call
J the set of 
good iterates� and de�ne Jk � J 
 f�� 	� ���� kg�

Note that if the matrices Bk are updated only a �nite number of times� their condition number
is bounded� and ���	��
���	�� are satis�ed for all k� Thus in this case all iterates are good iterates�

We now study the case when BFGS updating takes place an in�nite number of times� Let
us assume that all functions under consideration are smooth and bounded� If at a solution point
x� the reduced Hessian ZT

� W�Z� is positive de�nite� then for all xk in a neighborhood of x� the
smallest eigenvalue of ZT

k
"WkZk is bounded away from zero � "Wk is de�ned in �������� We now

show that in such a neighborhood Update Criterion I implies ���	��
���		��
Let us �rst consider the case when wk is computed by Broyden�s method� Using ������� �������

and ������� and since �k converges to zero� we have

sTk yk � Ckskk
� �O���kkskk

���O��kkskk
��

� mkskk
�� ���	��

for some positive constants C�m� Also� from ������� ������� and ������ we have that

kykk � O�kskk� �O���kkskk� �O��kkskk�

� O�kskk�� ���	��

We thus see from ���	��
���	�� that there is a constant M such that for all k for which updating
takes place�

kykk
�

yTk sk
�M�

which together with ���	�� shows that ���	��
���		� hold when Broyden�s method is used�
If wk is computed by the �nite�di�erence formula ���	�� we see from ������ and the Mean

Value theorem that there is a matrix #Wk such that

yk � ZT
k �rL�xk��� �k����rL�xk � �kYkpY� �k����

� ZT
k
#WkZksk�

Reasoning as before we see that ���	�� and ���	�� also hold in this case� and that ���	��
���		� are
satis�ed in the case when �nite di�erences are used� We have therefore established the following
result�

Lemma ��� In a neighborhood of a solution point x�� and whenever BFGS updating takes place
as stipulated by Update Criterion I� sTk yk is su�ciently positive in the sense that ���
������

�
hold�

��



��	� Choosing �k and �k

We will now see that by appropriately choosing the penalty parameter �k and the damping
parameter �k for wk� the search direction generated by Algorithm I is always a descent direction
for the merit function� Moreover� for the good iterates J � it is a direction of strong descent�

Since dk satis�es the linearized constraint ������� it is easy to show �see Eq� �	�	�� of Byrd
and Nocedal ������� that the directional derivative of the �� merit function in the direction dk is
given by

D��k �xk� dk� � gTk dk � �kkckk�� ���	��

The fact that the same right inverse of AT
k is used in ���	�� and ������ implies that

gTk YkpY � �Tk ck� ���	��

Recalling the decomposition ���	�� and using ���	��� we obtain

D��k �xk � dk� � gTk ZkpZ � �kkckk� � �Tk ck

� �ZT
k gk � �kwk�

T pZ � �kw
T
k pZ � �kkckk� � �Tk ck� ���	��

Now from ����	� and ���	�� we have that

Bksk � ��k�Z
T
k gk � �kwk�� ������

Substituting this in ���	��� we obtain

cos �k �
��ZT

k gk � �kwk�
T pZ

kZT
k gk � �kwkk kpZk

� ������

Recalling the inequality �Tk ck � k�kk�kckk�� and using ������ in ���	��� we obtain� for all k�

D��k �xk � dk� � �kZT
k gk � �kwkk kpZk cos �k � �kw

T
k pZ � ��k � k�kk��kckk�� ����	�

Note also from ������ and ����	� that

kskk

kBkskk
�

kpZk

kZT
k gk � �kwkk

� ������

We now concentrate on the good iterates J � as given in De�nition ���� If j � J � we have from
������ and ���	�� that

�

�	
kZT

j gj � �jwjk � kp
�j�
Z
k �

�

��
kZT

j gj � �jwjk� ������

Using this and ���	�� in ����	�� we obtain� for j � J �

D��j �xj � dj� � �
�

�	
kZT

j gj � �jwjk
� cos �j � �kw

T
j p

�j�
Z
� ��j � k�jk��kcjk�

� �
��
�	
kZT

j gjk
� �

	�j cos �j
�	

�gTj Zjwj�� �jw
T
j p

�j�
Z
� ��j � k�jk��kcjk��

where we have dropped the nonpositive term ���j cos �jkwjk
���	� Since we can assume that

�	 � � �it is de�ned as an upper bound in ���	���� we have

D��j �xj � dj� � �
��
�	
kZT

j gjk
� �

h
	�j cos �j jg

T
j Zjwj j � �jw

T
j p

�j�
Z

i
� ��j � k�jk��kcjk��

��



It is now clear that if
	�j cos �j jg

T
j Zjwj j � �jw

T
j p

�j�
Z

� �kcjk�� ������

for some constant �� and if
�j � k�jk� � 	�� ������

then for all j � J �

D��j �xj � dj� � �
��
�	
kZT

j gjk
� � �kcjk�� ������

This means that if ������ and ������ hold� then for the good iterates j � J � the search direction dj
is a strong direction of descent for the �� merit function in the sense that the �rst�order reduction
is proportional to the KKT error�

We will choose �k so that ������ holds for all iterations� To show how to do this� we note
from ���	�� that

pZ � �B��
k ZT

k gk � �kB
��
k wk�

so that� for j � k� ������ can be written as

�k�	 cos �kjg
T
k Zkwkj� wT

k B
��
k ZT

k gk � �kw
T
k B

��
k wk� � �kckk�� ������

Clearly this condition is satis�ed for a su�ciently small and positive value of �k� Speci�cally� at
the beginning of the algorithm we choose a constant � � � and� at every iteration k� de�ne

�k � minf�� #�kg� ������

where #�k is the largest value that satis�es ������ as an equality�
The penalty parameter �k must satisfy ������� so we de�ne it at every iteration of the algo�

rithm by

�k �

�
�k�� if �k�� � k�kk� � 	�
k�kk� � �� otherwise�

������

The damping factor �k and the updating formula for the penalty parameter �k have been
de�ned so as to give strong descent for the good iterates J � We now show that they ensure that
the search direction is also a direction of descent �but not necessarily of strong descent� for the
other iterates� k �� J � Since ������ holds for all iterations by our choice of �k � we have in particular

��kw
T
k pZ � �kckk��

Using this and ������ in ����	�� we have

D��k �xk� dk� � �kZT
k gk � �kwkk kpZk cos �k � �kkckk�� ������

The directional derivative is thus nonpositive� Furthermore� since wk � � whenever ck � �
�regardless of whether wk is obtained by �nite di�erences or through Broyden�s method�� it is
easy to show that this directional derivative can be zero only at a stationary point of problem
�����
���	��

��
� The Algorithm

We can now give a complete description of the algorithm that incorporates all the ideas
discussed so far and that speci�es the only remaining question� namely� when to apply �nite

��



di�erences and when to use Broyden�s method to approximate the cross term� The idea is to
consider the relative sizes of pY and pZ� Update Criterion I generates the three regions R�� R��
and R	 illustrated in Figure 	� The algorithm starts by computing wk through Broyden�s method
and by calculating pY and pZ� If the search direction is in R� or R	� we proceed� Otherwise we
recompute wk by �nite di�erences� use this value to recompute pZ� and proceed� The reason for
applying �nite di�erences in this fashion is that in the middle region R� Broyden�s method is not
good enough� nor is the convergence su�ciently tangential� to give a superlinear step� Therefore
we must resort to �nite di�erences to obtain a good estimate of wk� The motivation behind this
strategy will become clearer when we study the rate of convergence of the algorithm in x��

R�

kpYk

R	

R�

kpYk � ��kkpZk

kpYk � �fdkpZk�

�
�
k

kpZk

Figure 	

Three regions generated by Update Criterion I

Note from Updating Criterion I that the BFGS update of Bk is skipped if the search direction
is in R	� A precise description of the algorithm follows�

Algorithm II

�� Choose constants 
 � ��� ��	�� � � � and �� � � with � 	 � 	 � � 	 �� and positive constants
 and �fd for Conditions ������ and ������� respectively� For Conditions ������ and �������
select a summable sequence of positive numbers f�kg� Set k 
� �� and choose a starting
point x�� an initial value �� for the penalty parameter� an �n �m� � �n �m� symmetric
and positive de�nite starting matrix B� and an �n�m�� n starting matrix S��

	� Evaluate fk� gk� ck� and Ak� and compute Yk and Zk�

�� Set �ndi� � false and compute pY by solving the system

�AT
k Yk�pY � �ck� �range space step� ����	�

�� Calculate wk using Broyden�s method� from Equations ����	� and �������

��



�� Choose the damping parameter �k from Equations ������ and ������� and compute pZ from

BkpZ � ��ZT
k gk � �kwk �� �null space step� ������

�� If ������ is satis�ed and ������ is not satis�ed� set �ndi� � true and recompute wk from
Equation ������ �In practice we replace 
k by kZ

T
k gkk� kckk in ��������

�� If �ndi� � true� use this new value of wk to choose the damping parameter �k from
Equations ������ and ������� and recompute pZ from Equation �������

�� De�ne the search direction by
dk � YkpY � ZkpZ� ������

and set �k � ��

�� Test the line search condition

��k �xk � �kdk� � ��k �xk� � 
�kD��k �xk � dk�� ������

��� If ������ is not satis�ed� choose a new �k � ���k � �
��k� and go to �� otherwise set

xk�� � xk � �kdk � ������

��� Evaluate fk��� gk��� ck��� Ak��� and compute Yk�� and Zk���

�	� Compute the Lagrange multiplier estimate

�k�� � ��Y T
k��Ak���

��Y T
k��gk��� ������

and update �k so as to satisfy �������

��� Update Sk�� using Equations ����� to ������� If �ndi� � false� calculate wk by Broyden�s
method through Equations ����	� and ������� otherwise calculate wk by ���	��

��� If �sTk yk � �� or if �findiff � true and ������ is not satis�ed� or if �findiff � false and
������ is not satis�ed�� set Bk�� � Bk� Else� compute

sk � �kpZ� ������

yk � ZT
k �rL�xk��� �k����rL�xk� �k����� wk� ������

and compute Bk�� by the BFGS formula ���	���

��� Set k 
� k � �� and go to ��

We mentioned in x��� that� when using �nite di�erences� there are various ways of de�ning
wk and wk� but for concreteness we now assume in steps � and �� that they are computed by
����� and ���	�� respectively� We should also point out that the curves in Figure 	 may intersect�
creating a fourth region� and in practice we should stipulate a new set of conditions in this region�
We discuss these conditions in another paper that considers the implementation of the algorithm
�Biegler� Nocedal� and Schmid ��������

In the next sections we present several convergence results for Algorithm II� The analysis�
which does not assume that the BFGS matrices Bk or the Broyden matrices Sk are bounded�
is based on the results of Byrd and Nocedal ������� who have studied the convergence of the
Coleman�Conn updating algorithm� We also make use of some results of Xie ������� who has

��



analyzed the algorithm proposed by Nocedal and Overton ������ using nonorthogonal bases Y
and Z� The main di�erence between this paper and that of Xie stems from our use of the
correction terms wk and wk� which are not employed in his method�

�� Semi�Local Behavior of the Algorithm

We �rst show that the merit function � decreases signi�cantly at the good iterates J and that
this gives the algorithm a weak convergence property� To establish the results of this section� we
make the following assumptions�

Assumptions 	�� The sequence fxkg generated by Algorithm II is contained in a convex set D
with the following properties


�I� The functions f 
 Rn � R and c 
 Rn � Rm and their �rst and second derivatives are
uniformly bounded in norm over D�

�II� The matrix A�x� has full column rank for all x � D� and there exist constants �� and ��
such that

kY �x��A�x�T Y �x����k � ��� kZ�x�k � ��� �����

for all x � D�

�III� For all k � � for which Bk is updated� ���	�� and ���		� hold�

�IV� The correction term wk is chosen so that there is a constant � � � such that for all k�

kwkk � �kckk
���� ���	�

Note that Condition �I� is rather strong� since it would often be satis�ed only if D is bounded�
and it is far from certain that the iterates will remain in a bounded set� Nevertheless� the con�
vergence result of this section can be combined with the local analysis of x� to give a satisfactory
semi�global result� Condition �II� requires that the basis matrices Y and Z be chosen carefully�
and is important to obtain good behavior in practice� Note that ����� and ����	� imply that

kYkpYk � ��kckk� �����

Condition �III� is justi�ed by Lemma ���� Condition �III� and Theorem ��� ensure that at least
half of the iterates at which BFGS updating takes place are good iterates�

We have left some freedom in the choice of wk since ���	� su�ces for the analysis of this section�
Relation ���	� holds for the �nite�di�erence approach� since ����� implies that wk � O�YkpY� and
since �I� ensures that fkckkg is uniformly bounded �see ���	���� Furthermore� the safeguard ������
and ����� immediately imply that ���	� is satis�ed when the Broyden approximation is used�

The following result concerns the good iterates J � as given in De�nition ����

Lemma 	�� If Assumptions ��� hold and if �j � � is constant for all su�ciently large j� then
there is a positive constant �� such that for all large j � J �

���xj�� ���xj��� � ��
�
kZT

j gjk
� � kcjk�

�
� �����

��



Proof� Using ������� we have for all j � J

D��j �xj � dj� � �b�
�
kZT

j gjk
� � kcjk�

�
� �����

where b� � min�����	� ��� Note that the line search enforces the Armijo condition �������

��j �xj�� ��j �xj��� � �
�jD��j �xj � dj�� �����

It is then clear from ����� that ����� holds� provided the �j � j � J � can be bounded from below�
Suppose that �j 	 �� which means that ����� failed for a steplength "�


��j �xj � "�dj�� ��j �xj� � 
"�D��j �xj � dj�� �����

where
� "� � �j �����

�see Step �� of Algorithm II�� On the other hand� expanding to second order� we have

��j �xj � "�dj�� ��j �xj� � "�D��j �xj � dj� � "��b�kdjk
�� �����

where b� depends on �j � Combining ����� and ������ we have

�
 � ��"�D��j �xj � dj� 	 "��b�kdjk
�� ������

Next we show that� for j � J �

kdjk
� � b	�kZ

T
j gjk

� � kcjk��� ������

for some constant b	� To do this� we make repeated use of the following elementary result


a� b � � � a� � 	ab� b� � �a� � �b�� ����	�

Using ������� ����	�� ������ and ������ we have

kdjk
� � kZjp

�j�
Z
k� � 	kZjp

�j�
Z
k kYjp

�j�
Y
k� kYjp

�j�
Y
k�

� �
h
kZjp

�j�
Z k� � kYjp

�j�
Y k�

i
� �

h
���kp

�j�
Z
k� � ���kcjk

�
i
� ������

Also by ������� ����	�� and ���	� and noting that k � k � k � k� � we have that for j � J

kp
�j�
Z
k� �

�

���

�
kZT

j gjk
� � 	�jkZ

T
j gjk kwjk� ��j kwjk

�
�

�
�

���

�
kZT

j gjk
� � ��j kwjk

�
�

�
�

���

�
kZT

j gjk
� � ��kcjk�

�
�

since �j � �� Since kcjk� is uniformly bounded on D� we see from this relation and ������ that
������ holds� where

b	 � maxf������
�
� � ����

������
�
� � ��� sup

x�D
kc�x�k�g�

��



Combining ������� ������ and ������� and recalling that 
 	 �� we obtain

"� �
��� 
�b�
b�b	

� ������

This relation and ����� imply that the steplengths �j are bounded away from zero for all j � J �
Since by assumption �j � � for all large j� we conclude that ����� holds with �� � 
b�minf�� ���

��b���b�b	�g�

�

It is now easy to show that the penalty parameter settles down and that the set of iterates is
not bounded away from stationary points of the problem�

Theorem 	�� If Assumptions ��� hold� then the weights f�kg are constant for all su�ciently
large k and

lim inf
k��

�kZT
k gkk� kckk� � ��

Proof� First note that by Assumptions ��� �I�
�II� and ������ that fk�kkg is bounded� Therefore�
since the procedure ������ increases �k by at least � whenever it changes the penalty parameter�
it follows that there are an index k� and a value � such that for all k � k�� �k � � � k�kk� 	��

If BFGS updating is performed an in�nite number of times� by Assumptions �����III� and
Theorem ��� there is an in�nite set J of good iterates� and by Lemma ��� and the fact that the
Armijo condition ������ forces ���xk� to decrease at each iterate� we have that for k � k��

���xk� �� ���xk��� �

kX
j�k�

����xj�� ���xj����

�
X

j�J�
k��k�

����xj�� ���xj����

� ��
X

j�J�
k��k�

�kZT
j gjk

� � kcjk���

By Assumption ����I� ���x� is bounded below for all x � D� so the last sum is �nite� and thus
the term inside the square brackets converges to zero� Therefore

lim
j�J

j��

�kZT
j gjk� kcjk�� � �� ������

If BFGS updating is performed a �nite number of times� then� as discussed after De�nition ����
all iterates are good iterates� and in this case we obtain the stronger result

lim
k��

�kZT
k gkk� kckk�� � ��

�

�� Local Convergence

In this section we show that if x� is a local minimizer that satis�es the second�order optimality
conditions� and if the penalty parameter �k is chosen large enough� then x� is a point of attraction

�	



for the sequence of iterates fxkg generated by Algorithm II� To prove this result� we will make
the following assumptions� In what follows� G denotes the reduced Hessian of the Lagrangian
function� namely�

Gk � ZT
k r

�
xxL�xk� �k�Zk� �����

Assumptions 
�� The point x� is a local minimizer for problem �����
���	�� at which the fol�
lowing conditions hold�

��� The functions f 
 Rn � R and c 
 Rn � Rm are twice continuously di�erentiable in a
neighborhood of x�� and their Hessians are Lipschitz continuous in a neighborhood of x��

�	� The matrix A�x�� has full column rank� This implies that there exists a vector �� � Rm

such that
rL�x�� ��� � g�x�� �A�x���� � ��

��� For all q � Rn�m� q �� �� we have qTG�q � ��

��� There exist constants ��� ��� and �c such that� for all x in a neighborhood of x��

kY �x��A�x�T Y �x����k � ��� kZ�x�k � ��� ���	�

and
k�Y �x� Z�x����k � �c� �����

��� Z�x� and ��x� are Lipschitz continuous in a neighborhood of x�� That is� there exist
constants �Z and �� such that

k��x�� ��z�k � ��kx� zk� �����

kZ�x�� Z�z�k � �Zkx� zk� �����

for all x� z near x��

Note that ���� ���� and ��� imply that for all �x� �� su�ciently near �x�� ���� and for all q � R
n�m�

mkqk� � qTG�x� ��q �Mkqk�� �����

for some positive constants m�M � We also note that Assumptions ��� ensure that the conditions
���	��
���		� required by Theorem ��� hold whenever BFGS updating takes place in a neighbor�
hood of x�� as shown in Lemma ���� Therefore Theorem ��� can be applied in the convergence
analysis�

The following two lemmas are proved by Xie ������ for very general choices of Y and Z� His
result generalizes Lemmas ��� and ��	 of Byrd and Nocedal ������� see also Powell �������

Lemma 
�� If Assumptions ��� hold� then for all x su�ciently near x�

��kx� x�k � kc�x�k� kZ�x�T g�x�k � ��kx� x�k� �����

for some positive constants ��� ���

This result states that� near x�� the quantities c�x� and Z�x�T g�x� may be regarded as a
measure of the error at x� The next lemma states that� for a large enough weight� the merit
function may also be regarded as a measure of the error�

�




Lemma 
�� Suppose that Assumptions ��� hold at x�� Then for any � � k��k� there exist
constants �	 � � and �� � �� such that for all x su�ciently near x�

�	kx� x�k
� � ���x�� ���x�� � ��

�
kZ�x�T g�x�k� � kc�x�k�

�
� �����

Note that the left inequality in ����� implies that� for a su�ciently large value of the penalty
parameter� the merit function will have a strong local minimizer at x�� We will now use the
descent property of Algorithm II to show convergence of the algorithm� However� because of
the nonconvexity of the problem� the line search could generate a step that decreases the merit
function but that takes us away from the neighborhood of x�� To rule this out� we make the
following assumption�

Assumption 
�� The line search has the property that� for all large k� ������ ��xk � �xk��� �
���xk� for all � � ��� ��� In other words� xk�� is in the connected component of the level set
fx 
 ���x� � ���xk�g that contains xk �

There is no practical line search algorithm that can guarantee this condition� but it is likely
to hold close to x�� Assumption ��	 is made by Byrd� Nocedal� and Yuan ������ when analyzing
the convergence of variable metric methods for unconstrained problems� as well as by Byrd and
Nocedal ������ in the analysis of Coleman�Conn updates for equality constrained optimization�

Lemma 
�� Suppose that the iterates generated by Algorithm II �with a line search satisfying
Assumptions ��
� are contained in a convex region D satisfying Assumptions ���� If an iterate
xk� is su�ciently close to a solution point x� that satis�es Assumptions ���� and if the weight
�k� is large enough� then the sequence of iterates converges to x��

Proof� By Assumptions ��� �I�
�II� and ������ we know that fk�kkg is bounded� Therefore the
procedure ������ ensures that the weights �k are constant� say �k � � for all large k� Moreover� if
an iterate gets su�ciently close to x�� we know by ������ and by the continuity of � that � � k��k�
For such value of �� Lemma ��	 implies that the merit function has a strict local minimizer at
x�� Now suppose that once the penalty parameter has settled� and for a given � � �� there is an
iterate xk� such that

jjxk� � x�jj �
�	

����#��
���

where #�� is such that k � k� � #��k � k� Assumption ��	 shows that for any k � k�� xk is in the
connected component of the level set of xk� that contains xk� � and we can assume that � is small
enough that Lemmas ��� and ��	 hold in this level set� Thus since ���xk� � ���xk� � for k � k��
and since we can assume that kZT

k�
gk�k � �� we have from Lemmas ��� and ��	� for any k � k�

jjxk � x�jj � �
�
�
�

	 ����xk�� ���x���
�
�

� �
�
�
�

	 ����xk� �� ���x���
�
�

�

	
��
�	


 �
� �
kZT

k�gk�k
� � kck�k�

��
�

�

	
��
�	


 �
� �
kZT

k�gk�k
� � #��kck�k

��
�

��



�

	
����#��
�	

kxk� � x�jj


 �
�

� ��

This implies that the whole sequence of iterates remains in a neighborhood of radius � of x�� If
� is small enough� we conclude by ������ by the monotonicity of f���xk�g� and by Theorem ��	
that the iterates converge to x��

�

The assumptions of this lemma� which is modeled after a result in Xie ������� are restrictive
� especially the assumption on the penalty parameter� One can relax these assumptions and
obtain a stronger result� such as Theorem ��� in Byrd and Nocedal ������� but the proof would
be more complex and is not particularly relevant to Algorithm II since it is based only on the
properties of the merit function� Therefore� instead of further analyzing the local convergence
properties of the new algorithm� we will study its rate of convergence�


��� R�Linear Convergence

For the rest of the paper we assume that the line search strategy satis�es Assumption ��	�
We also assume that the iterates generated by Algorithm II converge to a point x� at which
Assumptions ��� hold� which implies that for all large k� �k � � � k��k� The analysis that
follows depends on how often BFGS updating is applied� To make this concept precise� we de�ne
U to be the set of iterates at which BFGS updating takes place�

U � fk 
 Bk�� � BFGS�Bk� sk� yk�g� �����

and let
Uk � U 
 f�� 	� ���� kg� ������

The number of elements in Uk will be denoted by jUkj�

Theorem 
�	 Suppose that the iterates fxkg generated by Algorithm II converge to a point x�
that satis�es Assumptions ���� Then for any k � U and any j � k

kxj � x�k � CrjUkj� ������

for some constants C � � and � � r 	 ��

Proof� Using ����� and ������ we have for i � J �

���xi�� ���xi��� �
��
��

����xi�� ���x��� � ����	�

Let us de�ne r � ��� ������
�

� � Then for i � J

���xi���� ���x�� � r� ����xi�� ���x��� � ������

We know that the merit function decreases at each step� and by ����� we have� for j � k and
k � U �

kxj � x�k � �
�
�
�

	 ����xj�� ���x���
�
�

� �
�
�
�

	 ����xk�� ���x���
�
� �

��



We continue in this fashion� bounding the right�hand side by terms involving earlier iterates� but
using now ������ for all good iterates� Since by Theorem ��� at least half of the iterates at which
updating takes place are good iterates �i�e�� jJkj �

�
� jUkj�� we have

kxj � x�k � �
�
�
�

	

h
r�jJkj����x��� ���x���

i �
�

� �
�
�
�

	

h
r�jUkj����x��� ���x���

i �
�

� ��
�
�
�

	 ����x��� ���x���
�
� �rjUkj

� CrjUkj�

�

This result implies that if fjUkj�kg is bounded away from zero� then Algorithm II is R�linearly
convergent� However� BFGS updating could take place only a �nite number of times� in which
case this ratio would converge to zero� It is also possible for BFGS updating to take place an
in�nite number of times� but every time less often� in such a way that jUkj�k � �� We therefore
need to examine the iteration more closely�

We make use of the matrix function � de�ned by

��B� � tr�B� � ln�det�B��� ������

where tr denotes the trace� and det the determinant� It can be shown that

ln cond�B� 	 ��B�� ������

for any positive de�nite matrix B �Byrd and Nocedal �������� We also make use of the weighted
quantities

"yk � G
����
� yk� "sk � G

���
� sk� ������

"Bk � G
����
� BkG

����
� � ������

cos "�k �
"sTk

"Bk"sk

k "Bk"skkk"skk
� ������

and

"qk �
"sTk

"Bk"sk

"sTk "sk
� ������

One can show �see Eq� ���		� of Byrd and Nocedal ������� that if Bk is updated by the BFGS
formula� then

�� "Bk��� � �� "Bk� �
k"ykk

�

"yTk "sk
� �� ln

"yTk "sk

"sTk "sk
� ln cos� "�k

�

�
��

"qk

cos� "�k
� ln

"qk

cos� "�k

�
� ���	��

This expression characterizes the behavior of the BFGS matrices Bk and will be crucial to
the analysis of this section� Before we can make use of this relation� however� we need to consider
the accuracy of the correction terms� We begin by showing that when �nite di�erences are used
to estimate wk and wk� these are accurate to second order�

��



Lemma 
�
 If at the iterate xk� the corrections wk and wk are computed by the �nite�di�erence
formulae ���������
�� and if xk is su�ciently close to a solution point x� that satis�es Assump�
tions ���� then

wk � O�kpYk�� ���	��

kwk � ZT
� W�YkpYk � O�
kkpYk� ���		�

and
kwk � �kZ

T
� W�YkpYk � O�
kkpYk�� ���	��

Proof� Recalling that rL�x� �� � g�x� �A�x��� we have from ����� that

wk � ZT
k �rL�xk � YkpY� �k��rL�xk � �k��

� ZT
k �rL�xk � YkpY� ����rL�xk� ���� � ZT

k ��A�xk � YkpY��Ak���k � ����

� ZT
k

�Z �

�

r�
xxL�xk � �YkpY� ���d�

�
YkpY � ZT

k ��A�xk � YkpY��Ak���k � ����

� ZT
k W kYkpY � ZT

k ��A�xk � YkpY��Ak���k � ����� ���	��

Let us assume that xk is in the neighborhood of x� where ���	�
����� hold� Then k�k � ��k �
O�kekk� � O�
k�� where 
k is de�ned by ������� Therefore the last term in ���	�� is O�kpYk
k��
which proves ���	��� Also� a simple computation shows that

�ZT
k W k � ZT

� W��YkpY � O�
kkpYk�� ���	��

Using these facts in ���	�� yields the desired result ���		�� To prove ���	��� we note only that
�k � � and reason in the same manner�

�

Next we show that the condition number of the matrices Bk is bounded and that� in the
limit� at the iterates U at which BFGS updating takes place� the matrices Bk are accurate
approximations of the reduced Hessian of the Lagrangian�

Theorem 
�� Suppose that the iterates fxkg generated by Algorithm II converge to a solution
point x� that satis�es Assumptions ���� Then fkBkkg and fkB��

k kg are bounded� and for all
k � U

k�Bk � ZT
� W�Z��pZk � o�kdkk�� ���	��

Proof� We will only consider iterates k for which BFGS updating of Bk takes place� We have
from ������� ������� ������� ������� and ������

yk � ZT
k �rL�xk��� �k����rL�xk� �k����� wk

� ZT
k

�Z �

�

r�
xxL�xk � ��kdk� �k���d�

�
�kdk � wk

� �kZ
T
k
"Wk�ZkpZ � YkpY�� wk

� ZT
k
"WkZksk � �k�Z

T
k
"Wk � ZT

� W��YkpY � ��kZ
T
� W�YkpY � wk�� ���	��

Since wk can be computed by Broyden�s method or by �nite di�erences� we need to consider these
two cases separately�

��



Part I� Let us �rst assume that wk is determined by Broyden�s method� A simple computation
shows that kZT

k
"Wk � ZT

� W�k � O�
k�� and from ������ we have that wk � O�kpYk��k�� Using
this and Assumptions ��� in ���	��� we have

yk � ZT
k
"WkZksk � �
k � � � ���k�O��kkpYk�

� �ZT
k
"WkZk �G��sk �G�sk � �
k � � � ���k�O��kkpYk�� ���	��

Recalling ������ and noting that "yTk "sk � yTk sk� we have

"yTk "sk � sTk �Z
T
k
"WkZk �G��sk � k"skk

� � �
k � � � ���k�O��kkpYk�k"skk�

since k "skk and kskk are of the same order� Therefore

"yTk "sk
k"skk�

� � �
sTk �Z

T
k
"WkZk �G��sk
k"skk�

� �
k � � � ���k�O

	
k�kpYk

k"skk




� � �O�
k� � �
k � � � ���k�O

	
k�kpYk

k"skk



� ���	��

Similarly from ���	�� and ������ we have

"yTk "yk � k�ZT
k
"WkZk �G��skk

�kG��� k� 	k�ZT
k
"WkZk �G��skk kG

����
� k k"skk� k"skk

�

�	�
k � � � ���k�O�k�kpYk�kG
�
�
�

� k
�
k"skk� k�ZT

k
"WkZk �G��skkkG

����
� k

�
��
k � � � ���k�

�O�k�kpYk�
��

and thus

k"ykk
�

k"skk�
� � �O�
k� � �
k � � � ���k��� � 
k�O

	
k�kpYk

k"skk




��
k � � � ���k�
�O

	
k�kpYk

�

k"skk�



� ������

At this point we invoke the update criterion and note from ������ that� if BFGS updating of
Bk takes place at iteration k� then k�kpYk � ��kkskk� where f�kg is summable� Using this� the
assumption that 
k converges to zero� and ���	��� we see that for large k

"yTk "sk
k"skk�

� ��O�
k � �k�� ������

and using ������
k"ykk

�

k"skk�
� � �O�
k � �k��

Therefore
k"ykk

�

"yTk "sk
�
k"ykk

�

k"skk�
k"skk

�

"yTk "sk
� �� O�
k � �k�� ����	�

We now consider �� "Bk��� given by ���	��� A simple expansion shows that for large k� ln���
O�
k � �k�� � O�
k � �k�� Using this� ������� and ����	�� we have

�� "Bk��� � �� "Bk� �O�
k � �k� � ln cos� "�k �

�
��

"qk

cos� "�k
� ln

"qk

cos� "�k

�
� ������

��



Note that for x � � the function � � x � lnx is nonpositive� implying that the term in square
brackets is nonpositive and that ln cos� "�k is also non�positive� We can therefore delete these
terms to obtain

�� "Bk��� � �� "Bk� �O�
k � �k�� ������

Before proceeding further we show that a similar expression holds when �nite di�erences are used�

Part II� Let us now consider the iterates k for which updating takes place and for which wk is
computed by �nite di�erences� In this case ������ holds� Again we begin by considering ���	���

yk � ZT
k
"WkZksk � �k�Z

T
k
"Wk � ZT

� W��YkpY � ��kZ
T
� W�YkpY � wk��

Using ���	�� the last term is of order 
k��kkpYk�� and so is the second term� Thus

yk � ZT
k
"WkZksk �O�
k�kkpYk�

� �ZT
k
"WkZk �G��sk �G�sk �O�
k�kkpYk�� ������

Noting once more that "yTk "sk � yTk sk and recalling the de�nition ������� we have

"yTk "sk � sTk �Z
T
k
"WkZk �G��sk � k"skk

� �O�
k�kkpYkk"skk��

since k "skk and kskk are of the same order� Therefore

"yTk "sk
k"skk�

� � �
sTk �Z

T
k
"WkZk �G��sk
k"skk�

�O

	

k
k�kpYk

k"skk




� � �O�
k� �O

	

k
k�kpYk

k"skk



� ������

Similarly from ������ and ������ we have

"yTk "yk � k�ZT
k
"WkZk �G��skk

�kG��� k� 	k�ZT
k
"WkZk �G��skk kG

����
� k k"skk� k"skk

�

�
kO

	
k�kpYkkG

�
�
�

� k
h
k"skk� k�ZT

k
"WkZk �G��skkkG

����
� k

i

�
�kO�k�kpYk�

��

and thus
k"ykk

�

k"skk�
� � �O�
k� � 
kO

	
k�kpYk

k"skk



� 
�kO

	
k�kpYk

�

k"skk�



� ������

We now invoke Update Criterion I and note from ������ that� if BFGS updating of Bk takes

place at iteration k� then kpYk � �fdkpZk�

���
k � Using this� ������� and the fact that 
k converges

to zero� we see that for large k
"yTk "sk
k"skk�

� � �O�

���
k ��

and using ������
k"ykk

�

k"skk�
� � �O�


���
k ��

Therefore
k"ykk

�

"yTk "sk
�
k"ykk

�

k"skk�
k"skk

�

"yTk "sk
� � �O�


���
k �� ������

��



We now consider �� "Bk��� given by ���	��� Noting that ln�� � O�

���
k �� � O�


���
k � for all large

k� we see that if updating takes place at iteration k

�� "Bk��� � �� "Bk� �O�

���
k � � ln cos� "�k �

�
��

"qk

cos� "�k
� ln

"qk

cos� "�k

�
� ������

Since both ln cos� "�k and the term inside the square brackets are nonpositive� we can delete them
to obtain

�� "Bk��� � �� "Bk� �O�

���
k �� ������

We now combine the results of Parts I and II of this proof� Let us subdivide the set of iterates U
for which BFGS updating takes place into two subsets
 U � corresponds to the iterates in which
wk is computed by Broyden�s method� and U

�� to the iterates in which �nite di�erences are used�
We also de�ne U �k � U � 
 f�� 	� ���� kg and U ��k � U �� 
 f�� 	� ���� kg�

Summing over the set of iterates in Uk� using ������ and ������� and noting that Bj�� � Bj

for j �� Uk� we have

�� "Bk��� � �� "B�� � C�

X
j�U ��

k



���
j � C�

X
j�U �

k


j � C	

X
j�U �

k

�j � ������

for some constants C�� C�� C	� Since � � r � � and jU ��j j � jUj j we have� from ������

X
j�U ��



���
j �

X
j�U ��

C���rjUj j��

�
X
j�U ��

C���rjU
��

j j��

�

jU ��jX
i��

C���ri��

	 
�

Similarly X
j�U �


j 	
�

and since f�kg is summable� we conclude from ������ that f�� "Bk�g is bounded above� By ������
�� "Bk� �

Pn
i���li� ln li�� where li are the eigenvalues of

"Bk� and it is easy to see that this implies
that both kBkk and kB

��
k k are bounded�

To prove ���	��� we sum relations ������ and ������� recalling that 
k� �k and 

���
k are

summable� to obtain

�� "Bk��� � C �
X
j�Uk

	
ln cos� "�k �

�
��

"qk

cos� "�k
� ln

"qk

cos� "�k

�

�

for some constant C� Since �� "Bk��� � �� and since both ln cos� �k and the term inside the square
brackets are nonpositive� we see that

lim
k��

k�U

ln cos� "�k � �

��



and

lim
k��

k�U

�
��

"qk

cos� "�k
� ln

"qk

cos� "�k

�
� ��

Now� for x � � the function � � x � lnx is concave and has its unique maximizer at x � ��
Therefore the relations above imply that

lim
k��

k�U

cos "�k � lim
k��

k�U

"qk � �� ����	�

Now from ������
������

kG
����
� �Bk �G��pZk

�

kG
���
� pZk�

�
k� "Bk � I�"skk

�

k"skk�

�
k "Bk"skk

� � 	"sTk
"Bk"sk � "sTk "sk

"sTk "sk

�
"q�k

cos "��k
� 	"qk � ��

It is clear from ����	� that the last term converges to � for k � U � which implies that ���	�� holds�
�

This result immediately implies that the iterates are R�linearly convergent� regardless of how
often updating takes place�

Theorem 
�� Suppose that the iterates fxkg generated by Algorithm II converge to a solution
point x� that satis�es Assumptions ��� and the fact that jU j � 
� Then the rate of convergence
is at least R�linear�

Proof� Theorem ��� implies that the condition number of the matrices fBkg is bounded� There�
fore� all the iterates are good iterates� Reasoning as in the proof of Theorem ���� we conclude
that for all j

kxj � x�k � Crj �

for some constants C � � and � � r 	 ��
�

Prior to considering the convergence rate� we show that the Broyden matrices Sk are bounded�

Lemma 
�
 Suppose that the iterates fxkg generated by Algorithm II converge R�linearly to a
solution point x� that satis�es Assumptions ���� Then the Broyden matrices Sk are bounded and
the safeguards ������ and ������ become inactive for all large k�

Proof� We make use of the well�known bounded deterioration property for Broyden�s method
�cf� Lemma ��	�� in Dennis and Schnabel �������� which states that under Assumptions ���

kSk�� � ZT
� W�k � kSk � ZT

� W�k� C
k�

for some constant C � �� As a result of the R�linear convergence of fxkg� we obtain

kSk�� � ZT
� W�k � kS� � ZT

� W�k� C

kX
i��


k

	 
�

��



which shows that the matrices Sk remain bounded� We then see from ����	� that the Broyden
corrections wk and wk satisfy

wk � O�kpYk� wk � O�kpYk�� ������

and it is clear that the safeguards ������ and ������ become inactive for all large k� �

Therefore� the algorithm will not modify the information supplied by Broyden�s method�
asymptotically� This is an important point in establishing superlinear convergence�

�� Superlinear Convergence

Without the correction terms wk and wk� and with appropriate update criteria� Algorithm II
is 	�step Q�superlinearly convergent� This was proved by Nocedal and Overton ������ assuming
that Yk and Zk are orthogonal bases and assuming that a good starting matrix B� is used�
This result has been extended by Xie ������ for more general bases and for any starting matrix
B� � �� In this section we will show that if the correction terms are used in Algorithm II� the
rate of convergence is ��step Q�superlinear� This result is possible by Update Criterion I and by
the selected application of �nite�di�erence approximations� which allow BFGS updating to occur
more frequently�

To establish superlinear convergence� we need to ensure that the steplengths �k have the
value � for all large k� When a smooth merit function� such as Fletcher�s di�erentiable function
�Fletcher ������� is used� it is not di�cult to show that� near the solution� unit steplengths give
a su�cient reduction in the merit function and will be accepted� However� the nondi�erentiable
�� merit function ����� used in this paper may reject steplengths of one� even very close to the
solution� This so�called Maratos e�ect requires that the algorithm be modi�ed to allow unit
steplengths and to achieve a fast rate of convergence� We will not consider this modi�cation
here� so as not to complicate our already lengthy analysis and since it does not a�ect the main
structure of the algorithm or its essential properties� In the companion paper �Biegler� Nocedal�
and Schmid �������� which is devoted to a numerical investigation of Algorithm II� we describe
how to incorporate the nonmonotone line search �or watchdog technique� of Chamberlain et al�
����	� that allows unit steplengths to be accepted for all large k� The analysis of the modi�ed
algorithm would be similar to that presented in x��� of Byrd and Nocedal �������

In the remainder of this section we assume that the iterates generated by Algorithm II con�
verge R�linearly to a solution and that unit steplengths are taken for all large k� In the presenta�
tion of the results that follow we do not restate the assumptions under which R�linear convergence
was proved in x�� but simply assume that R�linear convergence occurs� We begin by showing that
the damping parameter �k� used in ������ to ensure that descent directions are always generated�
has the value of � for all large k�

We have shown in Theorem ��� that kB��
k k is bounded above� Also� ���	��� ���	�� and ����	�

show that� when �nite di�erences are used� wk � O�kpYk� � O�kckk�� and by ������ we see that
this is also the case when Broyden�s method is used� Using these facts� and noting that k�k � k�k��
we see that there is a constant C such that the left�hand side of ������ can be bounded by

�k�	 cos �kjg
T
k Zkwkj� wT

k B
��
k ZT

k gk � �kw
T
k B

��
k wk � � ��kC�kekk� �kkckk��kckk��

since gTk Zk � O�kekk�� As the iterates converge to the solution� and since �k � �� the term inside
the square brackets is less than the constant � given in ������� showing that �k � � for all large k�
This and the remarks made at the end of x� show that all the safeguards included in Algorithm II
become inactive asymptotically�

�	



We can now show that the Broyden matrices satisfy the condition of Dennis and Mor$e ������
for superlinear convergence� Note from Algorithm II that a Broyden update of Sk is always
performed� regardless of whether a BFGS update of Bk takes place or not� The following result
is a straightforward modi�cation of a well�known property for Broyden�s method�

Lemma ��� Suppose that the iterates generated by Algorithm II converge R�linearly to a point
x� that satis�es Assumptions ���� Then

limk��
k�Sk � ZT

� W��dkk

kdkk
� �� �����

Proof� The proof is essentially given in Griewank ������ and is also very similar to the analysis
in Dennis and Schnabel ������ pp� ���
��� but we will give it here for the sake of completeness�
Using the Broyden formula ������ we have

Sk�� � ZT
� W� � Sk � ZT

� W� �
� �yk � Sk�sk��s

T
k

�sTk �sk

� Sk � ZT
� W� �

� �yk � ZT
� W��sk��s

T
k

�sTk �sk
�
�ZT

� W� � Sk��sk�s
T
k

�sTk �sk

� �Sk � ZT
� W���I � �sk�s

T
k ��s

T
k �sk� � � �yk � ZT

� W��sk��s
T
k ��s

T
k �sk�

De�ning Ek � Sk � ZT
� W�� applying Lemma ��	�� of Dennis and Schnabel ������� recalling

������
������� and using the Mean Value theorem� we obtain

kEk��kF � kEk�I � �sk�s
T
k ��s

T
k �sk�kF �O�
k�

� kEkkF �
kEk�skk

�

	kEkkF k�skk�
�O�
k��

Rearranging this expression yields

kEk�skk
�

k�skk�
� 	kEkkF �kEkkF � kEk��kF �O�
k�� � ���	�

By Lemma ���� we know that the matrices Sk remain bounded� therefore there exists some %
such that for all k � �k� kEkk � %�	 and

�X
k�
k

kEk�skk
�

k�skk�
� %�kE
kkF �

�X
k�
k

O�
k���

Since f
kg converges R�linearly� the last term is summable� which implies that

lim
k��

kEk�skk
�

k�skk�
� ��

Noting that �sk � �kdk gives the desired result�
�

This lemma shows that in the limit Sk is an accurate approximation to Z
T
� W� along dk� and

Theorem ��� shows that� when updating takes place� Bk is an accurate approximation to Z
T
� W�Z�

along pY� We will use these two facts and the following lemma� which is an application of the
well�known result of Boggs� Tolle� and Wang ����	��

�




Lemma ��� Suppose that the iterates generated by Algorithm II converge R�linearly to a point
x� that satis�es Assumptions ���� and suppose that �k � � for all large k� If� in addition�

lim
k��

kBkpZ � wk � ZT
� W�dkk

kdkk
� �� �����

then the rate of convergence is ��step Q�superlinear�

Proof� Nocedal and Overton ������ Theorem ��	� show that if an algorithm of the form�
"Sk
AT
k

�
dk � �

�
ZT
k gk
ck

�
� �����

xk�� � xk � dk�

converges to a point x� that satis�es Assumptions ���� and if

lim
k��

k� "Sk � ZT
� W��dkk

kdkk
� �� �����

then the rate of convergence is superlinear� Algorithm II clearly satis�es the second equation in
������ AT

k dk � �ck� Now� since dk � YkpY � ZkpZ� we have

�Yk Zk�
��dk �

�
pY
pZ

�
� �����

Let us write wk � TkpY for some matrix Tk� Then� recalling that �k � � for all large k� we have
from ������ that

�Tk Bk��Yk Zk�
��dk � �ZT

k gk�

Thus we can de�ne "Sk � �Tk Bk��Yk Zk�
��� and the condition ����� for superlinear convergence is

lim
k��

k��Tk Bk��Yk Zk�
�� � ZT

� W��dkk

kdkk
� ��

However� using ����� and wk � TkpY� we have that �TkBk��YkZk�
��dk � TkpY�BkpZ � wk�BkpZ�

giving the desired result�
�

We can now prove the �nal result of this section� The analysis is complicated by the fact that
BFGS updating may not always take place� and by the fact that the correction terms are some�
times computed by �nite di�erences and sometimes by Broyden�s method� We therefore consider
the following three sets of iterates� based on Update Criterion I and illustrated in Figure 	�

	 R� � fjj kp
�j�
Y
k � ��j kp

�j�
Z
kg�

	 R� � fj �� R�j kp
�j�
Y k � kp

�j�
Z k�


���
j g�

	 R	 � fjjkp
�j�
Y k � kp

�j�
Z k�


���
j g�

and note that both �k and 
k are summable�

Theorem ��� Suppose that the iterates generated by Algorithm II converge R�linearly to a point
x� that satis�es Assumptions ���� and suppose that �k � � for all large k� Then the rate of
convergence is ��step Q�superlinear�

��



Proof� Since dk � YkpY � ZkpZ� we have�
pY
pZ

�
� �Yk Zk�

��dk�

Therefore� Assumption ����� implies that

kpYk � O�kdkk�� kpZk � O�kdkk�� �����

Now

kBkpZ � wk � ZT
� W�dkk � kBkpZ � ZT

� W�ZkpZk� kwk � ZT
� W�YkpYk

� kBkpZ � ZT
� W�Z�pZk� kwk � ZT

� W�YkpYk

�O�kekkkpZk��

Since by ����� the last term is of order o�kpZk� � o�kdkk�� the objective of the proof is to show
that

kBkpZ � ZT
� W�Z�pZk� kwk � ZT

� W�YkpYk � o�kdkk�� �����

for this together with ����� will give the desired result� We consider the three regions R�� R�� and
R	 separately� Algorithm II is designed so that� in R�� wk must be computed by �nite di�erences�
On the other hand� since pZ is recomputed in Step �� after which we can be in any of the three
regions� we see that in R� and R	 wk may be computed by �nite di�erences or by Broyden�

If k � R�� we have that kpYk � o�kpZk� � o�kdkk�� We also know from ������ that wk �
O�kpYk� when the correction is computed by Broyden�s method� and by ���	�� this relation also
holds when wk is computed by �nite di�erences� Therefore� for k � R��

kwk � ZT
� W�YkpYk � o�kdkk�� �����

Furthermore� since updating always takes place in R�� ���	�� holds


kBkpZ � ZT
� W�Z�pZk � o�kdkk�� ������

We have thus established ����� for all k � R��
Let us now suppose that k � R�� in which case wk is computed by �nite di�erences� Using

���		�� we have that
kwk � ZT

� W�YkpYk � o�kpYk� � o�kdkk�� ������

where the last step follows from ������ Since updating always takes place in R�� Equation ������
also holds in this case� and we conclude that ����� holds for all k � R��

Finally we consider the case when k � R	� Now pZ satis�es

pZ � o�kpYk� � o�kdkk�� ����	�

If k � R	 and the correction term wk is computed by Broyden�s method as wk � SkYkpY �see
����	��� we have

kwk � ZT
� W�YkpYk � k�Sk � ZT

� W��YkpYk

� k�Sk � ZT
� W��dkk� k�Sk � ZT

� W��ZkpZk�

Using ������ ����	�� and the boundedness of Sk� we see that the right�hand side is of order o�kdkk��
so that ������ holds� On the other hand� if wk is computed by �nite di�erences� we have directly

��



from ���		� that ������ holds� In addition� ����	� and the boundedness of Bk show that ������
holds for all k � R	� regardless of whether �nite di�erences or Broyden�s method are used�

�

	� Final Remarks

We have presented a new reduced Hessian algorithm for large�scale equality�constrained opti�
mization� The motivation for this work has been practical
 our earlier reduced Hessian code� de�
signed for large problems� was often subject to instabilities� and we have aimed to develop a more
robust algorithm that resembles the full�space SQP method but is less expensive to implement�
In a forthcoming paper �Biegler� Nocedal� and Schmid �������� we discuss our computational
experience with the new method� That paper describes how to handle inequality constraints and
discusses numerous important details of implementation not considered here� These include the
choices of all constants and tolerances� the strategy for coping with the case when the basis matrix
C in �	��� changes� and the procedure for computing the damping parameter �k� which was only
outlined in ������� We also discuss in that paper how to apply the updating criterion away from
the solution� We believe that the new algorithm can be very useful for solving large problems�
especially those with few degrees of freedom�

We have focused only on convergence results that helped us in the design of the algorithm
and that revealed its main properties� The analysis was complicated by two factors� We did not
assume that the BFGS matrices Bk or the Broyden matrices Sk were bounded� which required
careful consideration of their behavior� This analysis paid o� by suggesting safeguards that are
useful in practice and ensure a superlinear rate of convergence� The other complicating factor
was the fact that the frequency of BFGS updating can vary drastically
 it can take place at
every iteration� never� or in various patterns� As was found earlier by Xie ������� it is necessary
to develop the theory in su�cient generality to cover all of these cases� and this signi�cantly
increased the complexity of some of the results�
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