
Adaptive Barrier Update Strategies for Nonlinear Interior

Methods

Jorge Nocedal∗ Andreas Wächter† Richard A. Waltz∗

July 21, 2008

Abstract

This paper considers strategies for selecting the barrier parameter at every iteration
of an interior-point method for nonlinear programming. Numerical experiments sug-
gest that heuristic adaptive choices, such as Mehrotra’s probing procedure, outperform
monotone strategies that hold the barrier parameter fixed until a barrier optimality test
is satisfied. A new adaptive strategy is proposed based on the minimization of a quality
function. The paper also proposes a globalization framework that ensures the conver-
gence of adaptive interior methods, and examines convergence failures of the Mehrotra
predictor-corrector algorithm. The barrier update strategies proposed in this paper
are applicable to a wide class of interior methods and are tested in the two distinct
algorithmic frameworks provided by the ipopt and knitro software packages.

1 Introduction

In this paper we describe interior methods for nonlinear programming that update the bar-
rier parameter adaptively, as the iteration progresses. The goal is to design algorithms that
are both efficient in practice and that enjoy global convergence guarantees. The adaptive
strategies studied in this paper allow the barrier parameter to increase or decrease at every
iteration and provide an alternative to the so-called Fiacco-McCormick approach that fixes
the barrier parameter until an approximate solution of the barrier problem is computed.
Our motivation for this work stems from our belief that robust interior methods for non-
linear programming must be able to react swiftly to changes of scale in the problem and to
correct overly aggressive decreases in the barrier parameter.

∗Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,

60208-3118, USA. These authors were supported by National Science Foundation grants CCR-0219438 and

DMI-0422132, and Department of Energy grant DE-FG02-87ER25047-A004.
†Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598,

USA.

1



Adaptive barrier update strategies are well established in interior methods for linear
and convex quadratic programming. The most popular approach of this type is Mehrotra’s
predictor-corrector (MPC) method [22]. It computes, at every iteration, a probing (affine
scaling) step that determines a target value of the barrier parameter, and then takes a
primal-dual step using this target value. A corrector step is added to better follow the
trajectory of the central path to the solution. Mehrotra’s method has proved to be very
effective for linear and convex quadratic programming, but is not supported by global
convergence guarantees. Indeed, as we show in Section 7, its reliability is heavily dependent
upon an appropriate choice of the starting point.

When solving nonlinear nonconvex programming problems, much caution must be exer-
cised to prevent the iteration from failing. Non-minimizing stationary points can attract the
iteration, and aggressive decreases in the barrier parameter can lead to failure. Our numer-
ical experience shows that the direct extension of Mehrotra’s predictor-corrector method
to nonlinear programming does not result in a robust method. As we discuss below, the
main source of instability is the corrector step. Further adaptive barrier update strategies
designed specifically for nonlinear programming include [2, 11, 15, 23, 24, 25].

The global convergence properties of interior methods for nonlinear programming have
recently received much attention [4, 8, 11, 17, 20, 23, 24, 26, 32]. Some of these studies
focus on the effects of merit functions or filters, and on regularization techniques. With the
exception of [11, 23, 24], however, these papers do not consider the numerical or theoretical
properties of adaptive barrier update techniques.

The organization of this paper is as follows. After stating the basic nonlinear interior
method in Section 2, we start our exploration of adaptive barrier updates by examining
several established techniques in Section 3. In this initial investigation, we do not impose a
rigorous globalization scheme on the methods, but simply compare their practical behavior
on a standard test set. Motivated by the initial observations of these experiments, we then

• propose (in Section 4) a new strategy for choosing the barrier parameter that, in
contrast to previously proposed update rules, is not based on heuristics but follows a
clear-cut objective, namely the minimization of a “quality function”;

• present two simple frameworks that ensure global convergence for interior methods
that use any update rule for the barrier parameter (Section 5);

• explore the numerical performance of the proposed strategy on standard test sets
(Section 6); and

• discuss the shortcomings of the Mehrotra corrector step (which can be observed even
in the linear case) and propose a remedy (Section 7).

To show the generality of our quality function approach, we implement it in the two
different algorithmic contexts provided by the ipopt [27] and knitro [6, 28] software pack-
ages.

Notation. For any vector z, we denote by Z the diagonal matrix whose diagonal entries
are given by z. We let e denote the vector of ones, of appropriate dimension, that is,
e = (1, 1, · · · , 1)T .

2



2 Primal-Dual Nonlinear Interior Methods

The problem under consideration will be written as

min
x

f(x) (2.1a)

s.t. c(x) = 0 (2.1b)

x ≥ 0, (2.1c)

where f : R
n → R and c : R

n → R
m are twice continuously differentiable functions. For

conciseness we will refer to interior-point methods for nonlinear programming as “nonlinear
interior methods.” A variety of these methods have been proposed in the last 10 years; they
differ mainly in some aspects of the step computation and in the globalization scheme. Most
of the nonlinear interior methods are related to the simple primal-dual iteration described
next; our discussion of barrier parameter choices will be phrased in the context of this
iteration.

We associate with the nonlinear program (2.1) the barrier problem

min
x

ϕµ(x) ≡ f(x)− µ
n

∑

i=1

ln x(i) (2.2a)

s.t. c(x) = 0, (2.2b)

where µ > 0 is the barrier parameter. As is well known, the KKT conditions of the barrier
problem (2.2) can be written as

∇f(x)−A(x)T y − z = 0 (2.3a)

Xz − µe = 0 (2.3b)

c(x) = 0, (2.3c)

where A(x) denotes the Jacobian matrix of the constraint function c(x). Condition (2.3b),
the positivity of µ, and the requirement that the log function be well-defined in (2.2a)
implicitly requires that

x > 0, z > 0. (2.4)

Applying Newton’s method to (2.3), in the variables (x, y, z), gives the primal-dual
system





∇2
xxL −A(x)T −I
Z 0 X

A(x) 0 0









∆x
∆y
∆z



 = −





∇f(x)−A(x)T y − z
Xz − µe

c(x)



 , (2.5)

where L denotes the Lagrangian of the nonlinear program, that is,

L(x, y, z) = f(x)− yT c(x)− zT x. (2.6)

After the step ∆ = (∆x, ∆y, ∆z) has been determined, we compute primal and dual
steplengths, αp and αd, and define the new iterate (x+, y+, z+) as

x+ = x + αp∆x, y+ = y + αd∆y, z+ = z + αd∆z. (2.7)

3



The steplengths are computed in two stages. First we compute

αmax

x = max{α ∈ (0, 1] : x + α∆x ≥ (1− τ)x} (2.8a)

αmax

z = max{α ∈ (0, 1] : z + α∆z ≥ (1− τ)z}, (2.8b)

with τ ∈ (0, 1) (e.g. τ = 0.995). Next, we perform a backtracking line search to compute
the final steplengths

αp ∈ (0, αmax

x ], αd ∈ (0, αmax

z ], (2.9)

which provide sufficient decrease of a merit function or ensure acceptability by a filter.
The other major ingredient in this simple primal-dual iteration is the procedure for

choosing the barrier parameter µ. Two types of barrier update strategies have been stud-
ied in the literature: adaptive and monotone. Adaptive strategies [11, 15, 24, 25] allow
changes in the barrier parameter at every iteration, and are often efficient in practice, but
as already mentioned, they generally do not enjoy global convergence properties. (The
analyses presented in [11, 24] provide certain convergence results to stationary points, but
these methods do not explicitly aim to decrease the objective function—they only enforce
reduction of a measure of stationarity.)

The most important monotone strategy is the so-called Fiacco-McCormick approach that
fixes the barrier parameter until an approximate solution of the barrier problem is computed.
It has been employed in various nonlinear interior algorithms [3, 5, 14, 16, 27, 29, 31] and has
been implemented, for example, in the ipopt and knitro software packages. The Fiacco-
McCormick strategy provides a framework for establishing global convergence [4, 26], but
suffers from important limitations. It can be very sensitive to the choice of the initial point,
the initial value of the barrier parameter and the scaling of the problem, and it is often
unable to recover quickly when the iterates approach the boundary of the feasible region
prematurely. The numerical experience with ipopt and knitro reported below suggests
that more dynamic update strategies are needed to improve the efficiency of nonlinear
interior methods.

The algorithms considered in this paper only guarantee convergence to first-order sta-
tionary points; enforcing convergence to second-order points would require an estimation
of the smallest eigenvalue of the reduced Hessian, which is too expensive in the large-scale
case. However, the algorithms presented here generate steps that promote convergence to
minimizers by ensuring descent properties for the barrier problem.

3 Choosing the Barrier Parameter

In this section we discuss two adaptive barrier strategies proposed in the literature and com-
pare them numerically with the monotone Fiacco-McCormick approach. These numerical
results motivate the techniques presented in the following sections.

Given an iterate (x, y, z), consider an interior method that computes primal-dual search
directions by (2.5). The most common approach for choosing the barrier parameter µ is to
make it proportional to the current complementarity value, that is,

µ = σ
xT z

n
, (3.1)

4



where σ > 0 is a centering parameter and n denotes the number of variables. Mehrotra’s
predictor-corrector (MPC) method [22] for linear programming determines the value of σ
using a preliminary step computation (an affine scaling step). We now describe a direct
extension of Mehrotra’s strategy to the nonlinear programming case.

First, we calculate an affine scaling step

(∆xaff , ∆yaff , ∆zaff) (3.2)

by setting µ = 0 in (2.5), that is,





∇2
xxL −A(x)T −I
Z 0 X

A(x) 0 0









∆xaff

∆yaff

∆zaff



 = −





∇f(x)−A(x)T y − z
Xz
c(x)



 . (3.3)

We then compute αaff
x and αaff

z to be the largest steplengths in (0, 1] that can be taken
along the direction (3.2) before violating the non-negativity conditions (x, z) ≥ 0. Explicit
formulae for these values are given by (2.8) with τ = 1.

Next, we define µaff to be the value of complementarity that would be obtained by a
full step to the boundary, that is,

µaff = (x + αaff
x ∆xaff)T (z + αaff

z ∆zaff)/n, (3.4)

and set the centering parameter to be

σ =

(

µaff

xT z/n

)3

. (3.5)

This heuristic choice of σ is based on experimentation with linear programming problems,
and has proved to be effective for convex quadratic programming as well. Note that when
good progress is made along the affine scaling direction, we have µaff � xT z/n, so the σ
obtained from this formula is small. In other cases, σ may be chosen to be greater than 1.

Mehrotra’s algorithm also computes a corrector step, but we take the view that the
corrector is not part of the selection of the barrier parameter, and is simply a mechanism
for improving the quality of the step. In Section 7 we study the complete MPC algorithm
including the corrector step.

Other adaptive procedures of the form (3.1) have been proposed specifically for nonlinear
interior methods [11, 15, 24, 25]. The strategy employed in the loqo software package [25]
is particularly noteworthy because of its success in practice. It defines σ as

σ = 0.1 min

(

0.05
1− ξ

ξ
, 2

)3

, where ξ =
mini{x

(i)z(i)}

xT z/n
. (3.6)

Note that ξ measures the deviation of the smallest complementarity product x(i)z(i) from
the average. When ξ = 1 (all individual products are equal to the average) we have that
σ = 0 and the algorithm takes an aggressive step. The rule (3.6) always chooses σ ≤ 0.8, so

5



that even though the value of µ may increase from one iteration to the next, it will never
be chosen to be larger than the current complementarity value xT z/n.

Our first set of numerical experiments compares the effectiveness of the two adaptive
strategies mentioned above with the monotone Fiacco-McCormick approach. For these
experiments, we use the ipopt and knitro software packages, which have a globalization
mechanism for the monotone variant but none for adaptive barrier parameter choices. These
codes implement significantly different variations of the simple primal-dual iteration (2.5).

The experiments with knitro were done using the default Interior/Direct option (we
will refer to this version as knitro-direct henceforth), which implements a line search
approach that is occasionally safeguarded by a trust region iteration [29]. The trust-region
safeguard is needed, for example, to handle negative curvature directions. A merit function
is used to promote global convergence, and when an adaptive barrier update rule is used,
the penalty parameter associated with the merit function is reset at every iteration.

In our experiments with ipopt, we go a step further and disable the line search within
each iteration and always accept the full fraction-to-the-boundary step with step sizes from
(2.8). In this way, we can examine the performance of pure primal-dual steps generated
with the adaptive barrier schemes.

The barrier parameter strategies tested in our first set of experiments are as follows:

• loqo rule. The barrier parameter is chosen by (3.1) and (3.6).

• Mehrotra probing. At every iteration, the barrier parameter µ is given by (3.1) and
(3.5). Since this requires the computation of the affine scaling step (3.2), this strategy
is more expensive than the loqo rule. For knitro-direct, in the iterations in which
the safeguarding trust region algorithm is invoked (e.g., when the reduced Hessian is
not positive definite), the barrier parameter is computed by the loqo rule instead of
Mehrotra probing. This is done because Mehrotra probing is expensive to implement
in the trust region algorithm, which uses a conjugate gradient iteration.

• MPC. The complete Mehrotra predictor-corrector algorithm as described later in Sec-
tion 7. As in the Mehrotra probing rule, when knitro-direct falls back on the safe-
guarded trust region algorithm, the barrier parameter is computed using the loqo

rule for efficiency, and no corrector step is used.

• Monotone. (Also known as the Fiacco-McCormick approach.) The barrier parameter
is fixed, and a series of primal-dual steps is computed, until the optimality conditions
for the barrier problem are satisfied to some accuracy. At this point the barrier
parameter is decreased. ipopt and knitro implement somewhat different variations
of this monotone approach; see [27, 29] for details about the initial value of µ, the
rule for decreasing µ, and the form of the barrier stop tests.

For the numerical comparison, we select all the nonlinear programming problems in the
CUTEr test set from January 2005 that contain at least one general inequality or bound
constraint. We exclude those problems that seem infeasible, unbounded, or are given with
initial points at which the model functions cannot be evaluated; see [27]. This gives a total

6



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best option

%
 o

f p
ro

bl
em

s

Function Evaluations

Monotone

LOQO rule

Mehrotra probing

MPC

(a) knitro

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best option

%
 o

f p
ro

bl
em

s

Function Evaluations

 

 

Monotone

LOQO rule

Mehrotra probing

MPC

(b) ipopt

Figure 1: Results for four barrier parameter updating strategies.

of 599 problems. For all scalable models we use default sizes. Figure 1 reports the number of
function evaluations for ipopt and knitro, comparing the performance of the four barrier
strategies. All the plots in the paper use the logarithmic performance profiles proposed
by Dolan and Moré [10]. To account for the fact that different local solutions might be
computed, problems with significantly different final objective function values for successful
runs were excluded (for example, for the results in Figure 1, 37 problems we excluded for
ipopt, and 54 for knitro).

The results given in Figure 1 indicate that the adaptive strategies outperform the mono-
tone variant, and in particular that Mehrotra probing appears to be the most successful in
terms of function evaluations, both in the knitro experiment (using steplength control)
and in the ipopt experiment (with no steplength control). Furthermore, the results ob-
tained with ipopt show that the quality of the pure (unglobalized) steps is good enough
to promote convergence in most problems. This observation suggests that the globalization
scheme that we propose in Section 5 should interfere minimally with the iteration; it should
be active only when the algorithms appears to be making no progress.

We also note from Figure 1 that the complete MPC algorithm is very fast on some
problems, but is not sufficiently robust. The latter can be seen most clearly in Figure 1(b)
where full MPC steps are taken at every iteration. The reason for the lack of robustness of
the MPC strategy will be discussed in Section 7, together with a globalization safeguarding
procedure.

7



4 Quality Functions

The Mehrotra and loqo rules rely on the heuristic parameters (3.5) and (3.6). We now
consider an approach in which µ is selected using a clear-cut objective, formulated in terms
of a quality function to be minimized. As before, we assume that µ = σ xT z

n
, where the

centering parameter σ ≥ 0 is to be determined, and define ∆(σ) to be the solution of the
primal-dual equations (2.5) as a function of σ. We also let αmax

x (σ), αmax
z (σ) denote the

steplengths satisfying the fraction to the boundary rule (2.8) for the step ∆ = ∆(σ), and
we define the probing points

x(σ) = x + αmax
x (σ)∆x(σ),

y(σ) = y + αmax
z (σ)∆y(σ), z(σ) = z + αmax

z (σ)∆z(σ).

Our goal is to choose the value of σ that provides significant improvement toward the
solution of the nonlinear program (2.1). For example, we could choose σ so as to minimize
the following nonlinear quality function based on the KKT error:

qN(σ) = ‖∇f(x(σ))−A(x(σ))T y(σ)− z(σ)‖2 + ‖c(x(σ))‖2

+‖Z(σ)X(σ)e‖2. (4.1)

The evaluation of qN is, however, expensive since it requires the evaluation of the problem
functions and derivatives for every value of σ. We can avoid this expense by using a linear
quality function. If we assume that f and c are linear functions, we have that (4.1) can be
expressed as

qL(σ) = (1− αmax
z (σ))2‖∇f(x)−A(x)T y − z‖2 + (1− αmax

x (σ))2‖c(x)‖2

+‖(X + αmax
x (σ)∆X(σ))(Z + αmax

z (σ)∆Z(σ))e‖2, (4.2)

where ∆X(σ) is the diagonal matrix with ∆x(σ) on the diagonal, and similarly for ∆Z(σ).
We point out that by design the function qL measures the KKT error exactly at the probing
points (x(σ), y(σ), z(σ)) for linear programming problems.

Note that ∆(σ) = ∆(0) + σ(∆(1)−∆(0)). Therefore, ∆(σ) can be computed easily for
any value of σ once the linear system (2.5) has been solved twice to obtain ∆(0) and ∆(1).
Having computed ∆(σ), the dominant cost in the evaluation of qL lies in the computation
of the maximal steplengths αmax

x (σ), αmax
z (σ) and the last term in (4.2), which requires a

few vector operations.
We have defined the quality function qL using squared norms to severely penalize any

large components in the KKT error. Note that qL(σ) is not a convex function of σ, in
general. Moreover, due to the complicated dependence of the steplengths αmax

x (σ), αmax
z (σ)

on the parameter σ, it does not seem possible to obtain an analytic expression for the
minimizers of qL. Nevertheless, we have observed that, in practice, this function is usually
unimodal.

Therefore, we implement a one-dimensional search scheme to compute an approximate
minimizer of qL. It uses a golden trisection procedure (see, e.g., [21]), and ignores the fact

8



that qL may not necessarily be unimodal. We first choose σmin and σmax, which define a
minimum and maximum limit on the σ value, and define the two intervals [σmin, 1] and
[1, σmax]. In our implementation, the value σmin = max(γ, µminn/xT z), where µmin (= 10−9

in our implementation) defines a minimal permissible value of the barrier parameter, γ is
some small number (say, 10−6 or 10−8) and σmax = 1000. We first evaluate the quality
function for σ = 1 and for some σ value slightly less than 1 (say 0.99). If qL(0.99) ≤ qL(1),
then we perform our golden trisection procedure in the interval [σmin, 1], otherwise we
search in the interval [1, σmax]. (It is important that σ be allowed to take on values greater
than one so that the algorithm can recover from overly aggressive reductions of the barrier
parameter.) Our trisection procedure terminates if either 12 evaluations of the quality
functions are performed, or if the search interval [a, b] becomes smaller than b× 10−2.

The expected advantages of the quality function approach are twofold. First, we have
defined a procedure that ties the choice of the barrier parameter to a measurable and
achievable decrease in the (linearized) KKT error. Therefore, we expect this approach
to converge in fewer iterations compared with previously proposed approaches based on
heuristic formulas. Second, our choice of the barrier parameter takes into account the
fraction to the boundary steplengths (2.8) (the functions (4.1) and (4.2) are based on the
steps after applying the fraction to the boundary rule). Thus the implicit constraints (2.4)
are taken into account in choosing µ. This is similar to the Mehrotra update formulas and
should discourage choices of the barrier parameter that generate steps which quickly violate
the bounds (2.4) and need to be truncated.

More implementation details are given in Section 6. Before presenting our numerical
results with the quality function, we study how to guarantee the global convergence of
nonlinear interior methods that choose the barrier parameter adaptively.

5 A Globalization Framework

The adaptive strategies described in Section 3 can be seen from the numerical results in
that section to be quite robust, even without a rigorous globalization scheme. (We show
in the next section this is also the case with the quality function approach.) Yet, since the
barrier parameter is allowed to change at every iteration in these algorithms, there is no
mechanism that indeed enforces global convergence of the iterates in all cases. In contrast,
the monotone barrier strategy employed in the Fiacco-McCormick approach allows us to
establish global convergence results by combining two mechanisms. First, the algorithms
that minimize a given barrier problem (2.2) use a line search or trust region to enforce a
decrease in a merit function (as in knitro) or to guarantee acceptability by a filter (as in
ipopt). This ensures that an optimality test for the barrier function is eventually satisfied
to some tolerance ε. Second, by repeating this minimization process for decreasing values
of µ and ε that converge to zero, one can establish global convergence results [4, 12] to
stationary points of the nonlinear programming problem (2.1).

We now propose two globalization frameworks that monitor the performance of the
iterations in reference to a mechanism that enforces global convergence. As long as the

9



adaptive primal-dual steps make sufficient progress towards the solution, the algorithm is
free to choose a new value for the barrier parameter at every iteration; here, the barrier
parameter can be chosen by any desired rule. We call this the free mode. However, if the
iteration fails to maintain progress, then the algorithm reverts to a monotone mode, in which
a Fiacco-McCormick strategy is applied. Here, the value of the barrier parameter remains
fixed, and a robust globalization technique (e.g., based on a merit function or a filter)
is employed to ensure progress for the corresponding barrier problem. Once the barrier
problem is approximately minimized, the barrier parameter is decreased. The monotone
mode continues until an iterate is generated that makes sufficient progress for the original
problem, at which point the free mode resumes.

We stress that also in the free mode we might want to choose steplengths αp, αd that
are shorter than the maximal step sizes αmax

x , αmax
z , in order to promote convergence to

minimizers. In our implementations, we make sure that the steps have descent properties
with respect to the barrier problem (2.2) corresponding to the current value of µ, and we
perform a line search to enforce progress in a merit function or a filter (without history),
both of which are defined with respect to this barrier problem. In this way, we force the
algorithm to consider the objective function when determining a new trial point, and not
only the norm of the optimality conditions, so that convergence to stationary points that
are not minimizers is less likely.

There are various ways to measure whether steps in the free mode make sustained
progress toward the solution of the nonlinear program (2.1). We have developed two mech-
anisms, one based on a measure of KKT error, and the other using a filter based on the
value of the objective (2.1a) and a measure of the constraint violation. Both aim to interfere
with adaptive steps as little as possible so as not to slow down convergence.

5.1 Nonmonotone Decrease of the KKT Error

In our first globalization framework, we monitor the KKT error of the original nonlinear
program,

Φ(x, y, z) = ‖∇f(x)−A(x)T y − z‖2 + ‖c(x)‖2 + ‖ZXe‖2. (5.1)

We require that this measure be reduced by a factor of κ ∈ (0, 1) over at most a fixed
number lmax of iterations, when the algorithm is in the free mode.

Algorithm A: KKT-Error Based Globalization Framework

Given (x0, y0, z0) with (x0, z0) > 0, a constant κ ∈ (0, 1) and an integer lmax ≥ 0.
Set k ← 0.
Repeat

Choose a target value of the barrier parameter µk, based on any rule.
Compute the primal dual search direction ∆ from (2.5).
Determine step sizes αp ∈ (0, αmax

x ] and αd ∈ (0, αmax
z ].

Compute the new trial iterate (x̃k+1, ỹk+1, z̃k+1) from (2.7).

Compute the KKT error Φ̃k+1 ≡ Φ(x̃k+1, ỹk+1, z̃k+1).

10



Set Mk = max{Φk−l, Φk−l+1, . . . , Φk} with l = min{k, lmax}.

If Φ̃k+1 ≤ κMk

Accept (x̃k+1, ỹk+1, z̃k+1) as the new iterate, and set Φk+1 ← Φ̃k+1.
Set k ← k + 1 and return to the beginning of the loop.

else
Start Monotone Mode:
Starting from (x̃k+1, ỹk+1, z̃k+1), and for an initial value µ̄, solve a
sequence of barrier problems with a monotonically decreasing
sequence of barrier parameters to obtain a new iterate
(xk+1, yk+1, zk+1) such that

Φk+1 ≡ Φ(xk+1, yk+1, zk+1) ≤ κMk.
Set k ← k + 1 and resume the free mode at the beginning of the loop.

end if
End (repeat).

In the monotone mode, it is not required to solve each barrier problem to the specified
tolerance before checking whether the method can revert to the free mode. Instead, we
compute the optimality error Φ(x, y, z) for all intermediate iterates in the monotone mode,
and return to the free mode, as soon as Φ(x, y, z) ≤ κMk.

Typical values for the algorithmic parameters are κ = 0.9999 and lmax = 5. An impor-
tant issue when switching to the monotone mode is the initialization of the barrier parameter
µ̄. This can be chosen, for example, to be some fraction of the current complementarity
value. The rule used in our implementations is µ̄ = 0.8(xT

k zk)/n.

5.2 Two-Dimensional Filter

In the second globalization method, we make use of a filter that accepts a trial point if
it provides sufficient progress in terms of the constraint violation θ(x) = ‖c(x)‖ or the
objective function f(x), compared to the previous iterates generated in the free mode. We
let Fk ⊆ {(f, θ) ∈ R

2 : θ ≥ 0} denote the (f, θ) pairs that are not acceptable at the current
iteration k. The concept of acceptability by the filter is made precise below.

Algorithm B: Filter-Based Globalization Framework

Given (x0, y0, z0) with (x0, z0) > 0, and constants κ1, κ2 > 0; initialize the filter F0 = ∅.
Set k ← 0.
Repeat

Choose a target value of the barrier parameter µk, based on any rule.
Compute the primal dual search direction ∆ from (2.5).
Determine step sizes αp ∈ (0, αmax

x ] and αd ∈ (0, αmax
z ].

Compute the new trial iterate (x̃k+1, ỹk+1, z̃k+1) from (2.7).
Compute the filter margin δk = κ1 min{κ2, Φ(xk, yk, zk)}.
If (f(x̃k+1) + δk, ‖c(x̃k+1)‖+ δk) 6∈ Fk

Accept (x̃k+1, ỹk+1, z̃k+1) as the new iterate.

11



Update the filter Fk+1 = Fk ∪ {(f, θ) : f ≥ f(x̃k+1) and θ ≥ ‖c(x̃k+1)‖}.
Set k ← k + 1 and return to the beginning of the loop.

else
Start Monotone Mode:
Starting from (x̃k+1, ỹk+1, z̃k+1), and for an initial value µ̄, solve a
sequence of barrier problems with a monotonically decreasing
sequence of barrier parameters to obtain a new iterate
(xk+1, yk+1, zk+1) such that

(f(xk+1) + δk, ‖c(xk+1)‖+ δk) 6∈ Fk.
Augment the filter:

Fk+1 = Fk ∪ {(f, θ) : f ≥ f(xk+1) and θ ≥ ‖c(xk+1)‖}.
Set k ← k + 1 and resume the free mode at the beginning of the loop.

end if
End (repeat).

Similar to the KKT-error based globalization framework, the monotone mode is termi-
nated as soon as an iterate is encountered that is acceptable to the filter.

We have tested the KKT and filter globalization approaches using ipopt and knitro,
and found both to be effective in practice. For the sake of brevity, we report results only
for the filter globalization framework in the next section. We set κ1 = 10−5 and κ2 = 1 for
these tests, and we choose µ̄ = 0.8(xT

k zk)/n for the barrier parameter when entering the
monotone mode.

5.3 Global Convergence Results

In the following we summarize the theoretical convergence guarantees for the two global-
ization frameworks presented above.

Theorem 5.1 Let {(xk, yk, zk)} be the sequence generated by either Algorithm A or Algo-
rithm B, and assume that the monotone mode always terminates successfully. For Algorithm
B, further assume that {f(xk)} is bounded below and that {‖c(xk)‖} is bounded above. Then,
the KKT error Φ(xk, yk, zk) converges to zero.

Proof.

Algorithm A: Since this framework ensures that the optimality measure
Φk = Φ(xk, ykzk) is reduced by a factor of κ ∈ (0, 1) in at most every lmax itera-
tions, it is clear that Φk → 0.

Algorithm B: The proof is by contradiction and is similar to the proof of Lemma 3.3
in [13]. Suppose that there is a subsequence {kj} of iterations in which δkj−1 ≥ ε > 0.
Then f(xkj

) has to be bounded above, say by fU , since otherwise we could find a
subsequence {kjl

} of {kj} with f(xkjl
) ≤ f(xkjl+1

) and f(xkjl
) → ∞ so that the

filter update rule would yield ‖c(xkjl+1
)‖ < ‖c(xkjl

)‖ − δkjl
−1 ≤ ‖c(xkjl

)‖ − ε→ −∞.

Therefore, for each kj , the area of the region Fkj
\ Fkj−1 added to Fkj−1 includes a

square of size δ2
kj−1 ≥ ε2 within the set F̄ = {(f, θ) : fL ≤ f ≤ fU and 0 ≤ θ ≤ θU}.

12



Here, fL denotes a lower bound of {f(xk)} and θU an upper bound of {‖c(xk)‖},
which exist by assumption. Because of the monotonicity Fk ⊆ Fk+1 of the filter, this
leads to a contradiction, since F̄ is finite.

QED

The above result pertains to the cases where the algorithm does not eventually stay in
the monotone mode. If it does, the iteration inherits the convergence properties from the
underlying Fiacco-McCormick algorithm. In particular, if the nonlinear program (2.1) is
infeasible the KKT error cannot converge to zero, and therefore Theorem 5.1 shows that
both algorithms must eventually remain in the monotone mode. In that mode, there will
be a value of the barrier parameter, say µ̄, for which the corresponding barrier problem
is infeasible and cannot be solved to the required convergence tolerance. For knitro,
it has been shown that the algorithm then generates an infeasible limit point that is a
stationary point for the `2-norm of the constraint violation [4]. For ipopt, the filter line-
search algorithm for that barrier problem will eventually stay in the restoration phase [26];
the current implementation of the restoration phase then minimizes the `1-norm of the
constraint violation. Therefore, if the nonlinear program is infeasible, both algorithms will
generate a message indicating that the problem is locally infeasible.

6 Numerical Results

We first discuss the choice of norms in the quality function (4.2) and in the optimality
measure (5.1). (For consistency, we use the same norms and scaling factors for the individual
terms in (4.2) and (5.1).) In ipopt we use the 2-norm, and each of the three terms is
divided by the number of elements in the vectors whose norms are being computed. In
knitro, we choose the norm and scaling factors to be similar to the terms used in the
knitro termination test: The first two terms in (4.2) and (5.1) use the infinity-norm, the
complementarity term uses the 1-norm divided by n, and we scale these terms using the
factors described in [29].

The tests involving ipopt were run on a Dual-Pentium III, 1GHz machine running
Linux. The knitro tests were run on a machine with an AMD Athlon XP 3200+ 2.2GHz
processor running Linux. For both codes, the maximum number of iterations was set to 3000
and the time limit was set to 1800 CPU seconds. The tests were run using the development
versions of ipopt and knitro as of October 2005.

The first results we present are for the linear programming problems in the NETLIB
collection, as specified in the CUTEr test set [18]. No preprocessing was performed, and
no initial point strategy was employed (i.e., the default starting point x0 = (0, . . . , 0) was
used). Figure 2 compares the performance of the quality function approach, in terms of
function evaluation count, with two of the strategies described in Section 3, namely the
monotone method and the Mehrotra probing heuristic. Figure 3 compares the algorithms
in terms of CPU time. Since we are primarily interested in methods with globally convergent
frameworks we use the filter based globalization framework described in Section 5 for both
the Mehrotra probing approach and the quality function approach. The monotone approach

13



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

 

 

Monotone

Probing

Quality Function

(a) ipopt

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

Monotone

Probing

Quality function

(b) knitro

Figure 2: Function evaluation comparison for the NETLIB test set.

is globally convergent on its own. Even though our focus is on nonlinear optimization, linear
programming problems are of interest since they allow us to assess the effectiveness of the
quality function in a context in which it exactly predicts the KKT error. It is apparent
from Figure 2 that the quality function approach is very effective on the NETLIB test set.

The performance (in terms of function evaluations) of the three barrier update strategies
on nonlinear programming problems with at least one inequality or bound constraint from
the CUTEr collection is reported in Figure 4. The quality function approach again performs
significantly better than the monotone method; it also outperforms the Mehrotra probing
strategy, which had given the best results in the experiments reported in Section 3. The
improvements are less pronounced when comparing CPU performance, see Figure 5.

To give more insight into the behavior of the quality function approach, we present in
Table 1 data about the value of the centering parameter σk chosen by the quality function
approach, together with statistics about the globalization strategy employed. The data
was collected from the results produced by ipopt. We compare the probing and quality
function approaches. The third column gives the percentage of iterations spent in the
monotone mode. The rest of the columns report the percentage of iterations in which σk lie
in the intervals [σmax, 10], (10, 1], (1, 10−1], etc. The percentage numbers in Table 1 were
obtained by computing the average of the percentages for each successfully solved problem.

As we can see, only a small percentage of iterations is spent in the monotone mode,
showing that the adaptive mode is the main driving force. Note also that the quality
function strategy tends to produce larger values of σk than the probing approach.

The performance profiles in Figures 4 and 5 indicate that there are a number of problems
that cannot be solved by the quality function approach. We now make some observations
about the behavior of the two codes on these problems.

14



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

CPU time

Monotone

Probing

Quality function

(a) ipopt

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

CPU time

Monotone

Probing

Quality function

(b) knitro

Figure 3: CPU time comparison for the NETLIB test set.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

 

 

Monotone

Probing

Quality Function

(a) ipopt

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

Monotone

Probing

Quality function

(b) knitro

Figure 4: Function evaluation comparison for CUTEr test set.

15



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

CPU time

Monotone

Probing

Quality function

(a) ipopt

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

CPU time

Monotone

Probing

Quality function

(b) knitro

Figure 5: CPU time comparison for the CUTEr test set.

Method Testset %mono free mode, with σk in range
mode ≥ 10 ≥ 1 ≥ 10−1 ≥ 10−2 ≥ 10−3 ≥ 10−4 ≥ 10−5 < 10−5

Probing NETLIB 4.77% 0.00 2.15 72.35 10.18 3.29 1.33 1.44 4.50
Qual. fctn. NETLIB 3.70% 4.90 11.39 53.41 14.69 3.56 0.63 0.65 7.07
Probing CUTEr 6.92% 0.49 2.25 26.59 19.99 12.08 5.90 4.27 21.50
Qual. fctn. CUTEr 8.39% 4.53 6.98 32.89 22.50 10.57 2.08 2.46 9.59

Table 1: Average percentage of iterations in monotone and free mode, producing σk in
certain ranges.

Considering both the NETLIB and CUTEr test sets, there were 38 failures for the kni-

tro implementation of the globalized quality function adaptive barrier rule. Of these, 18
problems were solved when the default time or iteration limits were increased; 5 problems
(BRANDY, PALMER2, PALMER7A, SAWPATH, SINEALI) terminated at near optimal
approximate solutions but knitro could not get enough accuracy in the dual feasibility
measure; 2 problems (CRESC132, QCNEW) terminated because of evaluation errors re-
sulting from IEEE exceptions (NaN) in the function evaluation; and 1 problem (HS110)
terminated with a message of unboundedness at a feasible point with a very large nega-
tive value of the objective function. The optimal objective for HS110 is -9.960e+39, 1

whereas by default knitro declares unboundedness for a feasible objective value less than
the cutoff limit value -1.0e+20. When this limit is changed, knitro solves the problem in
4 iterations. In addition, the problem KTMODEL was discovered to have incorrect gradi-
ents which caused knitro to terminate at an infeasible point. The remaining 11 problems
(COSHFUN, DITTERT, DRUGDISE, GREENBEA, GREENBEB, MANNE, NUFFIELD,

1This is true for problem size N=200 which was the default size for this SIF model at the time of testing.

16



PILOT-JA, TENBARS2, TENBARS3, ZIGZAG) constitute unresolved failures.
We give some more information about these 11 problems. GREENBEA, GREENBEB,

PILOT-JA, NUFFIELD and ZIGZAG were not solved even when the time limit was in-
creased to three hours. The problems GREENBEA, GREENBEB and PILOT-JA are
linear programs for which knitro experiences numerical difficulties (from rank-deficient
Jacobians) that cause it to often fallback on steepest descent like steps and converge slowly.
knitro appears to be very close to the solution in PILOT-JA when it reaches the time limit.
The problems COSHFUN, DRUGDISE, TENBARS2 and TENBARS3 were not solved even
when the iteration limit was raised to 100,000 (although it appears in all cases that slow
progress is still being made when the iteration limit is reached). For the problem DITTERT,
knitro terminates at an infeasible point but the code is unable to verify whether or not it
is an infeasible stationary point. Finally, for the problem MANNE, knitro terminated at
a feasible point but with a large dual feasibility error.

For the ipopt code, there were 39 failures for the globalized quality function adaptive
barrier rule. Of these, 13 problems were solved if more iterations (100,000) or CPU time (3
hours) was allowed. In 6 problems (A2NNDNIL, A5NNDNIL, CRESC100, EG3, POLAK3,
SPIRAL), ipopt terminated at a point satisfying the local infeasibility criterion; in 2 prob-
lems (A2NSDSIL, BRAINPC9) it failed during the restoration phase. For COSHFUN, the
memory requirement in the linear solver was exceeded in iteration 10681, and the problems
EQC and ROBOT terminated because the search direction became too small, but in both
cases the problem was almost solved. For problem LIN, the objective function value at the
(modified) starting point resulted in an IEEE exception (NaN).

In the remaining failures, the maximum iteration count or CPU time were exceeded.
Problems AVION2, PALMER5E, YORKNET terminated after 100,000 iterations; ipopt

appeared to be cycling with small primal and dual feasibility errors for two of these problems
(AVION2 and PALMER5E). For problem PALMER7E, ipopt still made very small progress
after 100,000 iterations, while for problem KTMODEL the code seemed to diverge (as a
result of incorrect gradient information). Finally, the time limit was exceeded for the
linear program QAP15 from NETLIB, and for the CUTEr models A5NSDSIL, CRESC132,
GAUSSELM, GLIDER, MANNE, NUFFIELD, ORTHREGE, READING8.

7 Corrector Steps

The numerical results of Section 3 indicate that, when solving nonlinear problems, including
the corrector step in Mehrotra’s method (the MPC method) is often not beneficial. This is
in stark contrast with the experience in linear programming and convex quadratic program-
ming, where the corrector step is known to accelerate the interior-point iteration without
degrading its robustness. In this section we study the effect of the corrector step and find
that it can also be harmful in the linear programming and quadratic programming cases if
an initial point strategy is not used. These observations are relevant because in nonlinear
programming it is much more difficult to find a good starting point.

Let us begin by considering the linear programming case. There are several ways of
viewing the MPC method in this context. One is to consider the step computation as

17



taking place in three stages (see, e.g., [30]). First, the algorithm computes the affine scaling

step (3.2) and uses it to determine the target value of the barrier parameter µ = σ xT z
n

,
where σ is given by (3.5). Next, the algorithm computes a primal-dual step, say ∆pd, from
(2.5) using that value of µ. Finally, a corrector step ∆corr is computed by solving (2.5) with
the right hand side given by

−(0, ∆Xaff∆Zaffe, 0)T , (7.1)

where ∆Xaff is the diagonal matrix with diagonal entries given by ∆xaff , and similarly for
∆Zaff . The complete MPC step is the sum of the primal-dual and corrector steps. We can
compute it by adding the right hand sides and solving the following system:





∇2
xxL −AT (x) −I
Z 0 X

A(x) 0 0









∆xmpc

∆ympc

∆zmpc



 = −





∇f(x)−AT (x)y − z
Xz − µe + ∆Xaff∆Zaffe

c(x)



 . (7.2)

The new iterate (x+, y+, z+) of the MPC method is given by (2.7)-(2.8) with
∆ = (∆xmpc, ∆ympc, ∆zmpc).

Alternative views of the MPC method are possible by the linearity of the step compu-
tation: We can group the right hand side in (7.2) in different ways and thereby interpret
the step as the sum of different components. Yet all these views point out the following
inconsistency in the MPC approach.

In the linear programming case, primal and dual feasibility are linear functions and
hence vanish at the full affine scaling point, defined by

(x, y, z) + (∆xaff , ∆yaff , ∆zaff). (7.3)

The complementarity term takes on the value

(X + ∆Xaff)(Z + ∆Zaff) = ∆Xaff∆Zaff .

Therefore the value of the right hand side vector in (2.5) at the full affine scaling step (7.3) is
given by (7.1). Thus the corrector step can be viewed as a modified Newton step taken from
the point (7.3) and using the primal-dual matrix evaluated at the current iterate (x, y, z).

The inconsistency in the MPC approach arises because the corrector step, which is
designed to improve the full affine scaling step, is applied at the primal-dual point; see
Figure 6. In some circumstances, this mismatch can cause poor steps. In particular, we
have observed that if the affine scaling step is very long, in the sense that the steplengths
(2.8) are very small, and if the corrector step is even larger, then the addition of the corrector
step to the primal-dual step (2.7) can significantly increase the complementarity value xT z.
This behavior can be sustained and lead to very slow convergence or failure, as shown in
Table 2. The results in this table were obtained using PCx [9], an interior-point code for
linear programming that implements the MPC method, applied to problem Forplan from
the NETLIB collection. Practical implementations of the MPC use a procedure for choosing
a favorable starting point described by Mehrotra [22]. We disabled this initial point strategy
for PCx and set the initial point to x = e, z = e. Note from Table 2 that the affine scaling

18



PSfrag replacements

∆xaff

∆xcorr

∆xpd

∆xmpc

x∗(0)

x∗(µ)

Figure 6: An unfavorable corrector step.

Iter Primal Obj Dual Obj PriInf DualInf α
max
x α

max
z log(xT z

n
) ‖∆aff‖ ‖∆mpc‖

0 9.0515e+01 -4.8813e+06 1.0e-00 1.9e+00 0.0e+00 0.0e+00 0.00 0.0e+00 0.0e+00

1 9.0216e+01 -1.3664e+08 1.0e-00 1.9e+00 8.6e-13 5.0e-12 0.08 5.6e+06 1.2e+13

2 9.0403e+01 -3.3916e+08 1.0e-00 1.9e+00 7.3e-13 4.8e-13 0.16 9.1e+07 1.9e+14

3 9.0769e+01 -1.1343e+10 1.0e-00 1.9e+00 4.0e-12 1.2e-11 1.18 2.2e+08 3.9e+14

4 9.0860e+01 -1.8010e+11 1.0e-00 1.9e+00 1.5e-12 5.0e-12 2.35 8.0e+09 1.4e+16

5 9.1312e+01 -2.9307e+12 1.0e-00 1.9e+00 4.3e-12 5.1e-12 3.56 1.3e+11 2.2e+17

6 9.1710e+01 -8.2787e+13 1.0e-00 1.9e+00 6.0e-12 9.1e-12 5.01 2.1e+12 3.6e+18

7 9.2036e+01 -1.5505e+15 1.0e-00 1.9e+00 7.5e-12 6.0e-12 6.28 5.9e+13 1.0e+20

8 9.2282e+01 -6.8149e+16 1.0e-00 1.9e+00 7.0e-12 1.4e-11 7.93 1.1e+15 1.9e+21

9 9.2279e+01 -4.4155e+18 1.0e-00 1.9e+00 9.2e-12 2.1e-11 9.74 4.8e+16 8.3e+22

10 9.2244e+01 -2.8697e+20 1.0e-00 1.9e+00 6.8e-12 2.1e-11 11.55 3.1e+18 5.4e+24

11 9.2381e+01 -3.1118e+22 1.0e-00 1.9e+00 1.1e-11 3.6e-11 13.58 2.0e+20 3.5e+26

12 9.2462e+01 -7.0471e+24 1.0e-00 2.2e+01 6.2e-12 7.6e-11 15.94 2.2e+22 3.8e+28

13 9.2523e+01 -9.9820e+26 1.0e-00 2.8e+03 1.4e-11 4.7e-11 18.09 5.0e+24 8.6e+30

14 9.2605e+01 -1.1959e+30 1.0e-00 2.2e+01 2.1e-11 4.0e-10 21.17 7.1e+26 1.2e+33

Table 2: Output for NETLIB problem Forplan for default PCx with bad starting point.

19



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Iteration Count

default MPC corrector

no corrector

conditional MPC corrector

Figure 7: Results on the NETLIB test set for three corrector step strategies implemented
in PCx. The initial point was set to x = e, z = e.

and corrector steps appear to grow without bound, and examination of the results shows
that the dual variables diverge.

To provide further support to the claim that the corrector step can be harmful we ran
the complete set of test problems (94 in all) in the NETLIB collection. Using the default
settings, which includes a strategy for computing a good starting point, PCx solved 90
problems, and terminated very close to the solution in the remaining 4 cases. Next we
disabled the initial point strategy and set the initial point to x = e, z = e. PCx was now
able to solve only 28 problems (and in only 3 additional cases terminated very close to the
solution).

We repeated the experiment, using the initial point x = e, z = e, but this time removing
the corrector step; this corresponds to the algorithm called Mehrotra probing in Section 3.
We also tested a variant that we call conditional MPC in which the corrector step is employed
in the MPC method only if it does not result in an increase of complementarity by a factor
larger than 2. The results, in terms of iterations, are reported in Figure 7. Note the
dramatic increase in robustness of both strategies, compared with the MPC algorithm.
The conditional MPC strategy is motivated by the observation that harmful effects of the
corrector steps manifest themselves in a significant increase in complementarity. The failure
of convergence of the MPC method has also been analyzed by Cartis [7].

Finally we compare the monotone and quality function approaches described in Section 3
with the conditional MPC approach on the nonlinear programming problems used in that
section. The conditional MPC method is now implemented so as to reject corrector steps
that increase complementarity (this more conservative approach appears to be more suitable
in the nonlinear case). Furthermore, if the conditional MPC step does not pass the merit

20



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

 

 

Monotone

Quality function

Quality function with corrector

(a) ipopt

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

not more than 2x−times worse than best solver

%
 o

f p
ro

bl
em

s

Function Evaluations

Monotone

Quality function

Quality function with corrector

(b) knitro

Figure 8: Results for safeguarded corrector steps.

function or filter acceptance test for the current barrier problem, the corrector step is also
rejected, and the backtracking line search for the regular primal-dual step is executed.
Finally, no corrector step is computed while the algorithm is in the monotone mode. The
results, given in Figure 8, indicate that this conditional MPC method requires fewer function
evaluations, and is not less robust, than the other strategies.

8 Conclusion

We have seen in this paper that, both for linear and nonlinear programming, classical
barrier update strategies with global convergence guarantees are overly conservative, while
strategies that are often fastest in practice are based on heuristic formulas and are not
globally convergent. We have presented a new update strategy and shown that it is efficient
in practice. Instead of basing the update on a heuristic formula, our approach follows
a clearly defined objective, namely the minimization of a quality function. We further
proposed a simple globalization framework that makes use of any non-monotone barrier
parameter strategy.

We have also presented results that show the corrector steps employed in Mehrotra’s
predictor-corrector method (MPC) can have harmful effects, even in the linear and quadratic
programming cases. These observations were unexpected since the MPC method has be-
come widely used in linear and quadratic programming; our tests show that the reliability
of the MPC method depends crucially on heuristics, such as the choice of the initial point.
We have shown, however, that the selective use of corrector steps can have beneficial effects
in interior point methods.

A question we have not addressed is whether the approach presented in this paper

21



enjoys fast local convergence. We have not specifically introduced features that guarantee
superlinear convergence. This could be done by using various techniques proposed in the
literature for controlling the asymptotic behavior of the barrier parameter; see e.g. [19] and
the references therein. In particular, we could implement the strategies recently proposed
by Armand et al. [1, 2] in conjunction with the quality function approach.

We have not done so because the asymptotic behavior of the method proposed in this
paper has proved to be acceptable in practice. In fact, the quality function approach
promotes fast local convergence because it chooses the barrier parameter so as to (approx-
imately) minimize the quality function in the region defined by (2.8). One can design a
superlinearly convergent algorithm by choosing the barrier parameter so that a step to the
region defined by (2.8) decreases the KKT error superlinearly. Since the quality function
is an approximation to the KKT error, and it attempts to minimize it, it is not surprising
that the quality function approach tends to yield fast local convergence.

Acknowledgment. We would like to thank Richard Byrd for many valuable sugges-
tions during the course of this work, and the referees for suggesting ways of improving the
paper.

22



References

[1] P. Armand and J. Benoist. A local convergence property of primal-dual methods for
nonlinear programming. Mathematical Programming, Series A, 2006. (To appear).

[2] P. Armand, J. Benoist, and D. Orban. Interpretation of nonlinear interior methods
as damped Newton methods, methods for nonlinear programming. Computational
Optimization and Applications, 2005. (To appear).

[3] J. Betts, S. K. Eldersveld, P. D. Frank, and J. G. Lewis. An interior-point nonlinear
programming algorithm for large scale optimization. In O. Ghattas, M. Heinkenschloss,
D. Keyes, L. T. Biegler, and B. van Bloemen Waanders, editors, Large-Scale PDE-
Constrained Optimization, Lecture Notes in Computational Science and Engineering,
pages 184–198. Springer Verlag, 2003.

[4] R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, 89(1):149–
185, 2000.

[5] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

[6] R. H. Byrd, J. Nocedal, and R.A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,
pages 35–59. Springer, 2006.

[7] C. Cartis. Some disadvantages of a Mehrotra-type primal-dual corector interior point
algorithms for linear programming. Technical Report NA-04/27, Oxford Computing
Laboratory, Oxford, UK, 2004.

[8] L. Chen and D. Goldfarb. Interior-point `2 penalty methods for nonlinear programming
with strong global convergence properties. Mathematical Programming, 108(1):1–36,
2006.

[9] Czyzyk, J., S. Mehrotra, and S. J. Wright. PCx User Guide. Technical report, Argonne
National Laboratory, Argonne, IL, USA, 1996.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A, 91:201–213, 2002.

[11] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and
theory of the Newton interior-point method for nonlinear programming. Journal of
Optimization Theory and Applications, 89(3):507–541, June 1996.

[12] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. J. Wiley and Sons, Chichester, England, 1968. Reprinted as
Classics in Applied Mathematics 4, SIAM, Philadelphia, USA, 1990.

23



[13] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global con-
vergence of a trust-region SQP-filter algorithms for general nonlinear programming.
SIAM Journal on Optimization, 13(3):635–659, 2002.

[14] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM Journal on Optimization, 8(4):1132–1152, 1998.

[15] D. M. Gay, M. L. Overton, and M. H. Wright. A primal-dual interior method for
nonconvex nonlinear programming. In Y. Yuan, editor, Advances in Nonlinear Pro-
gramming (Beijing, 1996), pages 31–56, Dordrecht, The Netherlands, 1998. Kluwer
Academic Publishers.

[16] E. M. Gertz and P. E. Gill. A primal-dual trust region algortihm for nonlinear pro-
gramming. Mathematical Programming, 100:49–94, 2004.

[17] N. I. M. Gould, D. Orban, and Ph. Toint. An interior-point L1-penalty method for
nonlinear optimization. Technical Report RAL-TR-2003-022, Rutherford Appleton
Laboratory Chilton, Oxfordshire, UK, 2003.

[18] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and sifdec: A Constrained and
Unconstrained Testing Environment, revisited. ACM Trans. Math. Softw., 29(4):373–
394, 2003.

[19] N. I. M. Gould, D. Orban, and Ph. L. Toint. Numerical methods for large-scale non-
linear optimization. Acta Numerica, pages 299–361, 2005.

[20] I. Griva, D.F. Shanno, and R.J. Vanderbei. Convergence Analysis of a Primal-Dual
Method for Nonlinear Programming. Report, Department of Operations Research and
Financial Engineering, Princeton University, Princeton, NJ, USA, 2004.

[21] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing
Company, Reading, Massachusetts, USA, second edition, 1984.

[22] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2(4):575–601, 1992.

[23] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence. A primal-
dual interior-point method for nonlinear programming with strong global and local
convergence properties. SIAM Journal on Optimization, 14(1):173–199, 2003.

[24] M. Ulbrich, S. Ulbrich, and L. Vicente. A globally convergent primal-dual interior
point filter method for nonconvex nonlinear programming. Mathematical Programming,
2(100):379–410, 2004.

[25] R. J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13:231–252, 1999.

[26] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming:
Motivation and global convergence. SIAM Journal on Optimization, 16(1):1–31, 2005.

24



[27] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

[28] R. A. Waltz. Knitro 4.0 User’s Manual. Technical report, Ziena Optimization, Inc.,
Evanston, IL, USA, October 2004.

[29] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for
nonlinear optimization that combines line search and trust region steps. Mathematical
Programming, Series A, 107:391–408, 2006.

[30] S. Wright. Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics, Philadelphia, 1997.

[31] H. Yamashita. A globally convergent primal-dual interior-point method for constrained
optimization. Optimization Methods and Software, 10(2):443–469, 1998.

[32] H. Yamashita, H. Yabe, and T. Tanabe. A globally and superlinearly convergent
primal-dual interor point trust region method for large scale constrained optimization.
Mathematical Programming, Series A, 102(1):111–120, 2005.

25


