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We revisit and update the autoregressive-ouput-analysis method for constructing a
confidence interval for the steady-state mean of a simulated process by using Rissanen’s
predictive least-squares criterion to estimate the autoregressive order of the process. This
order estimator is strongly consistent when the output is autoregressive. The order estimator
is combined with the standard autoregressive-output-analysis method to form a confidence-
interval procedure. Alternatives for estimating the degrees of freedom for the procedure
are investigated. The main result is an asymptotically valid confidence-interval procedure
that, empirically, has good small-sample properties.
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1. Introduction

A standard experiment design for steady-state simulation is to allocate the
entire computing budget to a single long run. This design reduces data waste and
the potential mistakes from initial-transient deletion. However, statistical analysis
of the output process is a longstanding problem. We present a parametric method
for deriving a confidence interval for the mean of a stationary stochastic process.
The method models the output process using an autoregressive representation, and
the statistical analysis exploits the well-known properties of autoregressive models.
This is an old idea that we update substantially. In particular, we use Rissanen’s
predictive least-squares criterion to estimate the autoregressive order of the output
process. This order estimator is strongly consistent when the output process is
autoregressive, and we combine it with the standard autoregressive-output-analysis
method to form an asymptotically valid confidence-interval procedure. Alternatives
for estimating the degrees of freedom for the procedure are also investigated.

In the next section we introduce and review autoregressive modeling. In
section 3 we present the underlying methodology and our main result: an asymptotically
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valid confidence-interval procedure. We empirically examine the robustness and
small-sample properties of this procedure in section 4; conclusions and recommendations
are given in section 5.

2. Background

Let Y; denote the jth output from a single replication. An autoregressive order
p model, denoted AR(p), approximates the dependence in {Y}; j=1,2, ...} by the
linear autoregression

p
Yi-0=Y ¢:Y;_; -0)+e, M

i=1

where the ¢,’s are the autoregressive coefficients, 6 is the unknown process mean,
and the g’s are independent and identically distributed (i.i.d.) residuals with zero
mean and finite variance 2. There are three considerations that motivate an AR-
modeling approach:

1. An AR model is a reasonable approximation for general output processes.
Given that the autocovariance matrix of an output process is invertible, we
can approximate the output process by an AR model that matches the
autocovariance to as many lags as desired.

2. Theoretical development of AR modeling is complete, relative to autoregressive-
moving average (ARMA) modeling, in the sense that a strongly consistent
order estimator has been developed for AR models but not for ARMA models.
This property is critical to developing an asymptotically valid confidence-
interval procedure; no such procedure existed using AR or ARMA modeling
prior to this work.

3. A simulation experiment seldom ends with analyzing a single system. One
often needs to compare alternatives and select the best. An AR method is
appropriate in conjunction with multiple-comparison procedures because AR
models provide a natural interpretation for the assumptions behind multiple-
comparison procedures, while other well-known output-analysis methods (e.g.
batch means) do not. Yuan and Nelson [21] derived the first asymptotically
valid multiple-comparison procedure for steady-state simulation based upon
the theoretical foundation in this paper.

Fishman [7] originated the application of AR modeling in simulation analysis.
Following his initial work, research moved toward ARMA models as an alternative
because of their parsimonious representation. This paper revisits Fisherman’s procedure.
The goal is to incorporate newly developed methods for AR order identification and
estimation of degrees of freedom to derive a provably valid procedure.
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3. Methodology

This section presents an AR-confidence-interval procedure for steady-state
simulation. Figure 1 is a flowchart of the proposed procedure. In the subsections
that follow we fill in the details for each step in the chart. To keep the presentation
concise, we begin with AR coefficient estimation given that the AR order is known,
and then describe how the order is determined. The proofs of all lemmas and
theorems that are not referenced can be found in the appendix.

Identify
Autoregressive

Order

|

Estimate
Autoregressive

Coeflicients

Estimate
Residual Variance and
Variance of Sample Mean

Estimate
Degrees of Freedom
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Warnings not pass Test
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Figure 1. AR-confidence-interval procedure.

Throughout the remainder of this paper we assume the output process
{Y;;7=1,2,...} is a stationary AR(p) process represented by model (1). The ¢;’s
in the model are assumed to satisfy the conditions that insure {Y;} to be covariance
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stationary (i.e. the p roots of the characteristic equation 1 - ¥7_, ¢;x" = 0 all exceed
unity in modulus; see [5, p. 70]). A useful reparameterization of the model is

)4
Y = ¢o + 2 0¥ 1+, (2)

i=1

where ¢y = 6(1 - XF_, ¢;).

3.1. AR COEFFICIENT ESTIMATION

When the order of an AR process p is known, there are a number of coefficient
estimators available in the literature. They include the Yule—Walker estimator
(YWE), the maximum-likelihood estimator (MLE) and the conditional-least-squares
estimator (CLSE); the latter is a least-squares estimator conditional on the initial
p observations of the ¥;’s (see e.g. [5]). We propose using CLSE for the following
reasons:

1. Given p, both CLSE and YWE yield consistent estimators, but CLSE usually
has a smaller first-order asymptotic bias [18]; i.e. CLSE converges to the true
parameters faster.

2. The computation of CLSE is straightforward, and CLSE is a by-product
of the order identification procedure we use. However, directly computing
the MLEs can be difficult and one typically needs to use some approximation

[3].

In the following we summarize the computation and properties of CLSE.

3.1.1. Computation

Let the CLSE be denoted by §(n, p) = [o(n. p), §1(n, p), - - . , §,(n, p)Y',
where n is the sample size. Define the data and design matrices

Y(n,p) = [Yp+l’Yp+2’“-,Yn]’9

17, Y,o1 - ¥

1Y, Y, - Y
X(n,p)=| . :p :p - s

1 Yioo1 Yoo - Yn—p
Then

(n, p) = [X'(n, p) X(n, p)I"' X'(n, p) Y(n, p)
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and

) P .
6’(n, p) = ¢o(n, p)/ {1 - Y 0i(n, p)},

i=1

where 6’(n, p) is a point estimator of the process mean 6.

3.1.2. Properties

Let 25 denote convergence in probability. The following lemmas show that
the CLSE coefficient estimators are consistent when the order p is known.

LEMMA 3.1 [5, p. 130]

) If the model assumptions in section 3 hold, and the order p is known, then
6(n,p)-Y 250 (implying that 6(n, p)& 0).

LEMMA 3.2 [20, pp. 147—-149]

) If the model assumptions in section 3 hold, and the order p is known, then
o;(n,p) B¢, fori=1,2,...,p.

3.2. AR ORDER IDENTIFICATION

Determining the order of an AR process has been a longstanding problem.
There are various perspectives in the literature. One perspective treats order identification
as a hypothesis-testing problem. An F test was developed by Hannan [10]. Fishman [7]
adopted this test in his AR procedure. Box and Jenkins [3] treat order identification
as an iterative procedure: Governed by a principle of parsimony, a candidate model
is selected by investigating correlograms. Then diagnostic tests are performed. The
candidate models is iteratively modified until it passes all tests. Another perspective
is to use a single numerical index to measure the goodness of a model. One such
index is Akaike’s [1] information criterion. Gray et al. [9] developed two heuristic
“D” statistics. These statistics were adopted by Schriber and Andrews [17] and
Chun [4]. None of these approaches has been shown to provide an asymptotically
consistent order estimator.

More recently, Rissanen [16] proposed the predictive-least-squares (PLS)
criterion. PLS selects an order based on the predictive ability of a model. We adopt
this criterion and develop an efficient implementation of it.

For candidate order A, let

2?:2;. +2 el (h)

PLSw =— — 17

(3)
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where ¢; 2(h) is the “honest prediction error” for ¥; asuming the order to be h. That
is, e(h) =Y, — Y(h) where Y(h) is the predicted value of ¥; from the AR(A) model
estimated by CLSE, but using only observations Y, Y,, ..., Y;_, (therefore it is
“honest” in the sense that only observations prior to Y; enter into the predicted value
of ¥;). Following the notation defined in subsection 3.1.1,

Yih)y = {[X'(i - L, W)X - L™ X' - LAY -1, | Yiis |

The PLS criterion selects the order p from a set @ of possible orders such that
PLS 5 = min, ¢ oPLS,,. The set of candidate orders O is assumed to contain the true
order p. Notice that e¢,(h) can be computed only for i > 2h + 2.

Several papers discuss the properties of PLS. Rissanen [16] showed that p is
consistent in the case of Gaussian residuals. Wax [19] showed that p is consistent
without the Gaussian assumption. Hannan et al. [11] showed p to be strongly consistent.
Hemerly and Davis [12] derived the same conclusion. This convergence property
is critical to developing an asymptotically valid confidence-interval procedure.

A naive implementation of the PLS criterion is computationally expensive to
use because a matrix inversion is required for each candidate order, and for each
observation. We develop an efficient algorithm in the appendix.

Let ¢(n p) be the CLSE coefficient estimator in conjunction with Rissanen’s
order estimator p; i.e. q)(n p)= (p(n p) when p=p. Using lemmas 3.1-3.3, we can
show that ¢)(n p) is consistent for ¢.

LEMMA 3.3
If the model assumptions in section 3 hold, then for each £€> 0,

lim Pr{|¢;(n,p) —¢;|<€ and p=p}=1, for i=12, ...,p.
H—> o0

THEOREM 3.1
If the model assumptions in section 3 hold, then q)(n p) ¢as n— oo,
Theorem 3.1 states that the CLSE coefficient estimator combined with the

PLS order estimator is consistent. A corollary (that we will need later) follows
directly:
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COROLLARY 3.1

If the model assumptions in section 3 hold, then Z{;:ld;i (n, ;3)-9]-’»2{;1«;5,- as
n — oo,

3.3.  VARIANCE ESTIMATION

The confidence interval we propose is of the form

Y £ g5\ Var[Y],

where t;_q/ ; is the 1— /2 quantile of a ¢ random variable with f degrees of
freedom. Given that {Y;,j=12,...,n} is a stationary AR(p) process, it is known
that for large sample size n,

2

(o2
n(l - E,P=1 ¢i)2

Var[Y] = 4)

[8]. Therefore, a natural estimator of Var[¥]is Var[¥] that is obtained by substituting
estimates for the parameters in (4). If we approximate the distribution of Var[Y] as
a constant times a x> random variable, and if we are given an estimate of the
associated degrees of freedom f, then we can construct an approximate confidence
interval for the mean. This section discusses estimation of ¢ and the degrees of
freedom.

3.3.1. Estimation of the residual variance

The residual variance can be estimated by

52 = i pr1lY) = @o(n, p) = X 0i(n, p)Y;_i1?
n—p '

(%)

Using the results from the previous sections we have the following theorems:

THEOREM 3.2

If the model assumptions in section 3 hold, then 62 2562 as n — oo,

The PLS order estimator and CLSE coefficient estimator can be combined
with the residual variance estimator 62 to form a variance estimator

6.2

n(l - 3P, ¢i(n, p)?

Var[Y] =
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This estimator is consistent, as shown in the next result. Let 72 = lim,_,.. nVar[ Y]
=0 (1- 3, ¢:)>

THEOREM 3.3

If the model assumptions in section 3 hold, then nﬂr[? ]-@M'zas n —> oo,

3.3.2. Degrees of freedom for ﬁr[l_’]

Determining the degrees of freedom to associate with o2 is difficult because
the small-sample distribution of o2 is not known. Determining the degrees of freedom
of Var[Y] is even harder. The degrees of freedom will affect the ¢ critical values
that are used in computing confidence intervals. This section introduces approximations
for large and small-sample cases. The definition of “large” and “small” depends,
unfortunately, on unknown properties of the particular output process at hand. One
reason that we examine both approximations in the empirical study (section 4) is
to determine whether there is substantial benefit from using the more complicated
small-sample approximations.

Large-sample case: Since both the order and the coefficient estimators converge to
their true values as the sample size increases, the problem is simplified by treating
the estimates as if they are known constants. Then (n - p)6%16? is a % random
variable with n — p degrees of freedom, and (n — p) Var [Y]/Var[ Y] is approximately
a x? random variable with n — p degrees of freedom. In this paper, we simply use
the full sample size as the large-sample degrees of freedom because n is always
much greater than p.

Small-sample case: When the sample size is moderate or small, taking n or n —p
as the degrees of freedom for (n —p) Var (Y)/Var[Y] is not justified. Fishman [7]
suggested the following approximation:

1. Assume that Var[YV]/Var[T¥]is a x]%/f random variable.

2. Assumption 1 implies that 2(E[ Var[¥]])% Var[ Var[¥]] = f, so f is
approximated by .
2(Var[Y])?

f= T
Var[Var[Y]]

3. The Var|[Var (Y)] is a sample estimate based on the following limiting result [7]:

2
—~ - ¥P ; -2
lim nVar[Var [¥]] = —i—z o Lt Gl
n-eo -2 0) 1-3F 9
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After simplification,
n[l — 3P, ¢:(n, )]
(1+2p)1 = 2, ¢ (n, Y1 + 43P, idi (n, p)

The quantity f is similar to a moment estimator.

f=

A second approx1matlon takes a different view: Consider a stochastic process
{Z ,]—1 2,...,n"}, where Z; ~ i.i.d. (6, 0?) and n’ = max{1, n(1-3%F_ 1(l),) }. Let
Z=3" =1 Z; /n Then E[Z 1= Gand Var[Z] = Var[ Y] We may regard the information
contained in {Z } to be equivalent to that in {¥;} for purposes of variance estimation.
This suggests takmg the degrees of freedom of Var [Y] to be the degrees of freedom
of Var[Z];i.e. n’. Schriber and Andrews [17] suggested a similar, but shghtly more
conservative, approximation that was also adopted by Chun [4]. Notice that n’ could
be larger than or smaller than n, and that n” is exactly n if {¥} is an i.i.d. process.
To obtain n’ in practice we substitute estimates for p and the ¢;’s.

3.3.3. Confidence-interval procedure

As discussed in the previous section, there are alternative ways to estimate
the degrees of freedom. Assembling different estimators results in different confidence-
interval procedures. We will evaluate all three alternatives: Flshman s approximation,
the equivalent sample size, and the full sample size.

Theorem 3.4 establishes that our confidence-interval procedure will be
asymptotically valid provided that the method for estimating the degrees of freedom
forces f to go to infinity as the sample size does.

THEOREM 3.4

If the model assumptions in section 3 hold, then
Y-0
A Var[¥]

where N(0, 1) denotes a standard normal random variable and = denotes convergence
in distribution.

= N(0,1),

3.4. LACK-OF-FIT TEST

Rarely can an output process be perfectly modeled as an AR process. A lack-
of-fit test is sometimes recommended as a quality inspection. In the literature,
Portmanteau’s test is used [14]. The test checks the goodness of a model by computing
the Ljung—Box~Pierce statistic, which is given by
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52
k '}/I

Q= n(n+2) ,
Z‘ln-k

where 7, is the lag-j sample autocorrelation of the estimated residuals from the
selected AR(p) model, and k is a value large enough so that 7; is negligible for
J > k. This paper takes k to be the largest integer less than log n. The limiting null
distribution of Q is close to a y? distribution with k — p degrees of freedom. We
could reject a pth order model if Q 2 x%_a, k-p» the 1 — & quantile of a x* random
variable with k — p degrees of freedom. A more complete discussion of this test can
be found in [6]. In the next section we investigate whether it would be a serious
error to ignore the test.

4, Experiments

In this section we evaluate the AR-confidence-interval procedures empirically.
Five sets of process are selected for experiments. These sets include AR processes
with normal residuals, AR processes with (shifted) exponentially distributed residuals,
ARMA processes, M/M/1 queues, and a production system. These sets are chosen
to systematically stress the procedures by violating their assumptions, and to test
them on systems simulation examples. In addition, three sample sizes are used to
compare the small-sample and large-sample behavior of the procedures. The experiment-
design details are given below.

4.1.  TEST MODELS

(1) Test set 1 (AR models). In this test we use five tailor-made AR processes
to observe the performance of the procedure when the model assumptions are satisfied:

Y1, -6 =031, ;1 - 61) + &5,

Y5, =02 =08(Y, ;-1 - 0,) + &,

Y3 -03=05(Y3;_1-63)+025(Y;;_2 - 03) + &3 ;,

Yg,j =604 =03y ;1 —604)+02(Yy ;20 —04)+01(Yy ;.3 -64)+&4;,

Y5 —0s =04(Ys j_1 —=05)+02(Ys j_ —05)+0.1(Ys j_3 — 05)

+0.05(Ys j_4 —O5)+ €5 ;,

where (6, 6,, . . ., 85) =(5.00,5.25,5.50,5.75,6,00), and the g;’s are i.i.d. N(0,1)
random variables Vi, j. The values of the 6s, which have no effect on the performance
of the confidence-interval procedures, were chosen so that the test set could also

be used in a companion study of a multiple-comparison procedure [21]. To avoid
initial-condition bias, each model is initialized from its steady-state distribution.
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(2) Test set 2. The models in this test set are identical to test set 1 except
that the g;’s are i.i.d. (shifted) exponentially distributed random variables with
mean O and variance 1. The g;’s are generated by first generating an observation
from an exponential distribution with mean 1, and then subtracting 1 from the
result. This set relaxes the normal residual assumption to observe the effect of the
departure from normality. To initialize the models we set Y;; = 6;fori=1,2,...,5
and j = -3,-2,-1,0, and then delete the initial 100 observations.

(3) Test set 3 (ARMA models). In this test set we observe the effect of
correlation structures different from AR processes by examining ARMA processes
(ARMA processes are equivalent to infinite-order AR processes):

Y,; -6 =€, +0.8¢;_1,

Y, -0, =07(Y, ;1 —0,)+¢& ; +05&;_,

Y3 -63=03(Y;;_1-63)+¢&3; +02¢3;_y,

Ysj =04 =05(Ys 1 —04)+025(Ys ;o —04)+ €4, + 03641,

Ysj =05 =04(¥5j_1 = 05) + 0.2(¥5,j_2 — 05) + &5,j +0.2565 ;1 + 0.1&5 2,
Y,j — 06 =0.35(¥s j_1 — 66) +025(Ys j_2 — 06) +0.15(¥s j_3 — 6) + &

+ 0'286,j—1 ,

where (6,0, ..., 6)=(44,53,5.0,5.6,5.9,6.2), and the g;’s are i.i.d. N(0,1)
random variables Vi, j. To initialize model 1, we set Y, | = Z, + 0.8Z,, where Z, and
Z, are independent N(0, 1) random variables. To initialize the other models we set
Y;j=6and g;=0fori=2,3,...,6andj=-2,-1,0, and then delete the initial 100
observations.

(4) Test set 4 (M/M/1 queue). In this test set we study the performance of the
confidence-interval procedures against a standard system-simulation example. Two
parameter settings are selected: mean interarrival time 10 and mean service time 9
(implying a heavy traffic intensity of p = 0.9), and mean interarrival time 10 and
mean service time 5 (implying a moderate traffic intensity of p = 0.5). For each
queue we simultaneously record two processes: the system time and the number of
entities in the system, where system time is the sum of wait and service time of a
customer. The system-time process is indexed by consecutive arrivals. The number-
of-entities process is the time-average number of entities in the system over consecutive
observation intervals (every 40 time units). We sample the initial number of entities
from the steady-state distribution f; = p‘(1 — p), for i =0,1,2, ..., where f; is the
probability that i entities are initially in the system.

(5) Test set 5 (closed-queueing network). In this test set we exercise the
procedures on a system-simulation example with different characteristics. Consider
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a production system that consists of 5 identical machines and s spares. Suppose 5
aperators and 1 repair technician are in the system. When a machine breaks down
it is immediately replaced by a spare machine if one is available. The broken
machine is then sent to be repaired. The machine-failure times follow an exponential
distribution with mean 10 time units. The repair time is also exponentially distributed
with mean [, time units. A repaired machine resumes production if there is an
operator available; otherwise it is kept as a spare. For each interval of 40 time units
we compute the time-average number of machines in operation. The output process
is formed by the consecutive averages (i.e. batch means). We want to estimate the
long-run expected number of operating machines for the 5 alternatives in table 1;
the true, analytically-determined values are also shown in the table.

Table 1

(s, 14,) combinations for the production system.

Alternative s I Expected number of Expected number of time
operating machines  a machine is operating y

1 4 325 3.033 0.367
2 3 3.00 3.218 0.438
3 2 250 3.604 0.561
4 1 200 3.891 0.686
5 0 175 3.772 0.754

We sample the initial number of machines in operation from a binomial distribution
with parameters (5 + s) and ¥, where 7y is given in the last column of table 1. To
initialize each simulation we delete the initial 4000 time units.

4.2. EXPERIMENT FACTORS AND PERFORMANCE MEASURES
In the empirical study, two factors are controlled:

1. Degrees of freedom of \751‘[?]. Three alternatives are used: Fishman’s
approximation, the equivalent sample size and the full sample size.

2. Sample size. We used three levels: n = 500, 2500, 5000 per system, except for
the closed-queueing network (test set 5), where the sample sizes are n = 200, 500, 1000.
The sample sizes were selected according to experience from pilot runs so that (we
thought) the smallest value would be the minimum feasible for any procedure to
work, and the largest value would be more than adequate.

To evaluate the performance of the confidence-interval procedures, we estimate
coverage probability, expected halfwidth, and standard deviation of the confidence-
interval halfwidth from 100 replications of the experiment (implying the first digit
of the probability estimate is accurate, the second more uncertain). We separately
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compute these performance measures for cases that pass Portmanteau’s test (with
a significance level 0.1), and for all cases whether or not they pass the test. In all
experiments the set of possible orders is O = {1,2, ..., 8}, where the maximum
order was determined arbitrarily. The nominal confidence level is 1 - a=0.9.

43. NUMERICAL RESULTS AND DISCUSSION

In this section we summarize the results of the experiments on each test set;
numerical values are displayed in tables 2—25. General conclusions are given in
section 5.

In test set 1, we find that the probability that Rissanen’s order estimator
selects the true order increases as the sample size increases, as expected (table 2).
When it misses the true order the PLS estimator tends to overestimate it. The
coverage of the confidence intervals is approximately the nominal level (table 3).
The halfwidths look stable since the standard deviation of the halfwidth is quite
small relative to the average halfwidth (tables 4,5). The three approximations for
degrees of freedom do not make a noticeable difference in this case, and the performance
of the intervals passing Portmanteau’s test does not appear to be any better than the
performance of all intervals when the test is ignored.

In test set 2 the overall results are similar to that of set 1, except that the
estimated coverage is perhaps slightly lower when the sample size is small (refer
to tables 6—9). No other degradation is apparent.

In test set 3, since there are moving-average terms and the true AR order is finite,
the estimated orders tend to be larger (table 10). However, the confidence-interval
performance is satisfactory: The nominal confidence level can be achieved in moderate
or large sample sizes (table 11) and the halfwidths are stable (tables 12—13). Again,
Portmanteau’s test is not a good indicator of when the procedures will work.

In test set 4, when the traffic intensity is p = 0.9, the results for the system-
time process show noticeable degradation: The coverage is low and the halfwidths
tend to be wide (tables 14 —17). This is due to the strong positive correlation in the
process. In particular, the halfwidths computed by using the equivalent sample size
are unstable. When we increase the sample size the performance does not improve
substantially, suggesting that even 5000 observations is not sufficient for this process.
When the traffic intensity is 0.5, the correlation in the process decreases and the
results improve. On the other hand, the results for the number of entities in the
queue were insensitive to the change in traffic intensity (tables 18-21). In both
cases the results were stable and satisfactory.

In test set 5, the results are similar to those for the number of entities in the
M/M/1 experiments. The performance is satisfactory in terms of coverage and stability
of the confidence intervals (tables 22-25). We conjecture that the process is well
approximated by an AR model since the fitted orders are observed to be low (first
or second order).
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Distribution of order estimates (set 1), where “total pass”
means replications that passed the Portmanteau test.

Table 2

model sample order total
size 1 2 3 4 5 6 7 8 |pass
model 1 500 64 19 7 2 2 0 1 0 95
2500 66 16 8 4 2 0 0 O 96
5000 60 18 5 6 1 2 0 O 92
model 2 500 64 20 4 1 1 0 O O 90
2500 61 20 6 2 1 O O O 90
5000 75 9 4 1 2 0 0 O 91
model 3 500 0 55 16 10 2 3 2 0 88
2500 0 59 17 6 4 3 1 0 90
5000 0 63 14 8 0 2 0 0 87
model 4 500 1 33 20 15 6 2 1 1 79
2500 0 6 40 19 9 5 2 3 84
5000 0 0 60 13 13 5 0 1 92
model 5 500 0 28 28 13 7 2 2 1 81
2500 0 1 41 31 6 3 3 3 88
5000 0 0 36 30 11 5 3 1 86
Table 3

Estimated coverage of 90% confidence intervals (set 1).

sample size 500 2500 5000
model df pass only  overall pass only overall pass only overall
model 1 large sample 90.5 91.0 88.5 89.0 84.7 86.0
Fishman 90.5 91.0 88.5 89.0 85.8 87.0
equivalent sample 90.5 91.0 88.5 89.0 84.7 86.0
model 2 large sample 86.6 86.0 91.1 90.0 89.0 88.0
Fishman 87.7 87.0 92.2 91.0 89.0 88.0
equivalent sample 87.7 87.0 922 91.0 89.0 88.0
model 3 large sample 89.7 91.0 87.7 86.0 96.5 96.0
Fishman 90.9 92.0 88.8 88.0 96.5 96.0
equivalent sample 90.9 92.0 88.8 88.0 96.5 96.0
model 4 large sample 92.4 90.0 89.2 88.0 93.4 94.0
Fishman 92.4 90.0 89.2 88.0 93.4 94.0
equivalent sample 92.4 90.0 89.2 88.0 934 94.0
model 5 large sample 85.1 87.0 82.9 84.0 88.3 90.0
Fishman 86.4 88.0 82.9 84.0 88.3 90.0
equivalent sample 85.1 87.0 82.9 84.0 88.3 90.0
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Table 4

Average halfwidth of 90% confidence intervals (set 1).

sample size 500 2500 5000
model  df pass only  overall pass only overall pass only overall
model 1 large sample 0.1038 0.1040 0.0469  0.0469 0.0332  0.0332
Fishman 0.1047 0.1050 0.0470  0.0470  0.0332  0.0332
equivalent sample 0.1040 0.1042 0.0469  0.0469 0.0332  0.0332
model 2 large sample 0.3660 0.3627 0.1649  0.1649 0.1160  0.1158
Fishman 0.3795 0.3760 0.1661  0.1661 0.1164 0.1162
equivalent sample 0.3840 0.3803 0.1664  0.1664 0.1166  0.1163
model 3 large sample 0.2916 0.2896 0.1304  0.1299 0.0921  0.0921
Fishman 0.3041 0.3018 0.1314  0.1309  0.0924  0.0925
equivalent sample 0.3007 0.2984 0.1311  0.1306 0.0923  0.0924
model 4 large sample 0.1759 0.1747 0.0814  0.0805 0.0578  0.0578
Fishman 0.1811 0.1797 0.0819 0.0810  0.0580 0.0580
equivalent sample 0.1775 0.1764 0.0815 0.0807  0.0579 0.0579
model 5 large sample 0.2676 0.2614 0.1287  0.1279 0.0903  0.0900
Fishman 0.2804 0.2734 0.1300  0.1292  0.0908  0.0905

equivalent sample 0.2746 0.2679 0.1294  0.1286 0.0906  0.0902

Table 5

Standard deviation of halfwidth of 90% confidence intervals (set 1).

sample size 500 2500 5000
model  df pass only  overall pass only overall pass only overall
model 1 large sample 0.0068 0.0070 0.0014 0.0014  0.0007  0.0007
Fishman 0.0068 0.0070 0.0014 0.0014  0.0007  0.0007
equivalent sample 0.0068 0.0070 0.0014 0.0014  0.0007  0.0007
model 2 large sample 0.0505 0.0504 0.0113  0.0113 0.0051  0.0052
Fishman 0.0547 0.0546 0.0114 0.0114  0.0051  0.0052
equivalent sample 0.0583 0.0580 0.0116 0.0116 0.0052  0.0052
model 3 large sample 0.0490 0.0479 0.0075  0.0075 0.0042  0.0042
Fishman 0.0534 0.0522 0.0076  0.0076  0.0042  0.0042
equivalent sample 0.0539 0.0526 0.0076  0.0076  0.0042  0.0042
model 4 large sample 0.0247 0.0264 0.0051 0.0054 0.0027  0.0027
Fishman 0.0267 0.0283 0.0051  0.0055 0.0027  0.0027
equivalent sample 0.0255 0.0272 0.0051  0.0054 0.0027  0.0027
model 5 large sample 0.0503 0.0488 0.0108 0.0116  0.0054  0.0055
Fishman 0.0568 0.0550 0.0111  0.0119  0.0055 0.0056

equivalent sample 0.0553 0.0535 0.0110 0.0118 0.0055  0.0055
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Distribution of order estimates (set 2), where “total pass”
means replications that passed the Portmanteau test.

Table 6

model sample order total
size 1 2 3 4 S5 6 7 8 9pass

model 1 500 56 15 8 3 2 2 2 2 9
2500 70 11 4 33 1 0 0 92
5000 65 12 5 2 2 t 1 0 88

model 2 500 68 11 9 3 2 0 1 O 94
2500 62 8 4 5 1 0 1 2 83
5000 70 8 8 1 2 0 0 O 89

model 3 500 1 50 20 8 6 3 1 1 90
2500 0 59 22 4 4 3 2 4 98
5000 0 65 11 2 5 4 2 2 91

model 4 500 0 35 21 79 1 1 3 77
2500 0 5 50 1 6 1 7 4 84
5000 0 O 55 206 4 6 3 94

model 5 500 0 30 17 15 5 3 4 5 79
2500 0 2 3 257 5 3 2 8
5000 0 0 3331 9 9 2 3 87

Table 7

Estimated coverage of 90% confidence intervals (set 2).

sample size 500 2500 5000
model  df pass only  overall pass only overall pass only overall
model 1 large sample 86.6 88.0 94.5 94.0 95.4 95.0
Fishman 87.7 89.0 94.5 94.0 95.4 95.0
equivalent sample 86.6 88.0 94.5 94.0 95.4 95.0
model 2 large sample 73.4 75.0 85.5 86.0 94.3 94.0
Fishman 74.4 76.0 85.5 86.0 94.3 94.0
equivalent sample 75.5 77.0 85.5 86.0 94.3 94.0
model 3 large sample 92.2 91.0 86.7 87.0 89.0 90.0
Fishman 92.2 91.0 86.7 87.0 89.0 90.0
equivalent sample 92.2 91.0 86.7 87.0 89.0 90.0
model 4 large sample 87.0 90.0 89.2 88.0 87.2 88.0
Fishman 87.0 90.0 89.2 88.0 87.2 88.0
equivalent sample 87.0 90.0 89.2 88.0 87.2 88.0
model 5 large sample 84.8 84.0 93.7 93.0 88.5 89.0
Fishman 84.8 84.0 93.7 93.0 88.5 89.0
equivalent sample 84.8 84.0 93.7 93.0 88.5 89.0
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Table 8

Average halfwidth of 90% confidence intervals (set 2).

sample size 500 2500 5000
model  df pass only  overall pass only overall pass only overall
model 1 large sample 0.1056 0.1058 0.0467 0.0466  0.0332  0.0332
Fishman 0.1067 0.1069 0.0467 0.0467  0.0333  0.0332
equivalent sample 0.1058 0.1060 0.0467 0.0466  0.0332  0.0332
model 2 large sample 0.3540 0.3541 0.1613  0.1623 0.1163  0.1165
Fishman 0.3667 0.3668 0.1625 0.1635  0.1167 0.1169
equivalent sample 0.3702 0.3702 0.1627 0.1638  0.1168 0.1170
model 3 large sample 0.2855 0.2802 0.1310  0.1308 0.0929  0.0931
Fishman 0.2973 0.2913 0.1321  0.1319  0.0933  0.0935
equivalent sample 0.2936 0.2879 0.1318 0.1316  0.0932  0.0934
model 4 large sample 0.1744 0.1695 0.0814 0.0805  0.0580 0.0578
Fishman 0.1795 0.1743 0.0819 0.0820  0.0582 0.0580
equivalent sample 0.1760 0.1711 0.0815  0.0806 0.0580 0.0578
model 5 large sample 0.2646 0.2599 0.1273  0.1256 0.0913  0.0909
Fishman 0.2774 0.2719 0.1286 0.1269  0.0918 0.0914

equivalent sample 0.2712 0.2662 0.1280  0.1263 0.0915  0.0912

Table 9

Standard deviation of halfwidth of 90% confidence intervals (set 2).

sample size 500 2500 5000
model  df pass only  overall  pass only overall pass only overall
model 1 large sample 0.0090 0.0093 0.0020 0.0020  0.0010 0.0010
Fishman 0.0093 0.0096 0.0020 0.0020  0.0010 0.0010
equivalent sample 0.0091 0.0094 0.0020 0.0020  0.0010 0.0010
model 2 large sample 0.0551 0.0554 0.0117 0.0118 0.0053  0.0052
Fishman 0.0588 0.0592 0.0118 0.0119  0.0053  0.0052
equivalent sample 0.0620 0.0624 0.0120 0.0121 0.0053  0.0052
model 3 large sample 0.0457 0.0474 0.0094  0.0093 0.0044  0.0044
Fishman 0.0492 0.0512 0.0095 0.0095  0.0044 0.0044
equivalent sample 0.0491 0.0509 0.0095 0.0095 0.0044 0.0044
model 4 large sample 0.0241 0.0257 0.0050  0.0061 0.0030  0.0031
Fishman 0.0259 0.0276 0.0051 0.0062  0.0030 0.0031
equivalent sample 0.0248 0.0263 0.0051  0.0061 0.0030  0.0031
model 5 large sample 0.0441 0.0478 0.0116  0.0119 0.0064  0.0069
Fishman 0.0494 0.0533 0.0119 0.0122  0.0065 0.0070

equivalent sample 0.0474 0.0512 0.0118 0.0121 0.0065  0.0070
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Distribution of order estimates (set 3), where “total pass’

Table 10

1

means replications that passed the Portmanteau test.

model sample order total
size 1 2 3 4 5 6 7 8 pass
model 1 500 0 0 o0 11 12 17 11 8 59
2500 0o 0 0 0 0 3 2 19 24
5000 o 0 0 0 0 0 1 15 16
model 2 500 0 11 26 19 7 6 3 3 75
2500 0 0 11 36 17 14 3 4 85
5000 0 0 1 27 28 16 4 4 80
model 3 500 41 25 9 5 1 0 0 O 81
2500 13 54 14 6 4 2 0 O 93
5000 1 56 20 8 4 1 1 O 91
model 4 500 60 17 7 1 3 2 0 O 90
2500 73 12 5 0 0 O 1 O 91
5000 62 20 5 3 1 1 0 1 93
model 5 500 40 18 9 7 2 2 0 79
2500 6 11 37 15 7 2 1 80
5000 0 1 52 17 7 6 1 85
model 6 500 3 31 26 105 5 0 1 81
2500 0 55 25 6 3 2 O 92
5000 0 55 19 10 5 0 2 91
Table 11
Estimated coverage of 90% confidence intervals (set 3).
sample size 500 2500 5000
model  df pass only overall pass only overall pass only overall
model 1 large sample 88.1 88.0 79.1 85.0 81.2 84.0
Fishman 88.1 88.0 79.1 87.0 81.2 84.0
equivalent sample 88.1 88.0 79.1 85.0 81.2 84.0
model 2 large sample 83.9 85.0 91.7 93.0 89.9 90.0
Fishman 83.9 85.0 91.7 93.0 89.9 90.0
equivalent sample 83.9 85.0 92.9 94.0 89.9 90.0
model 3 large sample 87.6 89.0 92.4 93.0 91.2 92.0
Fishman 87.6 89.0 93.5 94.0 91.2 92.0
equivalent sample 87.6 89.0 93.5 94.0 91.2 92.0
model 4 large sample 88.8 87.0 89.0 89.0 89.2 89.0
Fishman 89.9 88.0 89.0 89.0 89.2 89.0
equivalent sample 89.9 90.0 90.1 90.0 89.2 89.0
model 5 large sample 92.4 91.0 91.2 90.0 87.0 88.0
Fishman 94.9 93.0 91.2 90.0 87.0 88.0
equivalent sample 94.9 93.0 91.2 90.0 87.0 88.0
model 6 large sample 80.2 82.0 923 93.0 90.1 90.0
Fishman 81.4 83.0 93.4 94.0 90.1 90.0
equivalent sample 80.2 82.0 92.3 93.0 90.1 90.0
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Average halfwidth of 90% confidence intervals (set 3).
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sample size 500 2500 5000
model  df pass only overall pass only overall pass only overall
model 1 large sample 0.1266 0.1289 0.0567  0.0580 0.0407  0.0410
Fishman 0.1298 0.1319 0.0571  0.0584 0.0408  0.0412
equivalent sample 0.1271 0.1295 0.0568  0.0581 0.0407  0.0411
model 2 large sample 0.3612 0.3600 0.1632  0.1638 0.1163  0.1164
Fishman 0.3743 0.3725 0.1644  0.1650 0.1167  0.1168
equivalent sample 0.3789 0.3775 0.1647  0.1653 0.1168  0.1169
model 3 large sample 0.1285 0.1293 0.0562  0.0565 0.0396  0.0397
Fishman 0.1301 0.1308 0.0563  0.0566 0.0396  0.0397
equivalent sample 0.1291 0.1298 0.0562  0.0565 0.0396  0.0397
model 4 large sample 0.3614 0.3622 0.1700  0.1706 0.1209  0.1209
Fishman 0.3746 0.3755 0.1713  0.1719 0.1214  0.1213
equivalent sample 0.3784 0.3795 0.1717  0.1732 0.1215  0.1215
model 5 large sample 0.2505 0.2494 0.1106  0.1113 0.0775  0.0779
Fishman 0.2572 0.2559 0.1112  0.1119 0.0777  0.0781
equivalent sample 0.2557 0.2546 0.1110  0.1117 0.0776  0.0781
model 6 large sample 0.3323 0.3257 0.1572  0.1567 0.1130  0.1128
Fishman 0.3493 0.3418 0.1589  0.1584 0.1136  0.1134
equivalent sample 0.3460 0.3386 0.1585  0.1580 0.1135  0.1132
Table 13
Standard deviation of halfwidth of 90% confidence intervals (set 3).
sample size 500 2500 5000
model  df pass only overall pass only overall pass only overall
model 1 large sample 0.0157 0.0180 0.0034  0.0043 0.0014  0.0021
Fishman 0.0166 0.0189 0.0035  0.0043 0.0014  0.0021
equivalent sample 0.0159 0.0182 0.0034  0.0043 0.0014  0.0021
model 2 large sample 0.0561 0.0563 0.0113  0.0110 0.0063  0.0059
Fishman 0.0610 0.0611 0.0114  0.0111 0.0064  0.0059
equivalent sample 0.0649 0.0649 0.0116  0.0113 0.0064  0.0060
model 3 large sample 0.0126 0.0124 0.0030  0.0032 0.0012  0.0013
Fishman 0.0128 0.0126 0.0030  0.0032 0.0013  0.0013
equivalent sample 0.0128 0.0126 0.0030  0.0032 0.0012  0.0013
model 4 large sample 0.0468 0.0503 0.0107  0.0111 0.0047  0.0046
Fishman 0.0508 0.0547 0.0109  0.0113 0.0047  0.0046
equivalent sample 0.0541 0.0585 0.0110  0.0114 0.0047  0.0046
model 5 large sample 0.0323 0.0327 0.0071  0.0072 0.0034  0.0038
Fishman 0.0343 0.0348 0.0072  0.0072 0.0035  0.0038
equivalent sample 0.0346 0.0350 0.0072  0.0072 0.0034  0.0038
model 6 large sample 0.0590 0.0599 0.0121  0.0127 0.0058  0.0061
Fishman 0.0661 0.0671 0.0123  0.0130 0.0059  0.0062
equivalent sample 0.0667 0.0674 0.0124  0.0130 0.0059  0.0062




410

Table 14

Distribution of order estimates (set 4, system time), where “total
pass” means replications that passed the Portmanteau test.

traffic sample order total
intensity size 1 2 3 4 5 6 7 8 pass
p=09 500 57 17 5 3 3 2 2 1 90
2500 58 11 5 3 2 1 2 1 83
5000 59 16 13 2 4 2 0 0 96
p=0.5 500 58 19 4 4 3 o 2 2 92
2500 49 16 5 1 1 2 0 2 76
5000 37 30 9 3 1 0 0 O 80
Table 15

Estimated coverage of 90% confidence intervals (set 4, system time).

traffic  sample size 500 2500 5000
intensity ¢ pass only  overall pass only overall pass only overall
p=0.9 large sample 56.6 56.0 73.4 76.0 64.5 66.0
Fishman 59.9 59.0 75.9 78.0 67.7 69.0
equivalent sample 83.3 80.0 90.3 91.0 84.3 85.0
p=0.5 large sample 84.7 84.0 84.2 83.0 86.2 87.0
Fishman 84.7 84.0 84.2 83.0 86.2 87.0
equivalent sample 84.7 84.0 84.2 83.0 86.2 87.0
Table 16
Average halfwidth of 90% confidence intervals (set 4, system time).
traffic  sample size 500 2500 5000
intensity ¢ pass only  overall pass only overall pass only overall
p=09 large sample 62.58 99.98 36.82 38.32 24.36 25.00
Fishman 165.74 311.32 53.30 55.37 27.31 28.15
equivalent sample 233.22 376.11 13429  140.32 80.66 83.37
p=0.5 large sample 1.806 1.857 0.868 0.888 0.631 0.634
Fishman 1.862 1.917 0.873 0.893 0.633 0.636
equivalent sample 1.868 1.932 0.874 0.894 0.633 0.636
Table 17
Standard deviation of halfwidth of 90% confidence intervals (set 4, system time).
traffic  Sample size 500 2500 5000
intensity ¢ pass only  overall pass only overall pass only  overall
p=0.9 large sample 231.01 453.15 33.62 34.62 18.86 19.71
Fishman 892.34 1745.79 114.41 109.38 29.60 30.44
equivalent sample 886.58 1737.59 133.88 137.66 80.24 83.40
p=05 large sample 0.613 0.704 0.183 0.193 0.099 0.096
Fishman 0.654 0.755 0.186 0.196 0.100 0.097
equivalent sample 0.684 0.814 0.187 0.197 0.100 0.097




Table 18

Distribution of order estimates (set 4, number of entities), where
“total pass” means replications that passed the Portmanteau test.

traffic sample order total

intensity size 1 2 3 4 5 6 7 8 pass

p=09 500 4 46 20 8 4 0 0 O 82
2500 0 22 37 11 3 1 3 1 78
5000 0 4 53 14 5 4 1 1 82

p=05 500 46 18 8 11 1 3 1 2 90
2500 29 34 6 3 3 1 5 2 83
5000 5 48 13 2 6 5 1 3 83

Table 19

Estimated coverage of 90% confidence intervals (set 4, number of entities).
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traffic  sample size 500 2500 5000
intensity ¢ pass only  overall pass only overall pass only overall
p=09 large sample 67.0 68.0 80.7 80.0 86.5 86.0
Fishman 71.9 74.0 80.7 80.0 87.8 87.0
equivalent sample 75.6 78.0 82.0 81.0 92.6 92.0
p=0.5 large sample 91.1 91.0 91.5 92.0 90.3 89.0
Fishman 91.1 92.0 91.5 92.0 90.3 89.0
equivalent sample 91.1 91.0 91.5 92.0 90.3 89.0
Table 20
Average halfwidth of 90% confidence intervals (set 4, number of entities).
traffic  sample size 500 2500 5000
intensity 4y pass only  overall pass only overall pass only  overall
p=09 large sample 4.63 4.44 2.01 2.09 1.73 1.73
Fishman 9.47 8.55 2.10 2.16 1.78 1.78
equivalent sample 15.24 14.55 3.88 4.11 2.82 2.85
p=05 large sample 0.1232 0.1242 0.0571  0.0574 0.0400  0.0405
Fishman 0.1249 0.1259 0.0573  0.0575 0.0401  0.0406
equivalent sample 0.1238 0.1247 0.0572  0.0574 0.0400  0.0405
Table 21
Standard deviation of halfwidth of 90% confidence intervals (set 4, number of entities).
traffic  sample size 500 2500 5000
intensity 4¢ pass only  overall pass only overall pass only overall
p=0.9 large sample 7.73 7.03 0.92 0.95 0.66 0.66
Fishman 29.58 26.84 1.03 1.06 0.70 0.71
equivalent sample 30.52 27.84 4.17 4.33 2.68 2.77
p=0.5 large sample 0.0323 0.0320 0.0071  0.0069 0.0037  0.0039
Fishman 0.0331 0.0328 0.0072  0.0070 0.0037  0.0039
equivalent sample 0.0329 0.0325 0.0071  0.0070 0.0037  0.0039
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Distribution of order estimates (set 5), where “total pass”
means replications that passed the Portmanteau test.

Table 22

Estimated coverage of 90% confidence intervals (set 5).

model sample order total
size 1 2 3 4 5 6 7 8 pass

alternative 1 200 51 19 11 7 2 1 1 O 92
500 51 21 10 4 0 1 0O 1 88

1000 51 27 9 3 0 O O 1 91

alternative 2 200 58 24 8 0 0 3 0 0 93
500 60 20 4 51 0 0 O 90

1000 54 26 11 1 1 O 0 O 93

alternative 3 200 62 17 7 0 2 0 0 1 89
500 58 17 5 6 2 0 1 0 89

1000 60 23 4 2 1 1 0 O 91

alternative 4 200 63 19 6 4 2 1 0 O 95
500 64 14 7 2 0 1 0 1 86

1000 59 14 10 4 2 0 1 0 90

alternative 5 200 63 11 8 1 3 0 1 0O 87
500 46 24 4 4 2 2 2 1 85

1000 59 19 9 21 3 0 0 93

Table 23

sample size 200 500 1000
model df pass only  overall pass only overall pass only overall
alternative 1 large sample 85.8 87.0 92.0 92.0 923 92.0
Fishman 86.9 88.0 92.0 92.0 92.3 92.0
equivalent sample 85.8 87.0 92.0 92.0 92.3 92.0
alternative 2 large sample 91.3 91.0 91.1 90.0 87.0 87.0
Fishman 91.3 91.0 91.1 90.0 87.0 87.0
equivalent sample 91.3 91.0 91.1 90.0 87.0 87.0
alternative 3 large sample 87.6 89.0 83.1 85.0 85.7 87.0
Fishman 88.7 90.0 83.1 85.0 85.7 87.0
equivalent sample 87.6 89.0 83.1 85.0 85.7 87.0
alternative 4 large sample 87.3 88.0 84.8 84.0 89.9 88.0
Fishman 873 88.0 86.0 86.0 89.9 88.0
equivalent sample 87.3 88.0 84.8 84.0 89.9 88.0
alternative 5 large sample 89.6 90.0 89.4 91.0 91.3 91.0
Fishman 89.6 90.0 90.5 92.0 91.3 91.0
equivalent sample 89.6 90.0 89.4 91.0 913 91.0




M. Yuan, B.L. Nelson, Autoregressive methods revisited 413
Table 24
Average halfwidth of 90% confidence intervals (set 5).
sample size 200 500 1000
model df pass only  overall pass only overall pass only overall
alternative 1 large sample 0.1326 0.1332 0.0855  0.0857 0.0598  0.0599
Fishman 0.1356 0.1361 0.0862 0.0864  0.0600 0.0601

alternative 2

alternative 3

alternative 4

alternative 5

equivalent sample 0.1329 0.1335 0.0855  0.0857 0.0598  0.0599

large sample 0.1271 0.1273 0.0814 0.0811 0.0570  0.0570
Fishman 0.1296 0.1298 0.0820 0.0817 0.0572  0.0572
equivalent sample 0.1274 0.1276 0.0815 0.0812  0.0570 0.0571

large sample 0.1095 0.1094 0.0678  0.0677 0.0482  0.0483
Fishman 0.1115 0.1112 0.0683 0.0682  0.0483  0.0485
equivalent sample 0.1109 0.1096 0.0678  0.0677 0.0482  0.0483

large sample 0.0797 0.0798 0.0503 0.0504  0.0359  0.0359
Fishman 0.0811 0.0813 0.0506  0.0507 0.0360  0.0360
equivalent sample 0.0798 0.0799 0.0503 0.0504  0.0359 0.0359

large sample 0.0611 0.0607 0.0386  0.0387  0.0277 0.0276
Fishman 0.0620 0.0616 0.0388 0.0390  0.0277  0.0277
equivalent sample 0.0611 0.0607 0.0386  0.0387 0.0277  0.0276

Table 25

Standard deviation of halfwidth of 90% confidence intervals (set 5).

sample size 200 500 1000

model df pass only  overall  pass only overall pass only overall

alternative 1 large sample 0.0179 0.0177 0.0063  0.0062 0.0028  0.0028
Fishman 0.0193 0.0190 0.0065 0.0064  0.0028  0.0028

alternative 2

alternative 3

alternative 4

alternative 5

equivalent sample 0.0182 0.0180 0.0063  0.0062 0.0028 0.0028

large sample 0.0155 0.0155 0.0060  0.0059 0.0030  0.0030
Fishman 0.0168 0.0167 0.0061  0.0060 0.0030  0.0030
equivalent sample 0.0157 0.0157 0.0060  0.0059 0.0030  0.0030

large sample 0.0114 0.0113 0.0049 0.0049  0.0023 0.0024
Fishman 0.0119 0.0118 0.0050 0.0049  0.0023  0.0024
equivalent sample 0.0115 0.0114 0.0049  0.0049 0.0023  0.0024

large sample 0.0103 0.0102 0.0032  0.0031 0.0019  0.0018
Fishman 0.0109 0.0108 0.0032  0.0031 0.0019  0.0018
equivalent sample 0.0104 0.0103 0.0032  0.0032 0.0019  0.0018

large sample 0.0068 0.0069 0.0030  0.0034  0.0015 0.0015
Fishman 0.0069 0.0070 0.0030  0.0035 0.0015  0.0015
equivalent sample 0.0068 0.0069 0.0030  0.0034  0.0015 0.0015
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5. Conclusions and recommendations

Based on the empirical results in section 4.3, a number of conclusions can
be drawn:

The AR-confidence-interval procedures perform well if an output process is
not too strongly positively correlated. With this or any method, one needs to
be cautious in the presence of strong positive correlations, in which case a
large sample is required to prevent the procedure from degrading. It is a good
practice to compute sample autocorrelations, which help users to predict the
performance of the procedure based on the correlation strengths.

PLS tends to overestimate the order, but this is actually comforting.
Overestimation is less harmful than underestimation because an AR(p) process
can be treated as an AR(p + h) process with A zero coefficients. Given the
typically good performance of the confidence-interval procedures we conjecture
that PLS is appropriately adjusting for the correlation structure in the output
process at hand.

The degrees of freedom for Var [Y] affect the  critical values used in computing
confidence intervals. Although we did not observe any substantial difference
among the three procedures in most experiments, the equivalent sample size
procedure did provide better coverage in the M/M/1 experiments on system
time (table 15), which was the most difficult case for our AR procedure.
Therefore we recommend using the equivalent sample size to determine the
degrees of freedom.

Portmanteau’s test does not provide protection for the procedures. We conjecture
that Var[Y] based on an AR representation is a good approximation
for Var[Y] even when the actual output process is not AR(p).

The procedures seem robust to deviation from normality or non-AR correlation
structure when the sample size is moderate or large. The explanation could
be the same as in the previous paragraph: Var [Y] serves as a good approximation
to Var[Y] regardless of whether or not the output process is truly AR.

The empirical results also suggest future research. Since the procedure works well
on moderately-correlated processes, and the correlations in a time series can be
reduced by batching the process, improvements are expected by implementing the
procedure on the batch means as we did for the number-of-entities process in test
sets 4 and 5. This could lead to a generalization of the nonoverlapping-batch-means
method. Some advantages over conventional batching strategies are possible. A
central issue is how to determine a batch size that reduces the correlations while
retaining enough data to estimate the AR model.
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Appendix
ALGORITHM FOR COMPUTING PLS,

Our algorithm is based on the following well-known lemma (see [15, p. 459]):

LEMMA 5.1

Let A be an n X n nonsingular matrix and d be an n X 1 vector. Then

A-ldd’A™!
1+d’A'd’

' ~ X(i,h) _ X(,h)
X(z+1,h)—[(LY},)’i“l,...,Yj—h+l):|“[ ‘;, }

we can write X'(i + 1,h)X(i + 1,h) = X'(i,h) X(i,h) + dd’. Therefore, by lemma 5.1,

(A+dd) ' =A"" -

Since

[X'G+ 1, X0+ 1, ] = [ X3, k)X, k)]

N [X’(G, X3, W) dd’[ X' (i, )X, h)]!
1+ d'[ X6, X3 ) d '

Thus, the updated matrix can be inverted without direct evaluation. From our experience,
the rounding error of recursively updating is negligible when double precision is
used. An algorithm for computing PLS,, is as follows:

Step 1. [« 2h+1.
Step 2. Compute X'(I,h)X(l, h).
Step 3. Invert X'([,h) X(L, h).
Step 4. Compute ¢,,(h) and set sum « e;,(h).
Step 5. fori«I[+1ton-1,do
update [ X'(i, h) X(i, W1~ from [X'(i = 1,h) X(i — l,h)]'1 using lemma 5.1
compute e;,(h)
sum < sum + e;,;(h)
endfor
Step 6. PLS, = sum/(n~1[)

There is a possibility that the matrix computed in step 2 is singular. In that
case we may initialize / in step 1 with a larger integer such that X'({,h) X(l, h) is
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invertible. Also recall that qS(n, h) = [X'(n,h) X(n,h)]"'X’(n, h) Y(n,h). The matrix
[X’(n,h)X(n,h)]"! can be obtained by updating X'(n - 1,h)X(n — 1,h), which is
available after we evaluate e,(h). This shows that the AR coefficient estimator is
a by-product of the PLS order identification.

Proof of lemma 3.3
For any £> 0,

Pr{|¢;(n, p) — ¢; | < €} = Pr{[¢;(n, p) — ¢; | < &, p = p}

+ Y Pr{lgi(np)-9;|<ep =)

j€0,j#p

where O is a set of possible orders. Since Pr{|@;(n, p) — ¢; | < & p = j} < Pr{p = j},
it follows that

lim Pr{|§;(n, p) - ¢ 1< &,p = j} < lim Pr{p=j} =0, Vj#p.

n—yeo

Thus, lim,_,.. Pr{|§; (n, p) — ¢; | < €} = lim,_,.. Pr{|;(n, p) — ¢; | < €and p = p} + 0
=1, Vi, from lemma 3.2. ]

Proof of theorem 3.1

Since p — p with probability 1, lim,_,.. §(n, p) is a p vector. To prove the
theorem, we need to show that for any £> 0,

lim Pr{|@;(n, p) — ;| < €} =1, for i=12,...,p.
n -3 o0

Notice that
Pr{|;(n, p) - ¢; | < &} = Pr{|§;(n, p) — ¢, | < & p = p}

+ Y Pr{lgi(n p) -9 1< € p =),

je0,j#p
fori=1,2,...,p. Then from lemma 3.3,
lim Pr(|d;(n, p) -~ ¢;1< €.p = p} = lim Pr(1$i(n,p) = ¢ | < &.p= p} =1, Vi.

It follows that lim,_,.. Pr{|@;(n, p) — ¢; | < €} =1, Vi. 0
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Proof of theorem 3.2

Let
2

n p
) 2j=p+1(Y/ - ¢o "Zk=1 q)kYJ'-k)
Sy = ,

n—p

o (Y‘—a3<n )= P deln p)Y; )2
2o j=p+1\7J oln, p k=1 Pk Pk
Sy = n=p .

Notice that lim,_,.. S> = 6 with probability 1 from the strong law of large numbers.
The proof is completed by showing that 3‘,% - 52 2,0and 6% - 3’3 2, 0. By adding
and subtracting ¢; appropriately we can write 5‘,% = S2 + R,, where R, 2> 0, which
establishes the first part. For any £€> 0,

lim Pr{|6? - §3|> &} = lim (Pr{|82 - 82> &, = p}
n—» oo n—yoco

+ Pr{|62 - §2] >£,ﬁ¢p})

< 1im (Pr(| 83 — §2/> £, = p} + Pr(p # p))

n-yeo

=0,

where the final equality follows from the fact that 62 = $2 when p = p, and p is
consistent for p. This completes the proof. O

Proof of theorem 3.3

Since 62 —g}\ 0'2_(by theorem 3.2), and 2{11 (ﬁ(n, P) /% _Zf’=1 ¢; (by corollary
3.1), we have nVar[Y] & o%(1 - 3F_,¢)* = lim,_,..n Var[¥]. O

Proof of theorem 3.4

The conclusion that (Y — 8)/+/72/n = N(0, 1) follows from appendix 2 of [13]
and theorem 21.1 of [2]. Then since nVar[Y] LN 2, by theorem 3.3, the result
follows from Slutsky’s Theorem. i
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