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We consider applying the nonoverlapping batch means output analysis method in conjunction
with the control-variate vanance-reduction technique to estimate a steady-state multivariate mean
vector. The effects of the number of batches and the number of control variates on the multivanate
point and region estimators and the univanate point and interval estimators are considered. The
results are experiment analysis guidelines 1n terms of an appropriate range of the number of
batches to choose as a function of the number of responses and control vanates. The results have
implications for terminating simulations as well.
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1. Introduction

Computer simulation is frequently employed for the analysis of stochastic systems.
There are many situations in which we are interested in several performance measures
of a stochastic system simultaneously, possibly of several different systems. However,
multivariate estimation procedures are rarely used in simulation output analysis because
Joint inference on multiple response variables is difficult when the variables are dependent.

Although simulation is often the only feasible method for estimating the parameters
of a complex stochastic system, the computing cost for achieving acceptable precision
can be a serious disadvantage. Variance reduction techniques can be used to reduce the
variance of estimators, and variance reduction is particularly critical in multivariate
estimation problems because joint inference procedures are more conservative than uni-
variate procedures. Recent surveys of variance reduction that emphasize univariate es-
timation include Nelson (1987) and Wilson (1984).

This paper examines the effect of applying the control-variate variance-reduction tech-
nique, in conjunction with the batch-means output-analysis method, to estimate a mul-
tivariate mean vector; it extends results for the univariate case in Nelson (1989) to the
multivariate case. The tradeoffs between using multivariate and univariate estimation
procedures are also considered.

To be more precise, suppose the simulation output process is of the form Z = (Y,
C)),fori=1,2,...,n,where Yisa p X | random vector, Cisa ¢ X 1 random vector,
'indicates the transpose of a matrix, and the output process is identically distributed and
stationary. The specific problem we consider is estimating the p-variate mean vector ®
= E [Y,] when a g-variate control vector, C,, with known expectation, uc, can also be
observed.

Such an output process can arise from either terminating or steady-state simulations.
In terminating simulation, Z, could be a summary output from the /th independent
replication. In steady-state simulation, after initial-condition effects have been removed
(see, e.g., Schruben 1981),Z,.i=1,2, ..., n, could be the outputs from within a single
replication, which are typically dependent. Of course, to obtain a discrete-time process
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1416 WEI-NING YANG AND BARRY L. NELSON

of the form assumed here we may have to transform the natural output process, possibly
by batching by time. In either case, we want to form point and region estimators for ®
using the control-variate variance-reduction technique to improve .the precision of the
estimators. -

Standard region estimation procedures assume that the output process consists of
independent and identically distributed (i.i.d.) multivariate normal vectors. The as-
sumption of normality is not necessarily true for the output process obtained from a
terminating simulation. Both the assumptions of normality and independence may be
violated for the output process from a steady-state simulation. Batching is an aid to
realizing both assumptions: Batching makes the output processes from both terminating
and steady-state simulations closer to normality due to central limit theorem effects, and
the output process from a steady-state simulation less dependent for typical covariance
structures.

The improvement from batching is obtained at the expense of loss of degrees of freedom.
The approach taken in this paper is to assume the conditions of independence and nor-
mality are actually satisfied, and then to study the potential penalty for batching in terms
of its effect on point and region estimator performance. That is, we directly assess the
performance penalty for batching when it is not needed. We find that estimator perfor-
mance is insensitive to the number of batches within a certain range. These results help
to identify when the marginal improvement from additional batches is not worth the
risk of significantly violating the assumptions of normality and independence; this is
useful for experiment design and analysis because it limits the range within which we
need to search for an acceptable number of batches.

The paper is organized as follows: We first review batching and control variates. Then
we examine batch-size effects on the variance of the point estimator and the volume of
the joint confidence region. Finally, we study the tradeoffs between using individual
univariate estimation procedures and multivariate estimation procedures in terms of the
properties of the half widths of the confidence intervals for individual univariate responses.

2. Review of Batching and Control Variates

To review the batch-means output-analysis method and control-variates variance-re-
duction technique, let the output of the simulation experiment Z be as described above
(we temporarily drop the subscript i). Let ® = (6,, 62, ..., 6,) = E [Y ] denote the
unknown mean vector of interest. The variance-covariance matrix of Z can be represented
by

Var[Z]=2 = (2“ EYC)

ECY ECC

where Zyy is the p X p matrix of Var [Y], Zyc is the p X g matrix of Cov Y, Cl, Z¢y
is the g X p matrix of Cov [C, Y] and Zcc is the ¢ X ¢ matrix of Var [C].

The idea behind control variates is to identify a g-variate control vector C that has
known expectation, g, and is strongly correlated with the p-variate response, Y. The
deviation C — uc is then used to counteract the unknown deviation Y — @ by subtracting
an appropriate linear transformation of C — uc from the response. For any fixed g X p
matrix of control coefficients, ®, the control-variate estimator of © is

O®) =Y — &(C — pc).
Letting | - | denote the determinant of a matrix, the generalized variance of the control-
variate estimator is
| Var [8(®)]] = |Zyy — 28 Zcy + ¥'Zcc?|
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MULTIVARIATE BATCH MEANS AND CONTROL VARIATES 1417

which is minimized by the optimal matrix of control coeflicients
®* = St Zey

(Venkatraman and Wilson 1986). The minimum generalized variance is

| Var [8(2*)]] = |Zyy| - [] (1 = p})

J=1

where v = rank (2yc), and the p,’s are the canonical correlations between the response
Y and the control vector C (for canonical correlation, see, e.g., Kshirsagar 1972).

Generalized variance is an important performance criterion when estimating a mul-
tivariate mean vector. However, practical decision-making is often based on univariate
performance measures. If we are only interested in the individual univariate responses
in a multivariate estimation problem, then the trace of the covariance matrix of the
control-variate estimator is also an important criterion.

Consider the jth expected response, 8, = E [Y,], where Y, denotes the jth element of
Y. As a special case of the result above, the variance of the control-variate estimator of
the univariate parameter 6, alone is minimized by the optimal vector of control coefficients

¢) = Zct3cy,

yielding the minimum variance
Var [6,(¢))] = [Zwl, - (1 = R}),

where Zcy, is the jth column of ¢y, [Zyy]), is the jth diagonal element of Zyy and R f
is the squared multiple correlation coefficient between C and Y.

Since d) , minimizes the marginal variance of the control-variate estimator of §,, and
since ¢ is the jth column of ®*, it follows that the control coefficient matrix ®* also
minimizes the trace of the variance-covariance matrix of the control-variate estimator.
The minimum trace is therefore

tr (Var [8(®*)]) = > (1 — R})[Zw],,

J=1

where tr (+) denotes the trace of a matrix. This result assumes that we use the same
control vector C to estimate each univariate response. Later we discuss the possibility of
using different control variates for each response.

In practice ¢y is often unknown, so * must be estimated. This results in an efficiency
loss relative to the minimum generalized variance and trace; see §3 below.

Batching, as we use the term, means to partition the output process into k nonover-

lapping batches of size » = | n/kjand to compute the batch-mean vectors Y,(k) and
C,(k), where

_ 1 2
V=5 3 Y, and
=(j—1)b+1
_ |
Cj(k) = E Z Cl
1=(j—1)b+1

forj=1,2,...,k; from here on we assume k divides n evenly.

In the case of a terminating simulation, where the output process may be nonnormal,
or a steady-state simulation, where the output process may be dependent and nonnormal,
it is hoped that, at least approximately,
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= ?j(k) ind ®
Z,(k)=| - ~ Npig s 2(k) |,
) (Cj(k)) ((I-’-C) ( ))

forj=1,2,...,k, where

300 = (zw(k) EYC(k))

Zcev(k)  Zeclk)

is analogous to X for the original output process. The approximations of independence
and normality will tend to improve as &, the number of batches, decreases (the batch
size b increases).

In the following sections we construct point and region estimators based on the control-
variate point estimator formed from batch means, and we examine the effects of batch
size and number of control variates on estimator performance.

3. Point Estimator

Let Y and C denote the sample mean vectors of the response and the control variates,
respectively,

ol
i
M=

Y,

S|
K

k
Z J(k) =

J=

x| =

INZE

G,

(@l

Il
™M =
S |-

1
E J(k) =

1

J

and let Z = (\=(’, é’)’. Let Zyy(k), Ecv(k) and Scc(k) denote, respectively, the sample
analogues of Zyy(k), Zcy(k) and Zcc(k), which are computed from the batch mean
vectors as follows:

. 1 o - -

Zw(k) = 1 > (Y, (k) — Y)Y, (k) - YY),
J=1

. LA - =

Zov(k) = 7 2 (C(k) — Y, (k) — YY),
J=1

. 1 & = =
Zeclk) =77 2 (C(k) = O)(G(k) = €).
7=1

Then the optimal control coefficient can be estimated by
&*(k) = Ecb(k)Zcv(k)
and a control-variate point estimator of @ is
8(k, p, q) = ¥ — (#*(k))'(C — pe).
The following theorem establishes the basic properties of this estimator when batching

is not necessary:
THEOREM 3.1 (Venkatraman and Wilson 1986). If Z,, i = 1, 2,...,n,areiid.
normal, then E [®(n, p, q)] = ® and
Var [@(n, p, n—2 V Z
| [(__p q)]lz( )_H(l_pz)
[ 2%+

where the p,’s are the canonical correlations between Y and C.
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Under the same assumptions as Theorem 3.1 we can readily show that

tr(Var[é)(n,p,q)]):( n—2 ).Zfﬂ(l—Rf)[EWLj
tr (24%) n—q-2 27124,

These results are for the case when there is no batching (k = n), and the original
output process is i.i.d. normal. If the independence and normality assumptions are not
valid, then we may batch the output process in hopes that, for some number of batches
k small enough (equivalently, some batch size b large enough), the batch means are
approximately 1.1.d. normal.

Although the assumptions of independence and normality may never be precisely true,
for the purpose of analysis we will assume that for all numbers of batches k the batch
means are indeed i.i.d. normal. Therefore, Z(k)/k = Var [Z], which equals Z/# in the
special case that the original output process is i.i.d. The following results, which are
similar to Nelson (1989) for the case of a single response (p = 1), assume that the batch
means are i.1.d. normal.

THEOREM 3.2. For fixed p and q, and g + 2 < k,
| Var [8(k, p, ¢)]| ( k=2 )” . )
= . 1 - and
P k—q-2) 1L
tr(Var[é)(k,p,q)]):< k—=12 )_Zf=n(1 - R)[Z%l,
tr (2¢4) k—q—2 Z7 251,

The proof of this theorem, and all other theorems, is in the appendix.

THEOREM 3.3. For fixed pand q, and g+ 2 < k| < k,,

| Var [0(ki, p, )] _ [(lq -2 —g-2)
[Var [8(k, p, )]~ [(ka = 2)(ki —q — 2)

tr (Var [8ky, p, 9)]) _ (ki = 2)(ka = g — 2)
tr (Var [8(kz, p, @)]) (k2 = 2)(ki = ¢ — 2)

r
] > 1 and

> 1.

Theorems 3.2 and 3.3 compare the control-variate point estimator to the sample mean,
and to itself, for different numbers of batches, but always assuming that the batch means
are i.1.d. normal. These are worst-case results for batching in the sense that the penalty
is greatest because batching is not needed at all.

Theorem 3.2 shows that, for fixed p and g, increasing k decreases the generalized
variance, especially for larger p, meaning that having a larger number of batches is more
important when estimating more parameters. Similarly, increasing k decreases the trace
of the covariance matrix, but the number of responses has no effect on the leading term
of this ratio. For p < 5, the number of responses has a dramatic effect on the loss ratio
((k—2)/(k — g — 2))” when k is small, but little when k = 80.

Comparing control-variate estimators, more batches is better (the ratios in Theorem
3.3 are greater than 1), as would be expected. However, it is important to notice that
the ratios are nearly 1 if k, = 80 when p < 5 and g < 5, no matter how large k, is. We
can see this by letting k; — oo in Theorem 3.3, which gives an upper bound on the
penalty for using k; batches when we could have used k, batches. The resulting ratio is
((ky = 2)/(ky — g — 2))”, or just the loss ratio in Theorem 3.2. This means that the
improvement from a larger number of batches is negligible beyond, say, 80, unless p is
quite large.

We are considering different numbers of batches when the total number of observations,
n, ts fixed. It is interesting to contrast the batch-size effect with the effect of additional
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1420 WEI-NING YANG AND BARRY L. NELSON

sampling. Suppose that, under the same assumptions as Theorem 3.3, 8(k;, p, q) is
formed from k, batches of size 4,, and @( k,, p, q) i1s a control-variate estimator formed
from k, > k, batches of the same batch size b,; that is, 8(k,, p, ¢) is based on a larger
total sample. The ratio of generalized variances | Var [0(k;, p, ¢)]1|/| Var [8(k2, p, ¢)]]
is then the ratio in Theorem 3.3 with the right-hand side multiplied by (k,/k;)”. Thus,
in the case of additional sampling, the improvement from more batches is magnified by
(k2/k,)?, compared to the case where » is fixed.

This is a basic theme of the paper: When the total sample size is fixed, the improvement
in estimator performance from using a larger number of batches decreases rapidly as the
number of batches increases, unlike the improvement from additional sampling. Our
results help to identify the point where the marginal improvement from additional batches
is not worth the risk of significantly violating the assumptions of normality and inde-
pendence.

Next we examine the effect of the number of control variates. Consider two different
sets of control variates containing ¢, and ¢, control variates. We add an argument (g)
to p2, v and R? to emphasize their dependence on the particular control variates.

THEOREM 3.4, For fixed k and p,
|Var [é(ka D, qZ)]l < |Var [®(k’ D, ql)]l

if and only if
A —efe)) (k— 4 — z)p .
IS4 (1 = p(a)) k—q -2
tr (Var [8(k, p, ¢:)]) < tr (Var [8(k, p, q1)])
if and only if

2 (- RY@NIZN)y ka2

1 .
7 (1 — RA(g))[ 23, k—q —2

A special case of Theorem 3.4 is adding control variates to a fixed set of g, control
variates. Since [12-, (1 — p?(g)) and 27, (1 — R}(q)) are nonincreasing in ¢ when
new control variates are added, Theorem 3.4 gives lower bounds on

4™ (1 — p2(g+ 1)
19 (1 = p2(q))

_Zia (- Ri(g + 1)[ZH],
Zf:l (1— RJZ(Q))[E\W]/J

such that adding the (g + 1)st control variate results in a reduction of the generalized
variance and trace, respectively. Expression (1) is known in multivariate analysis as the
squared partial multiple correlation coefficient.

Table 1 gives the lower bound for various values of p, g and k. For generalized variance,
the lower bound increases as p or g increases, but becomes insensitive to ¢ when k = 80
for p < 5. This means that, when p < 5, adding a new control variate is unlikely to
increase the generalized variance when the number of batches is sufficiently large, and
may reduce it. For the trace of the covariance matrix, the lower bound is given by the p
= 1 entries, and thus does not depend on p; it becomes insensitive to ¢ when k = 30.
The volume of a joint confidence region for ® depends on the size of the generalized
variance (see §4 below ), while the variances of the univariate estimators of 8, are reflected
in the trace.

and

l —

1

(1)
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TABLE |

For fixed sample size n and q, control varates, the lower bound 1 — ((k — g2 — 2)/(k — g1 — 2))* on
the squared partial muluple correlation for improving generalized variance of the powmnt estimator by
adding a control variate (q; = q, + 1).

k @ 2 3 4 5

8 0.167 0.200 0.250 0.333 0.500
10 0.125 0.143 0.167 0.200 0.250
16 0.071 0.077 0.083 0.091 0.100
B 30 0.036 0.037 0.038 0 040 0.042
p=1 60 0.017 0.018 0.018 0.018 0.019
80 0.013 0.013 0.013 0.013 0.014
100 0.010 0.010 0.010 0.011 0.011

© 0 0 0 0 0
8 0.421 0.488 0.578 0.704 0.875
10 0.330 0.370 0.421 0.488 0.578
16 0.199 0.213 0.230 0.249 0.271
B 30 0.103 0.107 0.111 0.115 0.120
p=3 60 0.051 0.052 0.053 0.054 0.055
80 0.038 0.038 0.039 0.039 0.040
100 0.030 0.031 0.031 0.031 0.032

o 0 0 0 0 0
8 0.600 0.672 0.763 0.868 0.969
10 0.487 0.537 0.598 0.672 0.763
16 0.310 0.330 0353 0.379 0.410
_s 30 0.166 0.172 0.178 0.184 0.192
r 60 0.083 0.085 0.086 0.088 0.089
80 0.062 0.063 0.064 0.065 0.066
100 0.0350 0.050 0.051 0.052 0.052

o 0 0 0 0 0

4. Region Estimator

In this section the performance of a joint confidence region for ® as a function of the
number of control variates and batches is examined. Two performance measures of the
Joint confidence region are considered: expectation and standard deviation of the volume
of the joint confidence region. Under the assumption that the batch means are independent
and multivariate normally distributed, the joint confidence region achieves its nominal
coverage probability. Thus, smaller values of both performance measures correspond to
better performance.

If the batch means are i.i.d. normal, a (1 — «)100% joint confidence region for @ is
(Wilson 1984)

[x E R [8(k. p. q) — xI'G (I [0k, p, q) — x]

S e — ). 2

where (k = 1NT3 = (€ — ue)(BEGONC — o), Bee(k) = Seclk)/k, Fulp, k — p

— ¢) isthe 1 — a quantile of the F distribution with pand k — p — q degrees of freedom,
and

k—1 . . ; N
G(k) = T {Zyv(k) — EYC(k)EE(l:(k)ECY(k)}

= (k—g— 1)Z5.&(k).
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Let V,[®(k, p, )] denote the volume of the (1 — a) 100% joint confidence region for
@ based on k batches and ¢ control variates, and let I'( - ) denote the Gamma function.

THEOREM 4.1. Ifthe batch means are i.i.d. normal, then the expected volume of the
Jjoint confidence region is

k
r -2-)
E [Valé(ka D, q)]] - 2p/2D(as ks D, q)k—_p - |2§-(::|1/2 Where
T ——
(7+’)
2qPI2 D pi2
D 5k3 s = Fa ’ - -
(o, k,p, q) r(g)[k_p_q (p,k—p q)] and
2

3%.6 = 2% — ZeZaZE.

The standard deviation of the volume of the confidence region is

VWar [V,[@(k, p, q)11 = 2°°D(a, k, p, q)
5 /_C 1/2
()

'(3)

(=2 0 (F=21)" =

<25l

2 2

Although the expected volume of the confidence region is the primary measure of
region estimator performance, the stability of the confidence region is also an important
criterion since a highly variable estimator may be far from its expectation in an application.
The standard deviation of the volume of the confidence region is a measure of the stability
of the confidence region.

4.1. Fixed p and q

Suppose the number of responses, p, the number of controls, ¢, and the particular
control variates are fixed but the number of batches, k, varies. Based on the results in
Theorem 4.1, the effects of the number of batches on V,[8(k, p, g)] when the batch
means are actually i.i.d. normal can be summarized as follows:

1. As k increases, both performance measures of the joint confidence region decrease
but at a decreasing rate; so the gain from more batches decreases as the number of
batches increases.

2. For larger p (respectively, g), decreases in the performance measures of the joint
confidence region are still significant at larger values of k; in other words, having k large
is more valuable when estimating more parameters (respectively, when using more control
variates).

3. With respect to the expected volume of the joint confidence region, there is little
benefit from increasing the number of batches beyond X = 80 when p < 5 and ¢ < 5,
since the gain from more batches is insignificant; however, reducing the variability of

the confidence region requires more batches, say k = 100.
" Table 2 shows the number of batches k such that the marginal benefit, in terms of
reduced expected volume, from 5 additional batches is just less than 5%. This is one way
to define the number of batches at which increasing k further, with # fixed, has little
additional benefit. Rows in the table show the effect of number of responses, while columns
show the effect of number of control variates. Similar tables for the standard deviation
in Yang (1989) show the same pattern, but with larger numbers of batches throughout.
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TABLE 2

Number of Batches, k, Such that the Marginal
Reduction in Expected Volume from 5 Additional
Buatches s Less than 5% when a = 0.05

» 1 2 3 4 5
0 4 22 29 37 44
1 17 26 33 41 48
2 20 28 8 44 51
4 3 22 32 40 48 55
4 24 34 @ 51 58
5 26 36 45 54 62

These summary results are similar to Nelson ( 1989) for p = 1. However, while Nelson
found little additional benefit from k > 60 batches for ¢ < 5, this upper limit increases
as more parameters are estimated. With respect to these two performance measures of
the joint confidence region, the results show that there is little additional benefit from %
> 100 batches for p < 5 and ¢ < 5.

4.2. Fixed p and k

For fixed p and k, assessing the effect of varying ¢ is difficult since the units on
E [V.[8(k,p,q)]]and VVar [V, [O(k, p, @)]11— | Zv.&| —change not only as g changes,
but also with the particular control variates chosen. For simplicity, we only consider
adding a new control variate to a fixed set of ¢ control variates. We add an argument
(g) to the subscript of |Z7.¢&| to emphasize its dependence on the particular control
variates. Since | Z3.¢(4)| decreases as control variates are added, we can make comparisons
by considering

_IDEPA - pMa+ ) L B8]
1,9 (1 - p2(q)) 125.é00)]

b

the squared partial multiple correlation coefficient of the (g + 1)st control variate, given
g control variates, which is always less than or equal to 1. If the squared partial multiple
correlation coeflicient is not large enough, then adding the (g + 1)st control variate will
degrade the performance of the region estimator by inflating E [V,[8(k, p, ¢)]] and
VVar [V, [8(k, p, 9)1].

Let r{ M} be the bound on the squared partial multiple correlation coefficient of the
(g + 1)st control variate, given g control variates, such that

| — IE\:{_—(:?Eq-H)I > r{M}
|23 &)l

implies that the performance measure M of the region estimator is no worse after
adding the (¢ + 1)st control variate, where A stands for E [V.[0(k, p, g)]] or
Vvar [V.[8(k, p, ¢)]]. The performance measure M of the region estimator is improved
if the squared partial multiple correlation coefficient is strictly greater than r{M}.

Table 3 gives the values of r{ M} for « = 0.05, p= 5and k = 16, 30, 60, 80 and 100
as (g, g + 1) goes from (0, 1) to (4, 5). The results from this table and others in Yang
(1989) can be summarized as follows:

L. As p increases, r{ M } increases for both performance measures; in other words, it
is more difficult to improve the region estimator by adding a new control variate when
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1424 WEI-NING YANG AND BARRY L. NELSON

TABLE 3

Lower Bounds on the Squared Partial Multiple Correlation Coefficient for Adding
a Control Variate When p = 5 and o = 0.05

(g g+ 1) r{E[V.]} r{Vvar [V,1}
0,1 0.48 0.74
1.2 0.53 0.75
k=16 2,3 0.58 0.77
3,4 0.65 0.82
4,5 0.72 0.89
0,1 0.21 0.40
1,2 0.22 0.38
k=30 2,3 0.23 0.38
3,4 0.24 0.38
4,5 0.25 0.38
0,1 0.09 0.19
1,2 0.10 0.19
k=60 2,3 0.10 0.18
3,4 0.10 0.18
4,5 0.10 0.18
0,1 0.07 0.14
1,2 0.07 0.14
k=80 2,3 0.07 0.14
3,4 0.07 0.14
4,5 0.07 0.13
0,1 0.05 0.11
1,2 0.05 0.11
k=100 2,3 0.05 0.11
3,4 0.06 0.11
4,5 0.06 0.11

estimating more parameters, since improvement requires greater squared partial multiple
correlation for the new control variate.

2. For fixed p, as k increases, r{ M } decreases and stabilizes for all values of ¢; in
other words, for large k it is easier to improve the region estimator by adding a new
control variate no matter how many control variates have already been chosen.

3. Forall p, gand k, r{ VWVar [V.[8(k, p, 9)]] } > r{E [V.[8(k, p, q)]]}, meaning
that it is more difficult to reduce the variability than the expected size of the confidence
region by adding a control variate.

4. Comparing Table 3 to Table 1 indicates that improving region estimator perfor-
mance requires greater squared partial multiple correlation than required to improve the
generalized variance of the point estimator.

These summary results are similar to Nelson (1989) when p = 1. However, as the
number of responses increases (p > 1), reducing E [V, [6(k, p, ¢)]]1 and

Vvar [V.[®(k, p, g)]] by adding a control variate is more difficult.

4.3. The Special Case g =0

When there are no control variates, batching has no effect on the point estimator since
it is just Y. However, the number of batches does change the properties of the region
estimator. The results below extend Schmeiser’s (1982) results to p > 1.
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TABLE 4
Expectation and Standard Devianion of the Volume of the Confidence Region forp =5 and g = 0

a=0.10 a = 0.05 a = 0.0l
k E[V.] VVar [17,] E[V.] VVar [V,] E[V.] VVvar [V, ]

10 11,910 7,986 30,817 20,663 214,114 143,570
30 2,148 670 3,710 1,157 9,901 3,088
60 1,681 356 2,757 583 6,557 1,387
80 1,590 289 2,579 469 5.984 1,088
100 1,540 250 2,481 403 5.674 922
120 1,508 222 2,420 357 5,482 809
o 274 0 427 0 933 0

The expected volume of the (1 — «)100% confidence region for p-variate ® based on
k batches, but no control variates, is
W
2

k—p

P R
)
The standard deviation of the volume of the confidence region is

VWVar [V.[@(k, p, 0)]] = D(a, k, p, 0)
5 ]_( 1/2
()

()
2

Table 4 shows the expectation and the standard deviation of the volume of the con-
fidence region for different values of k, «, and p = 5. The units are V| Z53|, which does
not depend on k.

Consider the case when the number of responses, p, is fixed but the number of batches,
k, varies. The results can be summarized as follows:

1. As k increases, both performance measures decrease but at a decreasing rate, meaning
that the gain from additional batches is more when k is small. The k = oo entries are
not attainable, since # is finite and k < #n, but they are lower bounds on the performance
measures as k increases.

2. As k increases, VVar [J] is affected more by & than is E [V,].

3. For large p, significant decreases in the performance measures occur at larger values
of k, meaning that having k large is more valuable when we are estimating more responses.

4. For small «, the rate of decrease in the performance measures as k increases is
faster; so additional batches are more valuable for smaller values of « than for larger
values of a.

These summary results are similar to Schmeiser (1982) when p = 1. However, while
Schmeiser found little additional benefit beyond k& = 30, this limit increases as we estimate
more responses. With respect to the expected volume of the joint confidence region,
there is little benefit from increasing the number of batches beyond k = 44 for pP=<S5, as
shown in Table 2. As far as the stability of the joint confidence region is concerned, this
number of batches is increased to k = 75 for p < 5; see Yang (1989).

E [V.[8(k, p, 0)]] = 27/ - D(a, k, p, 0)- VIZ44].

/4
x| I] (k=1i)—27- -VIZ4].
=1
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4.4, Univariate Confidence Intervals

Even though constructing a joint confidence region for a multivariate response is im-
portant, practitioners often need to make inferences on each univariate response, which
leads to simultaneous inference or multiple comparisons. Bonferroni’s procedure and
Scheffé’s projection procedure are two approaches for obtaining multiple univariate con-
fidence intervals. Both of these procedures are conservative in the sense that the actual
confidence level may be greater than what is prespecified. This section considers batch-
size effects on the efficiency of these procedures when simultaneously applying control
variates.

Let @,(k, P, q) be the jth component of 8(k, p, g). When using k batches and g
control variates, the confidence interval for §, based on Bonferroni’s inequality that guar-
antees a confidence level of at least 1 — « for all p intervals simultaneously is

[x ER: [0k, p, q) — xI'[G,(k)] '[0,(k, p, ) — x]

1
k——q—lF“/p(l’k_q_ 1)-(1+ Tﬁ)],

which is equivalent to

1+ T2

172
0/ € ®j(ka D, q) * ta/(Zp),k—q—) * [k —q— 1 ij(k)] ’

where £,/(2) k-g-1 15 the 1 — &/(2p) quantile of the ¢ distribution with k — g — 1 degrees
of freedom, and G,(k) is the jth diagonal element of G(k). Notice that each interval
individually has confidence level 1 — «/p.

Scheffé’s projection procedure is used to construct confidence intervals for any linear
combination of the mean vector and still achieve the overall confidence level. This pro-
jection procedure is very conservative when only the confidence intervals for the univariate
means are constructed.

The confidence interval for 6, using Scheffé’s projection procedure is

[x ER: [6,(k, p, 0) — xVG,()] ' [8,(k, p, @) — x]

sk—”— “Foup.k—p—q)-(1 +T2)}
—pP—4q

(Miller 1981) which is equivalent to

2 1/2
6,€ 6,0k, p, q) + [Fulp, k—p— )]+ %‘i—“L_T—q’ c,,(k)] .

Let H,(B) and H,(.S) denote the half widths of the confidence intervals for 6, based
on Bonferroni’s procedure and Scheffé’s procedure, respectively, with 1 — a overall con-
fidence level when simultaneously applying control variates and batching. Let [2%.&],
denote the (Jj, j) element of =§.&. The next theorem gives the expected half widths of
the univariate confidence intervals for §,.

THEOREM 4.2. Ifthe batch means are i.i.d. normal, then the expected half widths of
the confidence intervals for 8, based on Bonferroni’s and Scheffé’s procedures are
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(%)
()

172
E[H,(S)] = [Tzlj_—__ Fu(P,k—p—CI)] =1y Vel
k—q—-gq F( )

E[H/(B)] = [ F.(l,k—q-— 1)] <V[=2v.¢l,, and

k—qg—1

2

The ratio of the expected half width obtained by the Bonferroni procedure to that of
Scheffé’s projection procedure can be expressed as

E[HJ(B)IZ[Fa/p(l,k—q—l). k—p—gq ]”2
E [H,(S)] F.p,k—p—q) plk—gq—1)

The behavior of this ratio for p < 5, ¢ < 5 and k < 200 can be summarized as follows:

1. For fixed pand g, the Bonferroni procedure dominates Scheffé’s projection procedure
in the sense that the ratio is less than 1. The ratio increases as the number of batches, k,
increases, meaning that the Bonferroni procedure is more sensitive to the number of
batches.

2. For fixed k and p, the ratio decreases at an increasing rate as ¢ increases, meaning
that Scheffé’s projection procedure is more conservative than the Bonferroni procedure
when more control variates are chosen. For larger k there is no significant decrease in
the ratio as g increases.

3. For fixed k and g, the ratio decreases as p increases, meaning that Scheffé’s projection
procedure is more conservative than the Bonferroni procedure when estimating more
parameters.

Thus, using expected half width as the performance criterion, the Bonferroni procedure
is superior to Scheffé’s procedure for constructing individual confidence intervals for the
elements of @.

5. Discussion

The focus of this paper is on the design and analysis of single-replication experiments.
While Nelson (1989) concluded that 10 < k < 60 is reasonable for the case of p = 1 and
¢ = 5, we modify those bounds to 60 < k£ < 100 if p < 5 and g < 5. As a general principle,
the more parameters that are to be estimated or the more control variates that are chosen
the larger we would like k to be, provided that the assumptions of normality and inde-
pendence are not violated. The number of batches at which the departure from inde-
pendence and normality is significant is usually unknown. Keeping the number of batches
small improves the approximations, but if the number of batches is not too small our
results show that little is sacrificed in estimator performance due to the loss of degrees
of freedom.

These results also apply to steady-state simulations when independent replications are
employed and and the total budget, #, is fixed. In this case we want to keep the number
of replications, which corresponds to the number of batches in single-replication exper-
iments, small to reduce the transient period deletion. Our results suggest dividing the
budget into a modest number of long replications (60 to 100).

The results also apply to terminating experiments where independent replications are
employed and the number of replications, #, is fixed. Although the observations from
independent replications are independent, the normality assumption may be violated.
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Batching improves the approximation of normality. Our results suggest batching the
observations from » independent replications of terminating experiments into a modest
number of batch means when n > 100.

Yang (1989) demonstrated that it is not always optimal to use the same set of control
variates to estimate each univariate parameter of a multivariate parameter vector indi-
vidually, even when it is optimal to use all of the control variates to minimize the gen-
eralized variance of the multivariate estimator. Similarly, it is not always optimal to batch
all univariate output processes of a multivariate output process into the same number
of batches. The value of our results is that they show that, beyond a certain number of
batches, estimator performance is insensitive to the number of batches or to the number
of control variates selected, and this number of batches is not very large. Thus, the
benefits from individually selecting control variates or batch sizes are negligible when we
can obtain a moderate number of batches.

This paper considers batching to improve the approximations of independence and
normality. Although not specifically examined here, batching can also improve the per-
formance of the control-variate point estimator in terms of bias, since unbiasedness is
assured by normality of the output process (Nelson 1990).

One obvious direction for future work is to extend our results to the estimation of a
multivariate metamodel. Perhaps a more fundamental problem is how to best batch a
general multivariate output process—which may contain both discrete and continuous-
time univariate processes—in order to obtain the type of stationary batch means process
assumed here.’

! This research was partially supported by National Science Foundation Grant No. ECS-8707634. The authors
acknowledge many helpful comments by the Departmental Editor, Associate Editor and two anonymous referees.

Appendix

Proofs of the theorems are given in this appendix.

PROOF OF THEOREM 3.2. Since k is in the range such that the batch mean vectors Z,(k),y = 1,2,..., k,
are i.i.d. multivariate normally distributed, the results follow from Theorem 3.1. O

PROOF OF THEOREM 3.3. From Theorem 3.2 we have

k-2

, .
|Var [8(ki, p, )11 = (;_—q_—z) T 1= 02 1255
J=1

for [ = 1 or 2, which implies that

| Var [8(ki, p, 91l _ [(kl -2k — g - 2)]"
|Var [8(kz, p, )] (ky—2)ki—gq—2)

[(kl - 2)(k; —2) — qlki — 2)]"> !
(ky = 2)(ky = 2) — g(ky — 2)

The last inequality holds because k; > k,. The trace result can be shown similarly. D
PROOF OF THEOREM 3.4. The proof 1s similar to the proof of Theorem 3.3. O

PROOF OF THEOREM 4.1. For notation, let C(k) = {C(k),i=1,2,..., k}. Rao (1966) showed that,
conditional on C(k), '

&(k,p,q) ~ Ny(®, (1 + TPZ4.8)  and
G(k) ~ Wylk —gq— 1, 23.&)

where (k —~ 1)T2 has a Hotelling-7? distribution with k& — 1 degrees of freedom and parameter ¢ when Tée
= Zcclk)/k; and W,(k — g — 1, Z§.&) denotes the p-dimensional Wishart distribution with k — g — 1 degrees
of freedom on the covariance matrix 23.¢é.
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Therefore, conditional on C(k), a (1 — &) 100% confidence region for @ is
[x € R7: [8(k, p, g) — x]G™'(L)[B(k, p, ) — x] < k—_f}—ﬂ] F.(p, k—p— )1+ T?,)]

which yields the conditional volume of the confidence region (Anderson 1984, p. 263)

V.I8(k, p, )| C(k)) = D(a, k, p, @)(L + TH)P?|G(k)|'/2. (2)
By Theorem 7.5.3 in Anderson (1984), given é(k),
IGUNY? ~ | Z4.E1"%  Ximgmr * Xz s » + Xi—g-p>
where X4_4 1, Xg—g-25 - - - » Xs—gp are independent Chi random variables. Then we have

E[IG(k)|'*|C(Kk)] = |Z5.281'2- H E [Xk-g-i]

(=)

o)
2

|E\:(é| ’[H E [Xi—q—l] - (H E [Xk—q—I]) }

I\)

=207 ———— - |26l and

I

Var [|G(k)]'? 1C (k)]

k—q
2
, r(*5)
k—q—1)— 2 —— 1 - 12%.¢&l.
:IJ)( q-—1) - k-p—gq 12%.¢l
2
Thus, conditional on _C(k), the expected volume of the (1 — ) 100% confidence region for @ is

E [V.I8(k, p, 9)|CUO)1] = D(a, k, p, @)(1 + T2 E[IG(K)|'?|C(k))

(5

7 -1z el
r(k r q)

=2"2D(e, k, p, )(1 + THP?
2

and the conditional variance of the volume of the confidence region is
Var [V[8(k, p, )ICUO] = D*(a, k, p, @)(1 + T3)? - Var [|G(k)|'2|C(k)]
(k4
2

14
=D¥a, k,p, g1 + T3y k—g-n—2P— = " |is: zl.
(e, k, p, g)( J E( q-1) Pz(k—P“q) |Z%.¢l

2

Since (k — 1) T2 has a Hotelling- 72 distribution with k — 1 degrees of freedom and parameter g, the random
vanable (k — ¢) T3/ q has an F distribution with degrees of freedom g and k — 4. By the relationship between
the F distribution and the Beta distribution we have

1 k—q ¢q
(1+7% Beta( 2 ’2)

so that
k k—p—gq
oz Jo(*=5—)

E[(1 + T2)"?] S k=
(579 (55%)

(3)
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(opfiee
2 2

)
)

2
Kafk-pr—4q
2)P( 2 )
k

E[(1+T)" =

k k—2p—g¢q 2
(=)
k~q\ [k=2p\ A L)
T 2 2
(5r(*52) (%)
(Johnson and Kotz 1970). Thus, the expected volume of the (1 — «) 100% confidence region for @ is
E [V.[8(k, p, 9)]] = E [E {V.[8(k, p, 9)| C(k)]}]
k—q
=)

—T—— -1
k—-p—gqg
F( 2 )

Var [(1 + TH?) =

= 22D(a, k,p, ) E[(1 + T3] &l

= 2P/ZD X k, , —_ 3% 1/2
(a D Q)F(k_p) I YCl 3 (4)
2

and the variance of the volume of the confidence region is

Var [V.[8(k, p, )11 = E [Var {V.[8(k, p, ¢)|C(k)]}] + Var [E {V.[8(k, p, ¢)|C(Kk)]}]

2( )
2
Dz(a, k,P, Q)E[(l 1 3)‘,] Ipl (l( q l) 2°

")
e
(—q—i) FZ(E)

k=q-2 z(k_P) 12l
2

I\)

X |Z¢.&| +27°D*(a, k, p, g) Var [(1 + T))*P| —7——

)
=7

=1
2

N’G

1 Zv.él
-

=2°D¥(a, k, p, 9)

Results in Bauer and Wilson (1989) were useful for simplifying the expressions in this result. [

PROOF OF THEOREM 4.2.  The expected half width of the confidence interval for 8, when using the Bonferroni
inequality is 4 of the expected volume (4) specialized to the case p = 1 and confidence level 1 — a/p; that is,
1 the expected volume as if §, were estimated in isolation and we wanted a | — a/p confidence region.

Conditional on C(k), the expected half width of the confidence interval for 6, when using Scheffé’s projection
procedure is

)4

1/2
E [H/(8)IC(k)] = mmp,k—p—q)] (1 + T2 E [VG, (k) |C(K)].

Given C(k), the conditional distribution of G(k) is p-dimensional Wishart with X — g — 1 degrees of freedom

on the covariance matrix Z§.&; furthermore, given é(k), the conditional distribution of G,(k)/[ 2.}, is Chi-
squared with k — g — 1 degrees of freedom. Thus, we have

k—gq
(%)
2
E [VG, (k) IC(K)] = V2 —7—— - V4.4,

=y
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yielding
k —
- 2p 12 r 2 .
E[H/(S5)|C(k)} = [k_—_p_»_q F.(p,k-p-— (1)] FI—_I—)U + THYV[Z5.¢,.
2

Then using equation (3), the expected half width of the confidence interval for 6, using Scheffé’s projection

procedure 1s
k
I‘ —_
5)

2[) 1/2 —
B = [ k- 0] e ima,. o
{5)

k—p-
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